用户名: 密码: 验证码:
矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防止瓦斯爆炸事故是保证煤矿安全生产的首要任务,同时也是实现煤与瓦斯安全共采的一个重要任务。煤矿发生瓦斯爆炸事故是多种因素共同作用的结果,其机理涉及很多复杂理论和试验技术课题,灾害现象发生过程的复杂性致使目前防治瓦斯爆炸事故的技术手段具有较大局限性。对瓦斯爆炸感应期内反应动力学的分析及光学特征的研究,为瓦斯爆炸探测技术提供数据支持,为瓦斯抑爆技术提供理论支持。
     本文以热爆炸理论和链式反应理论为基础分析了瓦斯爆炸感应期内的反应动力学过程,明确了瓦斯爆炸感应期的概念及其动力学描述;在改建已有的瓦斯爆炸实验系统和新建立的瓦斯爆炸实验系统上进行了瓦斯爆炸实验;利用MATLAB图像处理技术分析实验数据,通过分析瓦斯爆炸初期火焰前沿位置、速度的时间和空间分布规律,得出了瓦斯由燃烧转为爆炸的判据,进而得出确定瓦斯燃烧感应期、由燃烧转为爆炸的响应时间、爆炸感应期的方法;分析得出反映瓦斯爆炸火焰图像光学特征和光谱特征的主要特征参数和分析方法,并深入分析了7个浓度的31组瓦斯爆炸感应期内火焰图像光学特征及其与自然背景光和点火器放电电火花图像光学特征的区别和12个浓度的51组瓦斯爆炸感应期内火焰光谱特征及其与自然背景光谱、干扰背景光谱和点火器放电电火花光谱特征的区别;分析得出瓦斯爆炸感应期内火焰中可能存在的10种自由基和5种分子及其特征光谱的出现次数和分布规律;提出瓦斯爆炸感应期内瓦斯爆炸探测系统的设计构想和原理,展示了矿井瓦斯爆炸感应期内光学特征研究在瓦斯爆炸探测领域里的应用前景;详细分析了探测系统中利用光学特征辨识瓦斯爆炸火焰的辨识方法,并选取持续趋势算法、神经网络中的感知器和BP网络算法对瓦斯爆炸火焰进行辨识,实现了在实验室条件下对瓦斯爆炸感应期内火焰的辨识。
It is the first of the most important assignment for the safety production in mine to prevent the gas explosion accident. It is also an aspect of achieving the simultaneous extraction of coal and coal bed gas. The gas explosion accident is result in the action of many factors, which relates to many difficult questions of theories and experiments. The difficult course of gas explosion accident leads to the limitation of the techniques used to prevent gas explosion accident. The analysis of reaction dynamics and the study on optical characteristic of gas explosion in induction periods offer the data for developing the techniques of detecting gas explosion and are the base of developing the techniques of controlling gas explosion.
     In this paper, the reaction dynamics of gas explosion are analyzed base on the thermal reaction theory and chain reaction theory. The conceptd and the dynamics description of the induction period of gas explosion are clarified. The gas explosion experiments are made in the improved equipment system of gas explosion experiment and in another new one. The data are analyzed by software named MATLAB used to analyze images. The location and the rate of the flame front of gas explosion are analyzed. The criterion of judging gas explosion is educed, base on which the way of ascertaining the induction period of the combustion, translation from combustion to explosion and explosion is educed. The characteristic parameters of the image and spectrum of the flame and the analysis way are educed. The flame image optical characteristic in induction period of gas explosion is analyzed in detail, which belongs to 31 groups of experiments with 7 different concentrations of gas. The difference of image optical characteristic of the flame with the nature background and the electric spark emitted by the ignition is also analyzed in detail. The flame spectral characteristic in induction period of gas explosion is analyzed in detail, which belongs to 51 groups of experiments with 12 different concentrations of gas. The difference of spectral characteristic of the flame with the nature background, interferential background and the electric spark emitted by the ignition is also analyzed in detail. 10 kinds of radicals and 5 kinds of numerators existing possibly in the flame of gas explosion in the induction period are educed, and the appearance times and the distribution of the spectral band emitted by them is analyzed. The conception and the principle of the gas explosion detector system in the induction period is put forward, which shows the applied significance of the study in this paper. The way of identifying the flame of gas explosion by the optical characteristic in the detector system is analyzed in detail. The Trend-Persistence method, Perceptron Neural Networks and Back Propagation Neural Networks is used to identify the flame of gas explosion. The identification of the flame of gas explosion in the induction period is carried out in experiment condition.
引文
[1]童磊,刘志强.我国能源结构与西部能源开发战略.中国煤炭,2002,11:28~30
    [2]李毅中.科学发展首先要实现安全发展.求是,2005,19:31~32
    [3]李树刚,钱鸣高.我国煤层与甲烷安全共采技术的可行性.科技导报.2000,6:39~41
    [4] LiShugang. Migration and Accumulation Efficiency of Coalbed Methane after Top coal Caving. 18th INTERNATIONAL LOW-RANK FUELS PYMPOSIUM(Holiday Inn Grand Montana Billings,Montana,UNIVERSITY OF NORTH DAKOTA,USA),2003,7:24~26
    [5] LiShugang. Migration and Accumulation Characteristic of Methane in Mining Fissure Elliptic Paraboloid Zone.2004 International Symposium on Safety Science and Technology. Shanghai,2004
    [6]冯长根.热爆炸理论.北京:科学出版社,1988
    [7]同济大学,重庆建筑大学,哈尔滨建筑大学等.燃气燃烧与应用.北京:中国建筑工业出版社,2000
    [8]俞启香.矿井瓦斯防治[M].北京:中国矿业大学出版社,1992
    [9]诺曼·奇格.能源燃烧与环境.北京:冶金工业出版社,1991
    [10]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究.北京:中国矿业大学,2003
    [11]王志荣.受限空间气体爆炸传播及其动力学过程研究.南京:南京工业大学,2005
    [12]梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟.大连:大连理工大学,2005
    [13]汪泉.管道中甲烷-空气预混气爆炸火焰传播的研究.合肥:安徽理工大学,2006
    [14]吴兵.矿井半封闭空间瓦斯爆燃过程热动力学研究.北京:中国矿业大学.2003
    [15]菅从光.管内瓦斯爆炸传播特性及影响因素研究.徐州:中国矿业大学.2003
    [16]王从银.瓦斯爆炸火焰高内聚力特性与火焰传播机理研究.徐州:中国矿业大学.2001
    [17]萨文科CK,古林AA,马雷ПC等.井下空气冲击波.北京:冶金工业出版社,1979
    [18] Kees van Wingerden,Dag Bjerketvedt,Jan Roar Bakke. Detonation in pipes and in the Open. Bergen, Norway:Christian MiChelsen Research
    [19] H Phylaktou,GE Andrews. Gas explosions in linked vessels. Journal of loss prevention in the process industries,1993,6:15~19
    [20]煤科院抚顺分院.八五国家科技攻关项目报告(项目编号85-202-01-02-5)
    [21]煤科院重庆分院.八五国家科技攻关项目报告(自动隔爆装置限制煤尘爆炸传播的研究),1987
    [22]王从银,何学秋.瓦斯爆炸传播火焰高内聚力特性的试验研究.中国矿业大学学报,2001,30(3):217~220
    [23]翟成,林柏泉,菅从光.瓦斯爆炸火焰波在分叉管路中的传播规律.中国安全科学学报,2005,15(6):69~72
    [24]张辉,菅从光.电磁场对瓦斯爆炸影响的实验研究与理论分析.矿业安全与环保,2007,34(1):11~13
    [25]杨艺.瓦斯爆炸火焰细微结构与火焰传播机理的研究.徐州:中国矿业大学.2003
    [26] M. Kuznetsov. DDT in methane-air mixtures. Shock Waves 2002,12:215~220
    [27]韩启祥,王稼骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究.推进技术,2003,24(1):63~66
    [28]魏引尚,常心坦.沼气爆燃向爆轰转变的化学动力学研究.西安科技院学报.2000,20(1):21~24
    [29]赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996
    [30] O. Moen,M. Donato,R. Knystautas,etal. Flame Aceeleration due to Turbulence Produced by Obstacles.Combustion and Flame,1980,39(1):21~32
    [31] M Fairweather,G.K Hargrave,S.S Ibrahim,etal. Studies of premixed flame propagation in explosion tubes. Combustion and Flame,1999,116(4):504~518
    [32] Fairweather M. Turbulent premixed flame propagation in a cylindrical vessel. Twenty-Sixth Symposium International on Combustion. Pittsburgh: The Combustion lnstitute,1996
    [33] S. S. Ibrahim,A. R. Masri. The effects of obstructions on overpressure resulting from premixed flame deflagration. Journal of Loss Prevention in the Process Industries,2001,14(3):213~221
    [34] G. Ciccarelli,C.J.Fowler,M.Bardon. Effect of obstacle Size and Spacing on the initial stage of flame acceleration in a rough tube. Shock Waves,2005,14(3):161~166
    [35]林柏泉,张仁贵.瓦斯爆炸过程中火焰传播规律及加速机理的研究.煤炭学报,1999.24(1):56~59
    [36]林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响.中国矿业大学学报,1999,28(2):104~107
    [37] Lin Baiquan. The influence of barriers on flame and explosion wave in gas explosion. Journal of coal science and engineering,1998,4(2):53~57
    [38]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管中的加速运动.爆炸与冲击,2000,2:137~142
    [39]王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究.火灾科学,2001,4:209~212
    [40]余立新,尤寒,盛宏至,等.障碍物结构对预混火焰压力发展的影响.工程热物理学报,2003,24(3):537~539
    [41]卢捷,宁建国,王成,等.煤气火焰传播规律及其加速机理研究.爆炸与冲击,2004,24(4):305~311
    [42]梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟.大连:大连理工大学,2005
    [43]曲志明,周心权,王晓丽,等.掘进巷道瓦斯爆炸冲击波状态参数的结构分析.矿业安全与环保,2006,33(3):1~3
    [44]曲志明,周心权,张祎恺,等.掘进巷道瓦斯爆炸动态数学模型及数值分析.北京科技大学学报,2006,28(10):907~916
    [45]曲志明,周心权,和瑞生,等.掘进巷道瓦斯爆炸衰减规律及特征参数分析.煤炭学报,2006,31(3):324~328
    [46]毕明树,尹旺华,丁信伟.密闭容器非理想爆源爆炸过程的数值模拟.化学工业与工程技术,2003,24(3):l~3
    [47]毕明树,尹旺华,丁信伟,等.管道内可燃气体爆燃的一维数值模拟.天然气工业,2003,24(4):89~92
    [48]杨宏伟,范宝春.障碍物和管壁导致火焰加速的三维数值模拟.爆炸与冲击,2001,21(4):259~264
    [49]范宝春,姜孝海.障碍物导致甲烷-氧气爆炸的三维数值模拟.煤炭学报,2002,27(4):371~373
    [50]王志荣.受限空间气体爆炸传播及其动力学过程研究.南京:南京工业大学,2005
    [51]吴兵,张莉聪,徐景德.瓦斯爆炸运动火焰生成压力波的数值模拟.中国矿业大学学报,2005,34(4):423~426
    [52]徐景德,张莉聪,杨庚宇.激波诱导瓦斯气体爆燃的三维数值模拟.武汉理工大学学报,2005,27(6):22~25
    [53]黎体发,张莉聪,徐景德.瓦斯爆炸火焰波与冲击波伴生关系的实验研究.矿业安全与环保,2004,32(2):4~6
    [54]徐景德.我国煤矿瓦斯爆炸的研究现状与发展方向.华北科技学院学报,2003,5(2):5~8
    [55]陈东梁,张立,颜事龙.热效应引起瓦斯燃爆的实验研究.煤矿爆破,2003,4:1~5;
    [56]高建康,菅从光,林柏泉.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作用.煤矿安全,2005,36(2):4~6
    [57]杨国刚,丁信伟,王淑兰,等.管内可燃气云爆炸的实验研究与数值模拟.煤炭学报,2004,29(5):572~575
    [58]傅培舫.井巷中的冲击波热力参数变化规律的探讨.矿业安全与环保,2002,29(2):28~30
    [59]孙广义,刘永立.煤矿瓦斯爆炸参数的突变与混沌研究.辽宁工程技术大学学报,2003,22(1):10~12
    [60]王宝兴,经建生,龚允怡,等.煤矿瓦斯强烈爆炸的试验研究.消防科学与技术,2004,23(6):513~516
    [61]林柏泉,菅从光,周世宁,等.受限空间瓦斯爆炸反射波及对火焰传播的影响.中国矿业大学学报.2005,34(1):1~5
    [62]林柏泉,菅从光.湍流的诱导及对瓦斯爆炸火焰传播的作用.中国矿业大学学报,2003,32(2):107~110
    [63]魏引尚,张检让.瓦斯爆炸的突变模型.西安科技学院学报,2002,22(3):250~252
    [64]菅从光,林柏泉,翟成.瓦斯爆炸过程中爆炸波的结构变化规律.中国矿业大学学报,2003,32(4):363~366
    [65]杨艺,何学秋,王从银,等.瓦斯爆炸火焰的分形特性.中国矿业大学学报,2004,33(1):115~119
    [66] Al-Farayedhi A A.Effect of Equivalence Ratio on the Concentration of CH4/NO2/O2 Combustion Products. International Journal of Energy Research,1999,23:1165~1175
    [67]海彦合,王聚仓.应用激光研究瓦斯爆炸的机理,西安科技学院学报,2002,22(4):482~485
    [68]颜事龙,陈东梁,王玉丰.热效应下瓦斯燃爆的突变分析.煤矿爆破.2004,1:1~4
    [69]许满贵,徐精彩.工业可燃气体爆炸极限及其计算.西安科技大学学报,2005,25(2):139~142
    [70]秦玉金,姜文忠,王学洋.采空区瓦斯爆炸(燃烧)点火源的确定.煤矿安全,2005,36(7):35~37
    [71]许家林,张少华,金宏伟,等.锚索拉断火花引爆瓦斯的实验研究.中国安全科学学报,2004.14(2):3~6
    [72]王玉武,牛德文.岩石摩擦引燃引爆瓦斯实验研究.煤矿安全,2002.33(12):8~10
    [73]吴育华.岩石撞击引发矿井瓦斯爆炸可能性的实验探索.煤炭学报,2005,6:279~282
    [74]邓军,李会荣,杨迎,等.瓦斯爆炸微观动力学及热力学分析.煤炭学报,2006,31(4):488~491
    [75]桂晓宏,林柏泉.瓦斯爆炸过程中激波产生的影响因素及其热力动力分析.煤矿安全.2000,31(9):19~22
    [76]林柏泉,菅从光.爆炸波能量变化特征及壁面热效应.煤炭学报,2004,29(4):429~433
    [77]冯长根,陈林顺.点火位置对独头巷道中瓦斯爆炸超压的影响.安全与环境学报,2001,1(5):56~59
    [78]翟成,菅从光,林柏泉.管道分叉对瓦斯爆炸火焰传播速度影响的研究.江苏煤炭,2004,1:46~47
    [79]徐景德,徐胜利,杨庚宇.矿井瓦斯爆炸传播的试验研究.煤炭科学技术,2004,32(7):55~57
    [80]周心权,吴兵.煤矿井下瓦斯爆炸的基本特性.中国煤炭,2002,28(9):8~12
    [81]王宝兴,经建生.煤矿瓦斯爆炸主要原因的试验研究.安全与环境学报,2004,4(6):69~72
    [82]王从银,何学秋.瓦斯爆炸火焰厚度及其持续时间的试验研究.煤炭科学技术,2001,29(8):27~30
    [83]何学秋,杨艺,王恩元,等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究.煤炭学报,2004,29(20):186~189
    [84]周心权,周博潇,朱红青,等.摩擦火花引爆瓦斯时点燃温度特性理论研究.湘潭矿业学院学报,2004,19(1):1~4
    [85]陈东梁,张立,颜事龙.热效应引起瓦斯爆炸的实验研究.煤矿爆破,2003,4:1~5
    [86]吴育华,吴立新,钟声,等.岩石撞击引发矿井瓦斯爆炸可能性的实验探索.煤炭学报,2005,30(3):278~282
    [87]朱旺喜.重视我国的煤矿瓦斯安全基础研究.煤矿瓦斯灾害防治理论战略研讨.北京:中国矿业大学出版社,2001
    [88] Coffee.T.P. Mechanisms for premixed laminar steady state methane/air flames.Combust Flame,1984,55:161~170
    [89] Starke R. An experimental investigation of flame behavior duiing explosions in cylindrical enclosures with obstacles.Combustion and Flame,1989,66(3):249~259
    [90] Y Akiar,Y Ando,T Yanagisawa,etal. Fractal behavior of wrinkled laminar flame.Combustion Science and Technology,1994,3:121~134
    [91] Tsuruda T.Local flame front disturbance development under acceleeration.Combustion and Flame,1991,1:66~72
    [92] GouladinFC. An application of fractals to modeling premixed turbulent flames.Combusion and Flame,1989,3:241~259
    [93] Mantzaras J,Felton P.G.,Bracco F.V. Fractals and turbulent premixed engine flames.Combustion and Flame,1989,3:295~310
    [94] North G L. The fractal nature of premixed turbulent flames.Combustion Scince and Tecnology,1990,72:215~232
    [95] Gaydon A G. Flames : Their structure , radiation and temperature. London :Chapman&Hall LTD,1974
    [96] Gaydon A G. The Spectroscopy of Flames. London:Chapman&Hall LTD,1974
    [97] Bernard Lewis,Guenther von Elbe.燃气燃烧与瓦斯爆炸.北京:中国建筑工业出版社,2007
    [98]李鸿德,廖继卿,夏自柱.瓦斯煤尘爆炸火焰光谱的实验研究.力学学报,1988,20(4):297~303
    [99] Mokaddem K. Flame front visualization by OH laser induced fluorescence and C2 spontaneous emission spectroscopy in axisymmetric laminar methane-air premixed flames. Revue Generale de Thermique,1995,34:133
    [100] Blevins L G. Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames. Combustion and flame,1999,4:684
    [101] Zizak G.. Flame Emission Spectroscopy:Fundamentals and Applications. The ICS Training Course on Laser Diagnostics of Combustion Processes,NILES,University of Cairo,Egypt,2000
    [102] Kojima J. Spatially resolved measurement of OH,CH,and C2 chemiluminescence in the reaction zone of laminar methane/air premixed flames. Edinburgh United Kingdom:Combustion Institute,2000:1757~1763
    [103] Ikeda Y. Local chemiluminescence spectra measurement in laminar methane/air and propane/air premixed flames. Nippon Kikai Gakkai Ronbunshu,BHen/Transactions of the Japan Society of Mechanical Engineers,Part B,2003,69:200~213
    [104] Kojima J. Basic aspects of OH(A),CH(A),and C2(d) Chemiluminescence in the reaction zone of laminar methane-air premixed flames. Combustion and Flame,2005,1:34~45
    [105] Kubo Shintaro,Akamatsu Fumiteru,Katsuki Masashi. Simultaneous measurements of local temperature and chemiluminescence by cassegrain optics(1st report,measurement system and error estimation). Nihon Kikai Gakkai Ronbunshu,B Hen/Transactions of the Japan Society of Mechanical Engineers,Part B,2001,71:2169
    [106] B Higgins,M Q McQuay,F Lacas, etal. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames. Fuel,2001,11:1583
    [107]刘晅亚.水雾作用下甲烷/空气层流预混火焰燃烧特性研究.合肥:中国科技大学,2006
    [108]袁宝慧,元天佑,邹文豪等.炸药爆轰波光谱发射率及爆温的虚拟辅助光源反射法测量.火炸药学报,1999,18(2):59~62
    [109]周学铁,王俊德,李燕等.现代光谱对燃烧与爆炸过程瞬态温度的实时诊断技术.光谱学与光谱分析,2003,23(2):407~410
    [110]李佳,庞其昌,任克惠等.瞬时多光谱爆温测量系统.光子学报,2000,29(10):937~941
    [111]杨霖.瞬态燃烧温度场计算机层析技术研究.南京:南京理工大学,2003
    [112]王安全,程晓舫,王铷等.彩色温度测量方法中的温度多解问题.中国科学技术大学学报,2002,32(4):499~504
    [113] Tarasov M D. Denonation and shock wave front temperature measurement with two color pyrometer based on fiber optics.Rusian Federal Nuclear Center,SPIE,1995,2869:899~892
    [114] Xian chu H.The measurement of detonation temperature of condensed explosives with two colour~optical fiber pyrometer.Proc of Eighth Symposium(International) on Detonation,1995:322~329
    [115] Gibson F C. Use of and electro~optical method to determine detonation temperatures in high explosives.Japple Phus,1958,4:628~632
    [116]胡栋.利用光谱技术研究硝基甲烷快速反应波传播.光谱试验室,1994,11(6):1~12
    [117]李招宁,王永国.铝粉快速反应光谱的研究.高压物理学报,1996,10(2):130~136
    [118]朱文峰,陈小迅.爆燃燃烧对火焰辐射光变化的影响.燃烧科学与技术,2001,7(2):191~193
    [119]周剑光,段远才.汽油机着火早期的光谱响应及其研究.华中理工大学学报,1994,22(3):104~107
    [120] SpicherU. Investigation into the Applicability of an Optical Fiber Sensor for Knock Detection and Knock Control System.SAE922370
    [121] OhyamaY. Study on Mixture Formation and Ignition Pro~cessin Spark Ignition Engine Using Optical Combustion Sensor.SAE901702
    [122] Hideo Shoji. Clarification of Abnormal Combustion in a SparkIgnition Engine.SAE922369
    [123] NuttonD. Closed Loop Ignition and Fueling Control Using Optical Combustion Sensor.SAE900486
    [124] SunZhihong. Spark Ignition Engine Knock Detection Using In Cylinder Optical Probes.SAE962013
    [125]魏引尚.矿井瓦斯爆炸过程的理论研究.西安:西安科技大学,1999
    [126]韩溟.基于光谱和图像综合测试系统的火焰特性研究,西安:西安电子科技大学.2007
    [127]徐景德,周心权.瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析.煤炭科学技术,2001,29(11):15~17
    [128]张守中.爆炸基本原理.北京:国防工业出版社,1988
    [129]赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996
    [130]范维澄.流动及燃烧的模型与计算.合肥:安徽科技出版社,1985
    [131] Charles K. Westbrook,Frederick L. Dryer.Comprehensive Mechanism for Methanol Oxidation. Combustion Science and Technology,1979,20(9):125-140
    [132]杜文锋.消防燃烧学.北京:中国人民公安大学出版社,1997
    [133]张国枢.通风安全学.北京:中国矿业大学出版社,2000
    [134]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册.北京:煤炭工业出版社,2000
    [135] Feng Changgen. Thermal Theory of Explosion and Ignition. Beijing: New Times Press,1999
    [136]许晋源等.燃烧学.北京:机械工业出版社,1980
    [137]江元生.结构化学.北京:高等教育出版社,1997
    [138]王家文,曹宇.MATLAB6.5图形图像处理.北京:国防工业出版社,2004
    [139]王晓丹,吴崇明.基于MATLAB的系统分析与设计(图像处理).西安:西安电子科技大学出版社,2000
    [140]姚敏.数字图像处理[M].北京:机械工业出版社,2006.
    [141]林滢,李孝斌,宋久壮.超细水雾抑制瓦斯爆炸的可行性研究.矿业安全与环保.2006,33(4):15~20
    [142]林柏泉.瓦斯爆炸动力学特征参数的测定及其分析.煤炭学报.2002,27(2):164~167
    [143]吴龙标,方俊,谢启源.火灾探测与信息处理.北京:化学工业出版社,2006
    [144]董长虹,赖志国,余啸海.Matlab图像处理与应用.北京:国防工业出版社,2004
    [145]徐秋心,李国华,肖心甲,等.实用发射光谱分析.成都:四川科学技术出版社,1993
    [146]陈新坤.原子发射光谱分析原理.天津:天津科学技术出版社,1991
    [147]程智海,蔡小舒,毛万朋.火焰特征谱线研究.工程热物理学报,2004,25(3):519~522
    [148]杨柳.火焰特性研究及其检测技术.天津大学,2003
    [149]柯以侃,董慧茹.分析化学手册第三分册光谱分析.北京:化学工业出版社,1998
    [150]杨淑莹.模式识别与智能计算.北京:电子工业出版社,2008
    [151]李树刚,李孝斌,林滢,宋久壮,王成武.矿井瓦斯爆炸感应期内光学特征实验研究.煤炭学报,2007,32(2):163~167
    [152]李孝斌.矿井瓦斯爆炸感应期内光学特征研究.西安:西安科技大学,2006
    [153]董长虹.Matlab神经网络与应用.北京:国防工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700