用户名: 密码: 验证码:
惰性多孔介质内的液雾燃烧
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对日益突出的能源和环境问题,为发展清洁低能耗的燃烧技术,本文用数值模拟的方法研究了燃料液雾在惰性多孔介质内的流动燃烧过程,分析其燃烧特性。在多孔介质内组织燃烧可以提高燃烧系统的效率,同时降低污染。多孔介质燃烧器有其独有的特点:结构紧凑,超绝热火焰温度,拓宽的贫燃极限,低污染,燃烧过程更易控制等。
     对文献资料中出现的有关多孔介质的几何结构和其中发生的输运过程的研究成果做了系统整理,以便对多孔介质的性质有个准确把握,为建立准确的数学模型奠定基础。介绍了孔隙率、比面、弯曲率、相关函数、孔径分布、逾渗概率等几何结构特征参数和毛细管模型、隙缝模型、颗粒模型、孔隙网络模型、逾渗模型等几何结构模型;介绍了比流量、渗透率、流体动力弥散等流体力学输运性质,界面张力、湿润性、毛细压力等界面属性和传热传质输运特性。
     阐明了模拟多相多尺度问题的连续介质方法的基本思想和表征体元、孔隙率等基本概念,介绍了连续介质方法中的唯象方法和上升尺度方法。详细介绍了经典混合物理论和经典不可逆热力学。对唯象方法中的不溶混混合物理论,上升尺度方法中的平均理论作了简要介绍。
     应用上升尺度方法中的杂化混合物理论和经典不可逆热力学原理,推导得出了存在化学反应多相混合物体系的较为严格的杂化混合物理论模型。宏观守恒方程是将微观守恒方程在表征体元上体积平均得到,将微观热力学第二定律的熵不等式和微观Gibbs方程等状态函数之间的热力学关系也在表征体元上体积平均,得到宏观熵不等式和宏观热力学关系。用Lagrange乘子将宏观熵不等式、守恒方程、热力学关系组合成增广熵不等式,选取Lagrange乘子削去增广熵不等式中的物质导数项,确认出熵流部分和熵产部分。依据经典不可逆热力学的一般原则,将热力学流表示成热力学力的函数式,即找出本构关系,完成方程组的封闭。
     数值工作首先从较为简单的零维模拟开始,采用详细化学反应机理,应用零维情形的杂化混合物理论模型,模拟了微小空腔内气体的予页混燃烧,通过有无填充多孔介质的对比,分析了多孔介质在微小尺度燃烧领域的应用前景。研究了填充多孔介质对微小型化学推进器性能的影响。微小尺度下系统内部很容易达到热平衡,体现不出多孔介质的回热作用;但多孔介质的大热容量却能保证系统具有良好的热稳定性。通过用详细化学反应机理研究定容条件下正庚烷液雾在多孔介质中的瞬态着火过程,模拟了液体燃料在内燃机中的点火过程。多孔介质内燃机的点火延迟期会比传统柴油机显著缩短,而且受工况影响很小,有利于内燃机的点火控制。
     将杂化混合物理论模型具体应用于正庚烷液雾在惰性多孔介质中的流动、蒸发、燃烧过程。作一维假定,考虑了液雾与气体之间的对流换热过程、液雾与多孔介质固体骨架之间的碰撞接触传热过程、多孔介质对液雾的辐射加热过程。采用了自适应网格的Eluer-Lagrange数值解法,辐射传递方程采用离散坐标法求解。对程序代码进行了较系统地检验。考察了迭代过程中残差的下降程度,确定了迭代收敛判据。通过在经由系统加密的网格上进行计算,分析了单调收敛、收敛阶数、网格无关性等离散误差特征,应用Richardson外插对离散误差作了定性地估计。计算结果验证了超绝热火焰温度现象;辐射加热、与固体壁面的碰撞传热会显著影响到较大液滴的蒸发过程,使其比经典的直径平方律更快;ZrO2多孔介质中的辐射场基本是各向同性的;多孔介质中的辐射传热对液雾的燃烧过程有重要影响。
As energy and environmental issues become more and more emergent, it is important to develop clean combustion technology with high efficiency. Numerical simulations have been performed to investigate spray combustion in porous inert media. Higher efficiency can be achieved by inserting porous inert media into combustion systems, as well as lower emissions. Porous media burners have their own particular characteristics, such as compact structure, super-adiabatic flame temperature, extended lean flaming limit, lower emissions, more flexible combustion control, etc.
     As a basis for model formulation and to grasp the essence of porous media character, the fundamental concepts concerning geometric porous structure and transport phenomena in porous media are reviewed comprehensively. Geometric characteristics such as porosity, specific area, tortuosity, correlation funtion, pore diameter distribution, percolation probability, etc., fluid transport characteristics such as specific flow rate, permeability, fluid dynamic dispersion, etc., interface characteristics such as surface tension, wettability, capillary pressure, etc., as well as heat and mass transfer characteristics of porous systems are comprehensively reviewed.
     Fundamental ideas of continuum theories and the basic concepts such as representative volume element and porosity are clarified. The phenomenological methods and the upscaling methods for modeling transport processes in porous media are then reviewed and reformulated, with emphasis on the mixture theories and averaging techniques. The classical irreversible thermodynamics is also reviewed as it is a fundamental component of mixture theories.
     The hybrid mixture theory, a kind of upscaling technique, equipped with the classical irreversible thermodynamics, is employed to deduct a precise model of multi-phase multi-component mixtures. The macroscopic model equations are derived from the corresponding microscopic ones through volume averaging on the representative volume element. The macroscopic entropy equation and the thermodynamic relations are derived similarly. The entropy equation is then augmented by adding the conservative equations and thermodynamic relations which are multiplid by Lagrange multipliers. By choosing the appropriate Lagrange multipliers, the material derivatives are eliminated and left the entropy fluxes and entropy productions. According to the principles of classical irreversibly thermodynamics, the therdynamic forces and fluxes are then identified. Then the constitutive equations are formulated, and the model is closed.
     Simulations start with relatively simple zero-dimensional models. Premixed combustions in micro/mini-chambers filled with porous media are simulated, utilizing detailed chemical mechanisms. By comparison with cases that have no porous media filled with, the prospects of applying porous media into micro-combustion and its effects on micro/mini- chemical thrusters have been analyzed. It is relatively easy to attain thermal equilibria in micro/mini-system, so the energy feedback of porous media is not significant. But its large heat capacity garanteed the thermal stability of combustion systems.
     The constant volume ignition of n-heptane droplets in porou media has been studied using detailed chemical kinetics, which simulated the spray ignition process in intermal combustion engines. Analyses are performed for ignition delay and emission controls. The ignition delay inside porous media is significantly shortened, which is a desiring feature for ignition control inside internal combustion engines. The emission levels are relatively low.
     A simplified one-dimensional example of the pre-formulated hybrid mixture theory model is employed to simulate the evaporation and combustion processes of sprays while flowing through porous inert media. Heat transfer processes among spray, gas and porous skeleton have been accounted for, as well as the radiative heating of droplets. The Euler-Lagrange model equipped with self-adaptive mesh method is adopted for the numerical realization. The radiative heat tranfer equation is solved using discrete ordinate method. Systematic code validation has been performed. The iterative convergence criteria is established through analyzing the residual falling behavior. Computations are performed on a series of systematically refined grids, and the grid independence, monotone convergence and order of convergence of the solution are analyzed. Richardson extrapolation method is employed to estimate the discretization error in the finest grid. Results show that the super-adiabatic temperature is significant, than the radiative heating and heat transfer during impact with solid walls significantly accelerate the evaporation rate of large droplets and that the radiation field inside ZrO2 is somewhat isotropic. The radiative heat transfer affects the spray combustion significantly.
引文
J·贝尔.1983.多孔介质流体动力学[M].李竞生,陈崇希译.中国建筑工业出版社.
    岑可法,姚强,骆仲泱等.2002.高等燃烧学[M].杭州:浙江大学出版社.
    邓洋波,解茂昭,刘宏升等.2004.多孔介质内往复流动下超绝热燃烧的实验研究[J].燃烧科学与技术,10(1):82-87.
    杜礼明,解茂昭,邓洋波.2002.惰性多孔介质中预混合燃烧的研究进展[J].热能动力工程,17(99):221-226.
    杜礼明,解茂昭.2005.预混气体在多孔介质中往复式超绝热燃烧的数值研究[J].燃烧科学与技术,11(3):230-235.
    杜礼明,解茂昭.2005.多孔介质预混燃烧中辐射属性影响的敏感性分析[J].工程热物理学报,26:249-252.
    李如生.1986.非平衡态热力学和耗散结构[M].北京:清华大学出版社.
    李守德.2003.不可逆热力学理论在多孔介质渗流问题中的应用研究[D]:[博士].杭州:浙江大学.
    刘志峰,王晓宏.2004.二维格子逾渗结构多孔介质渗透率的研究[J].自然科学进展,14:101-106.
    人民网.2005.能源资源开发对环境造成危机的现状与对策[EB/OL].[2005-12-28]http://env.people.com.cn/GB/35525/3981630.html.
    史俊瑞,解茂昭.2006.考虑弥散效应的多孔介质中超绝热燃烧的数值模拟[J].工程热物理学报,27(3):515-518.
    王恩宇,程乐鸣,褚金华等.2005.渐变型多孔介质中燃气燃烧特性试验研究[J].工程热物理学报,26(6):1037-1040.
    王庆一.2005.可持续能源发展财政和经济政策研究参考资料2005能源数据[M].大卫与露茜尔·派克德基金会,威廉与佛洛拉·休利特基金会,能源基金会.
    吴学成,程乐鸣,王恩宇等.2003.多孔介质中的预混燃烧发展现状[J].电站系统工程,Vol.19No.1,37-40.
    张根烜.2006.基于多孔介质内燃烧的微小型化学推进系统的数值研究[D]:[博士]合肥:中国科学技术大学.
    张根烜,陈义良,刘明侯等.2005.堆积床内甲烷/空气预混燃烧的理论分析[J].工程热物理学报,26:245-248.
    张根烜,陈义良,刘明侯等.2006a.堆积床内非驻定过滤燃烧的-维研究[J].计算物理,23(2):217-223.
    张根烜,刘明侯,朱旻明等.2006b.堆积床内过滤燃烧的瞬态研究[J].燃烧科学与技术,12(2):180-185.
    赵平辉,陈义良,刘明侯等.2006a.多孔介质内层流预混燃烧的数值模拟[J].燃烧科学与技术,12(1):46-50.
    赵平辉,朱旻明,张根烜等.2006b.双层多孔介质燃烧器的数值模拟[J].计算物理,12(23):679-684.
    赵治国.2007.燃油喷雾与多孔介质的相互作用及其在内燃机中应用的数值模拟研究[D]:[博士].大连:大连理工大学.
    赵治国,解茂昭.2006.泡沫陶瓷中燃油喷雾液滴蒸发混合的数值研究[J].燃烧科学与技术,12(3):233-237.
    赵治国,解茂昭.2007.实心与空心锥形喷雾与热多孔介质相互作用的数值研究[J].工程热物理学报,28(2):354-356.
    Abramzon B,Sirignano WA.1989.Droplet vaporization model for spray combustion calculations[J].Int J Heat Mass Transfer,32:1605-1618.
    Aggarwal SK.1998.A review of spray ignition phenomena:present status and future reseach[J].Prog.Energy Combust.Sci.,24:565-600.
    Aichlmayr H.,Kittelson DB,Zachariah MR.2002.Miniature free-piston homogeneous charge compression ignition engine-compressor concept-Part Ⅰ:performance estimation and design considerations unique to small dimensions[J].Chemical Engineering Science,57:4161-4171.
    Al-Hamamre Z,Diezinger S,Talukdar P,et al.2006.Combustion of low calorific gases from landfills and waste pyrolysis using porous medium burner technology[J].Process Safety and Environmental Protection,84:297-308.
    Annamalai K,Puri IK.2007.Combustion Science and Engineering[M].CRC Press.
    Annamalai K,Ryan W.1992.Interactive processes in gasification and combustion.Part Ⅰ:Liquid drop arrays and clouds[J].Prog.Energy Combust.Sci.8:221-295.
    Auriault JL.2002.Upscaling Heterogeneous Media by Asymptotic Expansions[J].Journal of Engineering Mechanics,817-822.
    Babinsky E,Sojka PE.(2002.Modeling drop size distributions[J].Progress in Energy and Combustion Science, 28:303-329.
    Babkin VS, Drobyshevich VI, Laevskil, et al. 1982. Mechanisms of the propagation of combustion waves in porous medium in gas filtration[J]. Doklady Akademii Nauk SSSR,265(5): 1157-1161.
    Babkin VS, Korzhavin AA, Bunev VA. 1991. Propagation of premixed gaseous explosion flames in porous media[J]. Combustion and Flame, 87:182-190.
    Baillis D, Sacadura J-F. 2002. Directional Spectral Emittance of a Packed Bed: Influence of the Temperature Gradient in the Medium[J]. Journal of Heat Transfer, 124 : 904-911.
    Baek SW. 1989, The premixed flame in a radiatively active porous medium[J]. Combust. Sci. Technol., 64:277-287.
    Barra AJ, Diepvens G, Ellzey JL, et al. 2003. Numerical study of the effects of material properties on flame stabilization in a porous burner[J]. Combustion and Flame 134: 369-379.
    Barra AJ, Ellzey JL. 2004. Heat recirculation and heat transfer in porous burners[J]. Combustion and Flame 137:230-241.
    Bedford A, Drumheller DS. 1983. Recent Advances: Theories of immiscible and structured mixtures[J]. Int. J. Engng. Sci., 21:863-960.
    Berlad A, Hibbard R. 1952. Effect of radiant energy on vaporization and combustion of liquid fuels. NACA RME52109, Washington, DC.
    Bernardin JD, Mudawar I.1997. Film boiling heat transfer of droplet streams and sprays[J]. Int. J. Heat Mass Transfer, 40:2579-2593.
    Bernsdorf J, Durst F, M. Schafer. 1999. Comparison of Cellular Automata and Finite Volume Techniques for Simulation of Incompressible Flows in Complex Geometries[J]. Int. J. Numer.Meth. Fluids 29:251-264
    
    Bird RB, Stewart WE, Lightfoot EN. 2002. Transport phenomena [M]. New York : J. Wiley. Birouk M, Gokalp 1. 2006. Current status of droplet evaporation in turbulent flows[J]. Progress in Energy and Combustion Science 32:408-423.
    Brenner G, Pickenacker K, Pickenacker O, Trimis D, et al. 2000. Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media[J].Combustion and Flame 123:201-213.
    Bubnovich VI, Zhdanok SA, Dobrego KV. 2006. Analytical study of the combustion waves propagation under filtration of methane-air mixture in a packed bed[J]. International Journal of Heat and Mass Transfer 49: 2578-2586.
    Bubnovich VI, Toledo M. 2007. Analytical modelling of filtration combustion in inert porous media[J]. Applied Thermal Engineering 27:1144-1149.
    
    Butt HJ, Graf K, Kappl M. 2003. Physics and chemistry of interfaces[M]. Weinheim: Wiley-VCH.
    
    Buyevich YA, Mankevich VN. 1995. Interaction of a Dilute Mist Flow with a Hot Body.International Journal of Heat and Mass Transfer, 38(4): 731-744.
    Chandra S, Avedisian CT. 1987. Experiments on film evaporation and combustion of binary linear droplet arrays at a hot surface. ASME, NewYork, NY. USA.
    Chandra S, Avedisian CT. 1988. Evaporation and combustion of levitated arrays of two, three and five droplets at a hot surface. Proceedings of The Royal Soeiety of London. Series A:Mathematical and Physical Sciences, 418(1855):365-382.
    Cho SY, Yetter RA, Dryer FL. 1992. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry,multi-component molecular diffusion, surface evaporation and heterogeneous reaction[J] J.Comput. Phys. 102: 160-168.
    Ciofalo M, Caronia A, Liberto MD, et al. 2007. The Nukiyama curve in water spray cooling: Its derivation from temperature-time histories and its dependence on the quantities that characterize drop impact[J]. International Journal of Heat and Mass Transfer 50: 4948-4966.
    Coleman BD. 1964. On thermodynamics of materials with memory[J]. Arch Ration Mech Anal;17:1-46.
    Connaire MO, Curran HJ, Simmie JM, et al. 2004. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 36:603-622.
    Consolini L, Aggarwal SK, Murad S. 2003. A molecular dynamics simulation of droplet evaporation[J]. International Journal of Heat and Mass Transfer 46:3179-3188.
    Contarin F, Barcellos WM., Saveliev AV, et al. 2005. Energy Extraction From a Porous Media Reciprocal Flow Burner With Embedded Heat Exchangers. Journal of Heat Transfer, 127:123-130.
    Coussy O, Dormieux L, Detournay E. 1998. From mixture theory to Biot's approach for porous media[J]. Int. J. Solids Structures 35(34-35): 4619-4635.
    Crespo A, Linan A. 1975. Unsteady effects in droplet evaporation and combustion[J]. Combust Sci Technol, 11:9-18.
    Curran HJ, Gaffuri P, Pittz W, et al. 1998. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame, 114:149-177.
    Cushman JH, Bennethum LS, Hu BX. 2002. A primer on upscaling tools for porous media[J]. Advances in Water Resources 25: 1043-1067.
    
    Dean JA. 1999. Lange's Handbook of Chemistry[M]. 15th ed., McGraw-Hill.
    De Boer R. 1996. Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory[J]. Applied Mechanics Reviews, 49(4): 201-262.
    De Soete G 1966. Stability and propagation of combustion waves in inert porous media[C]. Eleventh Symposium (Int) on Combustion, the Combustion Institute, 959-966.
    Dhamrat RS, Ellzey JL. 2006. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor[J]. Combustion and Flame, 144:698-709.
    Diamantis DJ, Mastorakos E, Goussis DA. 2002. Simulations of premixed combustion in porous media[J]. Combust. Theory Modelling 6:383-411.
    Dombrovsky LA, Sazhin SS, Sazhina EM, et al. 2001 Heating and evaporation of semitransparent diesel fuel droplets in the presence of thermal radiation[J]. Fuel, 80:1535-44.
    Drew DA. 1983. Mathematical modeling of two-phase flow[J]. Ann. Rev. Fluid Mech. 15: 261-291.
    Durst F, Weclas M. 2001. A new type of internal combustion engine based on the porous-medium combustion technique [J]. Journal of Automobile Engineering, IMechE, part D,No. D04999, 215:63-81.
    Dwyer H A, Stapf P, Maly R. 2000. Unsteady Vaporization and Ignition of a Three-Dimensional Droplet Array[J]. Combustion and Flame 121:181-194.
    Elperin T, Krasovitov B. 1995. Radiation, thermal diffusion and kinetic effects in evaporation and combustion of large and moderate size fuel droplets. Int. J. Heat Mass Transfer, 38: 409-418.
    Enwald H, Peirano E, Almstedt AE. 1996. Eulerian two-phase flow theory applied to fiuidization[J]. Int. J. Multiphase Flow, 22:21-66.
    Evans WD. 1991. Experimental stability limits of methane combustion inside a porous ceramic matrix[D]: [Master]. Austin: University of Texas.
    Faeth GM. 1996. Spray combustion phenomena[C]. Twenty-Sixth Symposium (International) on Combustion, 1593-1612.
    Farrashkhalvat M, Miles JP. 2003. Basic Structured Grid Generation: with an introduction to unstructured grid generation[M]. Oxford : Butterworth Heinemann.
    Ferguson CR, Kirkpatrick AT. 2001.Internal Combustion Engines:Applied Thermosciences [M]. New York : John Wiley & Sons.
    Ferziger JH, Peric M.2002. Computational methods for fluid dynamics[M]. 3rd ed. Berlin:Springer.
    Fu K. 2001. Miniature-scale and micro-scale rotary internal combustion engines for portable power systems[D]:[PhD]. Univ. of California at Berkeley.
    Fu X, Viskanta R, Gore JP. 1998. Measurement and correlation of volumetric heat transfer coeffcients of cellular ceramics. Experimental Thermal and Fluid Science 17: 285-293.
    Fuse T, Araki Y, Kobayashi N, et al. 2003. Combustion characteristics in oil-vaporizing sustained by radiant heat reflux enhanced with higher porous ceramics. Fuel 82: 1411-1417.
    Fuse T, Kobayashi N, Hasatani M. 2005. Combustion characteristics of ethanol in a porous ceramic burner and ignition improved by enhancement of liquid-fuel intrusion in the pore with ultrasonic irradiation[J]. Experimental Thermal and Fluid Science 29: 467-476.
    Ge Y, Fana LS. 2005. Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime[J]. Physics of Fluids 17: 027104.
    Givler SD, Abraham J. 1996. Supercritical droplet vaporization and combustion studies. Prog. Energy Combust. Sci, 22:1-28.
    Gnesdilov N., Dobrego KV, Kozlov IM. 2007. Parametric study of recuperative VOC oxidation reactor with porous media[J]. International Journal of Heat and Mass Transfer 50:2787-2794.
    Goto M, Ju Y, Niioka T. 1998. Numerical analysis of ignition of fuel droplet array in hot stagnant air[C]. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1959-1966.
    Gray WG, Leijnse A, Kolar RL, et al. 1993. Mathematical tools for changing spatial scales in the analysis of physical systems[M]. Boca Raton : CRC Press.
    
    Gray WG, Hassanizadeh SM. 1998. Macroscale continuum mechanics for multiphase porous-media flow including phases, interfaces, common lines and common points [J].Advances in Water Resources, 21(4): 261-81.
    Gray WG.2002. On the definition and derivatives of macroscale energy for the description of multiphase systems[J]. Advances in Water Resources 25: 1091-1104.
    Gray WG, Miller CT. 2005. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview [J]. Advances in Water Resources, 28:161-180.
    Gray WG, Miller CT. 2006. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 3. Single-fluid-phase flow[J]. Advances in Water Resources 29:1745-1765.
    Gray WG, Schrefler BA. 2007 Analysis of the solid phase stress tensor in multiphase porous media[J]. Int J Numer Anal Methods Geomech, 31:541-581.
    Gross U, Tran L-T-S. 2004. Radiation effects on transient hot-wire measurements in absorbing and emitting porous media[J]. International Journal of Heat and Mass Transfer 47: 3279-3290.
    Hackert CL, Ellzey JL, Ezekoye OA. 1999. Combustion and Heat Transfer in Model Two-Dimensional Porous Burners[J]. Combustion and Flame, 116:177-191.
    Hager J, Whitaker S. 2002. The Thermodynarnic Significance of the Local Volume Averaged Temperature[J]. Transport in Porous Media 46:19-35.
    Hanamura K, Kumano T, Iida Y. 2005. Electric power generation by super-adiabatic combustion in thermoelectric porous element. Energy 30:347-357.
    Harpole GM. 1980. Radiative absorption by evaporating droplets[J]. International Journal of Heat and Mass Transfer, 2:17-26.
    Harvie DJE, Fletcher DF. 2001. A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part II: validation and applications[J]. International Journal of Heat and Mass Transfer, 44:2643-2659.
    Hassanizadeh SM, Gray WG. 1979a. General conservation equations for multiphase systems. 1. Averaging procedure[J]. Adv. Water Resour., 2:131-44.
    
    Hassanizadeh SM, Gray WG. 1979b. General conservation equations for multiphase systems. 2. Mass, momenta, energy, and entropy equations[J]. Adv. Water Resour., 2:191-208.
    Hassanizadeh SM, Gray WG. 1980. General conservation equations for multiphase systems. 3. Constitutive theory for porous media[J]. Adv. Water Resour., 3:25-40.
    Healy WM, Halvorsont PJ, Hartley JG, et al. 1998. A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures[J]. Int. J. Heat Mass Transfer,, 41(6-7): 975-978.
    Henneke MR, Ellzey JL. 1999. Modeling of Filtration Combustion in a Packed Bed[J]. Combustion and Flame, 117:832-840.
    Hilfer R. 1996. Transport And Relaxation Phenomena In Porous Media[J]. Adv. Chem. Phys.,92: 299-424.
    Hilfer R. 2006. Macroscopic capillarity and hysteresis for flow in porous media[J]. Physical Review E 73,016307.
    Howell JR, Hall MJ, Ellzey JL. 1996. Combustion of hydrocarbon fuels within porous inert media[J]. Prog. Energy Combust. Sci., 22:121-145.
    Hsu PF, Matthews RD. 1993. Necessity of using detailed kinetics in models for premixed combustion within porous media[J]. Combust and Flame 93:457-466.
    Hsu PF, Howell, JR, Matthews RD. 1993.A numerical investigation of premixed combustion within porous inert media. ASME J. of Heat Transfer, 115:744-750.
    Hutter K, Johnk K. 2004. Continuum methods of physical modeling : continuum mechanics, dimensional analysis, turbulence [M]. Berlin: Springer.
    Iida M, Hayashi M, Foster DE, et al. 2003. Characteristics of Homogeneous Charge Compression Ignition (HCCI) Engine Operation for Variations in Compression Ratio, Speed, and Intake Temperature While Using n-Butane as a Fuel[J]. Journal of Engineering for Gas Turbines and Power, 125:472-478.
    Imaoka RT, Sirignano WA. 2005. Transient vaporization and burning in dense droplet arrays[J].International Journal of Heat and Mass Transfer 48: 4354-4366.
    
    Ishii M, Hibiki T. 2006. Thermo-fiuid dynamics of two-phase flow[J]. New York, N.Y.: Springer. Ishizaki K, Komarneni S, Nanko M. 1998. Porous materials: process technology and applications[M]. Dodrecht: Kluwer Academic Publishers.
    
    Issa RJ, Yao SC. 2005. A Numerical Model for the Mist Dynamics and Heat Transfer at Various Ambient Pressures[J]. Journal of Fluids Engineering, 127: 631-639.
    Jugjai S and Pongsai C. 2007. Liquid Fuels-Fired Porous Burner[J]. Combust. Sci. and Tech., 179: 1823-1840.
    Kamal MM, Mohamad AA. 2005. Enhanced radiation output from foam burners operating with a nonpremixed flame[J]. Combustion and Flame 140: 233-248.
    Kamal MM, Mohamad AA. 2006a. Combustion in porous media[J]. Proc. IMechE Vol. 220 Part A: J. Power and Energy, p487-508.
    Kamal MM, Mohamad AA. 2006b. Effect of swirl on performance of foam porous medium burners. Combust. Sci. and Tech., 178: 729-761.
    Kandlikar SG, Steinke ME. 2002. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface[J]. International Journal of Heat and Mass Transfer 45:3771-3780.
    Kaplan M, Hall MJ. 1995. The combustion of liquid fuels within a porous media radiant burner[J]. Experimental Thermal and Fluid Science, 11:13-20.
    Kayal TK., Chakravarty M. 2005. Combustion of liquid fuel inside inert porous media: an analytical approach[J]. International Journal of Heat and Mass Transfer 48: 331-339.
    Kayal TK., Chakravarty M. 2006. Modeling of trickle flow liquid fuel combustion in inert porous medium[J]. International Journal of Heat and Mass Transfer 49: 975-983.
    Kayal TK., Chakravarty M. 2007. Modeling of a conceptual self-sustained liquid fuel vaporization-combustion system with radiative output using inert porous media[J].International Journal of Heat and Mass Transfer 50:1715-1722.
    Khatami F. SR, Safavisohi B, Sharbati E. 2007. Porosity and Permeability Effects on Centerline Temperature Distributions, Peak Flame Temperature, Flame Structure, and Preheating Mechanism for Combustion in Porous Media[J]. Journal of Energy Resources Technology MARCH, 129: 54-65.
    Klimenko AY, Abdel-Jawad MM. 2007. Conditional methods for continuum reacting flows in porous media. Proceedings of the Combustion Institute 31:2107-2115.
    Ko YS, Chung SH. 1996. An experiment on the breakup of impinging droplet on a hot surface[J]. Experiments in Fluids 21:118-123.
    Korzhavin AA, Bunev VA, Abdullin RK, et al. 1982. Flame zone in gas combustion in an inert porous medium[J]. Combustion, Explosions and Shock Waves. 18(6): 628.
    
    Korzhavin AA, Bunev VA, Babkin VS. 1997. Dynamics of gaseous combustion in closed systems with an inert porous medium[J]. Combustion and Flame, 109: 507-520.
    Korzhavin AA, Bunev VA, Babkin VS, et al. 2005. Selective Diffusion during Flame Propagation and Quenching in a Porous Medium[J]. Combustion, Explosion, and Shock Waves, 41:405-413.
    Kryukov AP, Levashov VY, Sazhin SS. 2004. Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models[J]. International Journal of Heat and Mass Transfer 47: 2541-2549.
    Lage PLC, Rangel RH. 1993. Total thermal radiation absorption by a single spherical droplet[J]. Journal of Thermophysics and Heat Transfer, 7:101-109.
    Law CK.1982. Recent advances in droplet evaporation and combustion[J]. Prog. Energy Combust. Sci. 8:171-201.
    Lee DH, Kwon S. 2002. Heat transfer and quenching analysis of combustion in a micro combustion vessel[J]. Journal of Micromechanism and Microengineering, 12: 670-676.
    Leeds. http://www. chem. leeds. ac. uk/Combustion/Combustion. html
    Leonardi SA, Viskanta R, Gore JP. 2003. Analytical and Experimental Study of Combustion and Heat Transfer in Submerged Flame Metal Fiber Burners/Heaters[J]. Journal of Heat Transfer,125:118-125.
    
    Lide DR. 2001. CRC handbook of chemistry and physics [M]. Boca Raton : CRC Press.
    
    Lim IG. 1997. Effect of solid properties on co and no emission in premixed combustion within porous ceramic burner[C]. Proceedings, IV International Conference on Technologies and Combustion for a Clean Environment, Vol. Ⅱ, p. 28.
    Loth E. 2000. Numerical approaches for motion of dispersed particles, droplets and bubbles. Progress in Energy and Combustion Science 26:161-223.
    Malico I, Pereira JCF. 2001. Numerical Study on the Influence of Radiative Properties in Porous Media Combustion[J]. Journal of Heat Transfer, 123:951-957.
    Manzello SL, Yang JC. 2002. An experimental study of high Weber number impact of methoxy-nonafluorobutane C4F9OCH3 (HFE-7100) and n-heptane droplets on a heated solid surface[J]. International Journal of Heat and Mass Transfer 45:3961-3971.
    Marbach TL, Sadasivuni V, Agrawal AK. 2007. Investigation of a Miniature Combustor Using Porous Media Surface Stabilized Flame[J]. Combust. Sci. and Tech., 179:1901-1922.
    Marbach TL, Agrawal AK. 2005. Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media[J]. Journal of Engineering for Gas Turbines and Power, 127:307-313.
    Martynenko VV. 1998. Mathematical Model of Self-Sustaining Combustion in Inert Porous Medium with Phase Change under complex Heat Transfer[J]. International Journal of Heat and Mass Transfer, 41 (1): 117-126.
    Maruta K, Takeda K, Sitzki KL, et al. 2001. Catalytic combustion in microchannel for MEMS power generation[A]. In: the 3rd Asia-Pacific Conference on Combustion[C], Seoul, Korea, June.
    Mellor AM, Russell SC, Humer S, et al. 2004. Thermal ignition theory applied to diesel engine autoignition [J]. International Journal of Engine Research, 5(2): 193-204.
    Michaelides EE. 2006. Particles, bubbles & drops: their motion, heat and mass transfer[M]. Singapore: World Scientific.
    Miller CT, Gray WG. 2005. Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation[J].Advances in Water Resources, 28: 181-202.
    Miller JA, Kee RJ, Westbrook CK. 1990. Chemical kinetics and combustion modeling [J]. Annu. Rev. Phys. Chem., 41:345-87.
    Mishra S., Steven M, Nemoda S, et al. 2006. Heat transfer analysis of a two-dimensional rectangular porous radiant burner[J]. International Communications in Heat and Mass Transfer 33:467-474.
    Mital R and Gore JP. 1994. Experimental study of laminar diffusion flames with enhanced heat transfer by reticulated ceramic inserts[J]. ASME Heat Transfer in Fire and Combustion Systems, HTD-272: 7-12.
    
    Modest MF. 1993. Radiative heat transfer[M]. New York: McGraw-Hill. Newburn ER, Agrawai AK. 2005.Liquid fuel combustion using heat re-circulation through annular porous media[C]. Proceedings of the ASME Turbo Expo, 2: 435-441.
    Noll W. 1974. The foundations of mechanics and thermodynamics[M]. Berlin: Springer. Nomura H, Ujiie Y, Rath HJ, et al. 1996. Experimental Study on High-Pressure Droplet Evaporation Using Microgravity Conditions [C]. Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1267 - 1273.
    Panao MRO, Moreira ALN. 2004. Experimental study of the flow regimes resulting from the impact of an intermittent gasoline spray[J]. Experiments in Fluids 37: 834-855.
    Panao MRO, Moreira ALN. 2005. Thermo- and fluid dynamics characterization of spray cooling with pulsed sprays[J]. Experimental Thermal and Fluid Science 30: 79-96.
    Pasandideh-Fard M, Aziz SD, Chandra S, Mostaghimi J. 2001. Cooling effectiveness of a water drop impinging on a hot surface[J]. International Journal of Heat and Fluid Flow, 22:201-210.
    Periasamy C, Chinthamony S, Sankara K, et al. 2005. Experimental Determination of Minimum Heat Feedback for Complete Vaporization in Porous Media Burners[C]. Collection of Technical Papers - 3rd International Energy Conversion Engineering Conference, vl, p 149-157.
    Poling BE, Prausnitz JM, O'Connell JP. 2001. The properties of gases and liquids[M]. New York : McGraw-Hill.
    Pope DN, Gogos G. 2005. Numerical simulation of fuel droplet extinction due to forced convection[J]. Combustion and Flame 142:89-106.
    Potytnyakov SI, Babkin VS, Laevskil, et al. 1985. Thermal structure of an in situ gas combustion wave[J]. Combustion, Explosions and Shock Waves, 21(2): 146-151.
    Quintarda M, Bletzacker L, D. Chenua, et al. 2006. Nonlinear, multicomponent, mass transport in porous media[J]. Chemical Engineering Science 61:2643 - 2669.
    Quintard M, Whitaker S. 1988. Two-phase flow in heterogeneous porous media: the method of large scale averaging[J]. Transport Porous Media, 3:357-413.
    Reid CR, Jafari F. 1995. The kinematics and general field equations for continuum mixtures[J]. Int. J.Engng Sci. 33(3): 411-428.
    Roache PJ. 1997. Quantification of uncertainty in computational fluid dynamics[J]. Annu. Rev. Fluid. Mech. 29:123-60.
    Roldughin VI, Zhdanov VM. 2002. Non-equilibrium thermodynamics and kinetic theory of gas mixtures in the presence of interfaces [J]. Advances in Colloid and Interface Science, 98: 121-215.
    Rozlowskii Al. 1980. Technical principles of explosion-proof upon work with gaseous fuel and vapors. Khimiya, Moscow, pp.135.
    
    Rusanov AI. 1996. Thermodynamics of solid surfaces[J]. Surface Science Reports 23:173-247.
    Sahraoui M, Kaviany M. 1994. Direct simulation vs volume-averaged treatment of adiabatic,premixed flame in a porous medium [J]. Int. J. Heat Mass Transfer, 37(18): 2817-2834.
    Sathe SB, Peck RE, Tong TW. 1990. Flame stabilization and multimode heat transfer in inert porous media: A Numerical Study. Combust. Sci. Technol., 70: 93-109.
    Sawyer ML, Jeter SM, Abdel-Khaliks SI. 1997. A critical heat flux correlation for droplet impact cooling[J]. Int. J. Heat Mass Transfer, 40(2): 2123-2131.
    Sazhin SS. 2006. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combustion Science 32:162-214.
    Sazhin SS, Abdelghaffar WA, Sazhina EM, Heikal MR. 2005. Models for droplet transient heating:Effects on droplet evaporation, ignition , and break up [J]. International Journal of Thermal Sciences, 44: 610-622.
    Sazhin SS, Feng G, Heikal MR. 2001. Thermal Ignition Analysis of a Monodisperse Spray with Radiation [J]. Combustion and Flame, 125: 684-701.
    
    Sazhin SS, Abdelghaffar WA, Sazhina EM, et al. 2004. Radiative heating of semi-transparent diesel fuel droplets[J]. ASME J Heat Transfer; 126:105 - 9 [Erratum 2004; 126:490-1].
    Sazhin SS, Abdelghaffar WA, Sazhina EM, et al. 2005. Models for droplet transient heating: Effects on droplet evaporation, ignition , and break up [J]. International Journal of Thermal Sciences, 2005, 44:610-622.
    Sazhina EM, Sazhin SS, Heikal MR, et al. 1999. The Shell autoignition model: application to gasoline and diesel fuels[J]. Fuel, 78:389-401.
    Sazhina EM, Sazhin SS, Heikal MR, et al. 2000. A detailed modelling of the spray ignition process in diesel engines[J]. Combust Sci Technol, 160:317-44.
    Schiaffino S, Sonin AA. 1997. Molten droplet deposition and solidification at low Weber numbers[J]. Phys. Fluids 9 (11):3172-3187.
    Sghaier T, Cherif B, Sifaoui MS. 2002. Theoretical study of combined radiative conductive and convective heat transfer in semi-transparent porous medium in a spherical enclosure[J].Journal of Quantitative Spectroscopy & Radiative Transfer 75: 257-271.
    Sirignano WA.1983. Fuel droplet vaporization and spray combustion theory[J]. Prog. Energy Combust. Sci. 9:291-332.
    Sirignano WA. 1986. The formulation of spray combustion models: resolution compared to droplet spacing. J. Heat Transfer, 108:633-639.
    Sirignano WA. 1999. Fluid dynamics and transport of droplets and sprays[M]. Cambridge, U.K.: Cambridge University Press.
    
    Smith GP, Golden DM, Frenklach M, et al[EB/OL]. http://www.me.berkeley.edu/gri_rnech/1999
    Spadaccini CM, Mehra A, Lee J, et al. 2003. High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines[J]. Journal of Engineering for Gas Turbines and Power, 125:709-719.
    Spalding DB. 1953. The combustion of liquid fuels[C]. Fourth Symposium (International) on Combustion, The Combustion Institute, 847-864.
    Takami H, Suzuki T, Itaya Y, et al. 1998. Performance of flammability of kerosene and NOx emission in the porous burner[J]. Fuel, 77(3): 165-171.
    Takeno T, Sato K. 1979. An excess enthalpy flame theory[J]. Combustion Science and Technology, 20: 73-84.
    Talukdar P, Mishra SC, Trimis D, et al. 2004a. Combined radiation and convection heat transfer in a porous channel bounded by isothermal parallel plates[J]. International Journal of Heat and Mass Transfer 47:1001-1013.
    Talukdar P, Mishra SC, Trimis D, et al. 2004b. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field[J]. Journal of Quantitative Spectroscopy & Radiative Transfer 84:527-537.
    Trimis D, Wawrzinek K, Hatzfeld O, et al. 2001. High modulation burner for liquid fuels based on porous media combustion and cool flame vaporization[C]. In Proceedings of the Sixth International Conference on Technologies and combustion for clean environment, Porto,Portugal, (Ed. M. G. Carvalho), Vol. 2, pp1-8.
    Trujillo MF.2001. Spray and single droplet impingement on a wall[D]:[PhD]. Urbana: University of Illinois.
    
    Truesdell C. 1969. Rational thermodynamics[M]. New York: McGraw-Hill.
    Tseng CJ. 1995. Liquid Fuel Combustion in Porous Ceramic Burners[D]:[PhD]. Austin: University of Texas.
    Tseng CJ, Howell JR. 1996. Combustion of Liquid Fuels in a Porous Radiant Burner[J]. Combustion Science and Technology, 112:141-161.
    Tseng CC, Viskanta R. 2005. Effect of Radiation Absoption on Fuel Droplet Evaporation [J].Combustion Science and Technology, 177:1511 - 1542.
    Tancrez M, Hilka M, Taine J. 2002. Comparison between local and homogenized models of radiative transfer in a set of parrallel ducts considered as a porous medium. International Journal of Heat and Mass Transfer, 45:173-180.
    Tuntomo A, Tien CL, Park SH. 1992. Optical constants of liquid hydrocarbon fuels[J].Combustion Science and Technology, 84:133 - 140.
    Van Wylen GJ, Sonntag RE, Borgnakke C. 1994. Fundamentals of classical Thermodynamics [M]. 4th ed. J. Wiley and Sons.
    Vijaykant S, Agrawal AK. 2007. Liquid fuel combustion within silicon-carbide coated carbon foam. Experimental Thermal and Fluid Science 32:117-125.
    Vreman AW. 2007. Macroscopic theory of multicomponent flows: Irreversibility and well-posed equations[J]. Physica D 225: 94-111.
    Wadewitz A, Specht E. 2001. Limit value of the Nusselt number for particles of different shape[J]. Int J Heat Mass Transfer, 44: 967-975.
    Waehters LHJ, Bonne H, Nouhuis HJ. 1966. The Heat Transfer from a Hot Horizontal Plate to Sessile Water Drops in the Spheroidal State[J]. Chem.Eng.Sei., 21:923-936.
    Wang AB, Lin CH, Chen CC. 2000. The critical temperature of dry impact for tiny droplet impinging on a heated surface[J]. Physics of Fluids, 12: 1622-1625.
    Wang Y, Rutland CJ. 2005. DNS study of the ignition of n-heptane fuel spray under high pressure and lean conditions[J]. Journal of Physics: Conference Series 16: 124-128.
    Weclas M. 2004. Strategy for Intelligent Internal Combustion Engine with Homogeneous Combustion in Cylinder[J]. ISSN 1616-0762 Sonderdruck Schriftenreihe der Georg-Simon-Ohm-Fachhochschule Nurnberg Nr. 26, April.
    Weinberg, FJ. 1971. Combustion temperatures: the future?[J]. Nature, 233: 239-241.
    Yamamoto K, Takada N, Misawa M. 2005. Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure[J]. Proceedings of the Combustion Institute, 30:1509-1515.
    Yang JR, Wong SC. 2002. An experimental and theoretical study of the effects of heat conduction through the support fiber on the evaporation of a droplet in a weakly convective flow[J]. Int J Heat Mass Transfer, 45:4589-98.
    Yarin AL. 2006. Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing. . .[J] Annu. Rev. Fluid Mech, 38:159-92.
    Yao GF, Abdel-Khalik SI, Ghiaasiaan SM. 2003. An investigation of simple evaporation models used in spray simulations. ASME J Heat Transfer, 125:179-82.
    Yoshida H, Yun JH, Echigo R. 1990. Transient characteristics of combined conduction convection and radiation heat transfer in porous media[J]. Int. J. Heat Mass transfer, 33: 847-857.
    Yoshizawa, Y, Sasaki, K, Echigo, R. 1988, Analytical study of the structure of radiation controlled flame. Int. J. Heat Mass Transf., 31:311-319.
    Zhdanok SA, Dobrego KV, Futko SI. 1998. Flame localization inside axis-symmetric cylindrical and spherical porous media burners[J]. International Journal of Heat and Mass Transfer, 41: 2536-2544.
    Zhdanok SA, Dobrego KV, Futko SI. 2000. Effect of porous media transparency on spherical and cylindrical filtrational combustion heaters performance[J]. International Journal of Heat and Mass Transfer 43: 3469-3480.
    Zhdanok SA, Krivosheev PN, Mbawara M, et al. 2005. Ranges of rates of supersonic combustion in a porous medium[J]. Journal of Engineering Physics and Thermophysics, 78(4): 625-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700