用户名: 密码: 验证码:
发动机可变进气系统流动特性与性能优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可变进气技术是在发动机的工作过程中,改变传统的单一的进气模式,组织变化的进气方式,使进入缸内的充量大小和运动形式适合变化的发动机运行工况,从而改善发动机中、低速性能。本文对一单缸4气门125ml排量的摩托车发动机,进行了可变进气的改进设计,在不同的运行工况范围,实现不同的可变进气模式,从而达到优化发动机中,小负荷性能的目的。
     首先,设计一可变进气系统,实现五种进气模式;在气道稳流试验台上对五种进气模式气道进行了试验,进气模式不同时,气道的流通系数随气门升程提高的变化率明显不同,在小节流模式,小气门升程时,节流反而使流量系数增大,而在大气门升程,节流使流量系数降低;在节流增大后,滚流,涡流都加强了,表明缸内气体运动是涡流运动和滚流运动的结合-斜轴涡流。可变进气结构可以有效地调节流量系数和斜轴涡流强度。
     对发动机不同进气模式在最大气门升程时的进气及缸内流动进行了三维稳态模拟,发现随节流的增加,节流一侧气流变弱,占据范围也变小,同时,非节流一侧的涡旋变大,涡旋的中心逐渐朝气缸中心移。模拟分析了五种可变进气道的流量系数,涡流比和滚流比;进一步,模拟分析了三种可变进气位置,发现右可变位置的涡流比有所增加,但流量系数有一定的下降,从而,发现对可变进气道位置有进一步优化的空间。
     对可变进气发动机进行进气,压缩,燃烧过程三维瞬态模拟分析,表明进气过程是发动机湍动能的形成过程,压缩终了缸内不同的斜轴涡流比对湍动能有不同影响。发现在一定的工况下提高斜轴涡流比可以显著提高发动机缸内混合气的湍动能,从而增加燃烧放热率,最终提高气缸压力。
     对可变进气发动机进行了性能及排放试验,从实验结果看出,在25%,35% 50%节气门开度,功率,扭矩有所提高,提高幅度分别为6.37%,5.32%,4.93%。随负荷的增大,改善的幅度减小。表明在中小负荷,适当的节流进气,可以优化发动机的性能。
     最后对可变进气发动机进行了整机优化分析,表明,进气管长度及直径少量改变对发动机性能有一定影响;而排气管直径和长度对发动机性能有较大影响,在不同的工况下存在一个最优的直径和长度,增大,减小都会使发动机性能降低。进排气正时的优化表明,在不同的工况下存在不同的最优的进排气正时,因此,要根据不同工况采用不同的进排气正时优化发动机性能。
Variable inlet technology can improve engine’performance at part load by organizing variable intake flow and changing singular intake charge motion to variety inlet port charge’size and movement suitable for running load of engine. This paper developed a variable intake system on a single cylinder 125 ml engine with four valves. The system made intake charge variety along with the load of engine, and so, it improved part load performance.
     The developed variable intake system realized five intake mode. A series of experiments were carried out on steady state flow port test-bed for the variable inlet port performance measurement. The flow coefficient of five intake mode’port increase with valve lift by obvious different ratio. For small variable intake mode, variable intake flow coefficient higher than customary intake mode at small valve lift, and variable intake flow coefficient lower than customary intake mode at large valve lift. For large variable intake mode, tumble and swirl ratio higher than customary intake mode. The in-cylinder air motion is the resultant swirl—an inclined-axis swirl instead of single swirl or tumble.The variable intake device can adjust the inclined axis swirl in the cylinder.
     A three-dimensional steady model of CFD (Computational Fluid Dynamics) was developed to simulate the flow of inlet port and cylinder. The result showed that the swirl intensity weaken and its space become smaller at variable intake side; meanwhile swirl became bigger and swirl center moved to the center of the cylinder at customary intake side with flow area decrease. The model simulated three kind of variable intake position. The result showed that swirl ratio increase but flow coefficient became smaller at rest variable intake position, so three were impossible to optimize variable intake position.
     A three-dimensional transient model of CFD was developed to simulate the intake compress and combustion in the cylinder. The result showed that tubulence energy form at intake stroke, and variable swirl ratio after compress stroke effected tubulence energy. Tubulence energy increased with swirl ratio in the cylinder, and result that combustion ratio and cylinder pressure increase.
     The engine performance experiment was carried out. The result showed that the power increased 6.37%,5.32%,4.93% at 25%,35% 50% throttle opening; and improvement became smaller with larger load; so suitable variable intake can improve engine performance at small and middle load.
     Optimization was carried out for the entire engine, the result showed that the variety of long and diameter of intake manifold had effect to engine performance ; the variety of diameter and long of exhaust manifold had effect to engine performance. There were a most optimized intake-exhaust valves timing along with variable engine load.
引文
[1] rokazu Nakamure et al, Passenger Car Engine for the 21st Century, SAE 911908,1991
    [2] F. Pischinger, Vehicle Engine Development Trends under Future Boundary Conditions,SAE,945001,1994
    [3] H elmut Endres, Horst Schulte, Rudulf Krebs, Combustion System Development Trends for Multi-valve Gasoline Engine, SA E pa per,900652,1992
    [4] Takefumi Hosaka, et al,Development of the Variable Valve Timing and Lift(VTEC) Engine for the Honda NSX, SAE paper 910008 ,1991
    [5] rry Watson, Ultra Lean Burn-The Future For High Efficiency Low Emission Engines, Proceedings of The Fourth Asian-Pacific International Symposium on Combustion and Energy Utilization,1997
    [6] uwahara, K. And Watanabe, T., Optimization of In cylinder Flow and Mixing for a Center Spark Four Valve Engine Employing the Concept of Barrel Stratification, SAE paper 940986, 1994
    [7] Mathieson M F et a1.A Hydraulic Tappet with Variable Timing Properties.SAE Paper 930823 [8 ]Allen J et a1.Production Electro—Hydraulic Variable Valve Train for a New Generation of I.C.Engines.SAE Paper 2002-01—1 109.
    [9]李红艳等.发动机无凸轮轴气¨驱动的研究与进展.车用发动机,2O01(2)
    [10] Flierl R et a1.The Third Generation of Valvetrains—New Fully Variable Valvetrains for Throttle—Free Load Contro1.SAE Paper 2000—0l一1227
    [11] Miller et a1.Electromechanical Valve Assembly for an Internal Combustion Engine.U.S.Patent 6.795.291.20O4—09—21
    [12] Diehl,et a1.Internal Combustion Engine.U.S.patent,6,70 1,879,2004—03—09
    [13]蒋德明,黄佐华,内研究替代燃料燃烧学,西安:西安交通大学出版社。2007,1
    [14]Josef Maier/AVL Powertrain Engineering, Inc. VARIABLE CHARGE MOTION FOR 2007- 2010 DIESEL ENGINES Diesel Engine Emissions Reduction (DEER) Conference 2003 August 24 - 28, 2003 Newport, Rhode Island
    [15] Paul E. Kapus, Dirk Denger and Trevor Holland AVL List GmbH Intelligent Simplification– Ways Towards Improved Fuel Economy SAE Paper 2002-01-0236
    [16] Fischer F,Kettner M,Nauwerck A,et a1.Influence of an adjustable tumble--system on in--cylinder air motion and stratification in a gasoline direct injection engine[A].In:SAE Paper[C].2002-01—1645,2002
    [17] Furuno Shigeo,Satoshi Iguchi,Kiyohiko Oishi,et a1.The efects of inclination angle of swirl axis on turbulence characteristics in a 4-valve lean—burn engine with SCV [A].In:SAE Paper[C].902139,1990
    [18] IA Yu feng,XU Jun-feng,at a1.Effect of Combination and Orientation of IntakePorts on Swirl Motion in Four—Valve DI_ Diesel Engine Ec3.SAE Paper 2000- 01—1823.
    [19]许俊峰.李玉峰,高速4气门直喷柴油机可变进气涡流的研究内燃机学报Vo1.1 9(g001)N0.5 400~404.
    [20]刘伍权,许洪军,四气门发动机可变进气结构的斜轴涡流特性天津大学学报VoI_38 No.6 Jun.2005 476~480
    [21]【德】Stan C,汽油机的发展趋势,国外内燃机,2003年第6期3~8
    [22]【日】久保譬明,日本的汽油机技术,国外内燃机,2005年第2期9~12
    [23] G. M. Bianchi,G. Cantore and S. Fontanesi,Turbulence Modelling in CFD Simulation of ICE Intake Flows: The Discharge Coefficient Prediction,SAE Paper 2002-01-1118
    [24] W. Hentschel, B. Block, T. Hovestadt, H. Meyer, G. Ohmstede,V. Richter, B. Stiebels and A. Winkler,Optical Diagnostics and CFD-Simulations to Support the Combustion Process Development of the Volkswagen FSI Direct-Injection Gasoline Engine,SAE Paper ,2001-01-3648
    [25] Franz J. Laimboeck and Reinhard Glanz,Egon Modre and Rainer J. Rothbauer ,AVL Approach for Small 4-Stroke Cylinderhead-Port- and Combustion Chamber Layout,SAE 1999-01-3344
    [26] Ralf Marquard and Frank Beste,Design Of SI Engines In Regard To Volume Production Beyond Year 2000,SAE Paper 1999-01-0327
    [27] Beno?t Delhaye and Bernard Cousyn,Computation of Flow and Combustion in Spark Ignition Engine and Comparison with Experiment,SAE Paper 961960
    [28] J. M. Duclos, G. Bruneaux, and T. A. Baritaud,3D Modelling of Combustion and Pollutants in a 4-Valve SI Engine; Effect of Fuel and Residuals Distribution and Spark Location,SAE Paper 961964
    [29]王海刚,陈石,刘石,内燃机进气道和缸内三维流场数值模拟,工程热物理学报、Vol.23.No 3 May.2002,312~314
    [30]刘志恩,蒋炎坤,CFD辅助发动机进气道设计方法研究,内燃机工程,Vol.27 NO.6 Dec.2006,6~10
    [31]李曙东,赵新顺,大气道压差对气体流量系数的影响,拖拉机与农用运输车,第3期2005年6月47~49
    [32]徐斌,丁永杰,何玲,电喷发动机可变进气管的研究,内燃机学报, Vo1.21(2003)No.2,171~174
    [33]谢辉,赵华,杨林,高瑞,张岩,基于可变气门定时策略的HCCI汽油机试验研究,内燃机学报, Vo1.23(2005)No.6,510~517
    [34]吴志军.黄震,李军,孙济美,四气门柴油机的可变涡流进气系统的试验研究,内燃机工程, Vo] 22(2001)N0 3,74~79
    [35]王志,黄荣华,王必瑶。卢蓓,基于CAD/CAM/CFD的发动机气道研究,内燃机工程, VoI.23(2002)No.26~29
    [36]【日】小舍藤,可改善汽车燃油耗和扭矩范围的连续可变进、排气门正时机构的开发,国外内燃机, 2006年第1期,43~45
    [37] Dieter Wehr, Bernhard Huurdeman and Alrun Spennemann,EGR– A Challenge for Modern Plastic Intake Manifolds,SAE Paper 2002-01-0902
    [38]王伟生,方学飞,四冲程摩托车发动机气道的研究,小型内燃机与摩托车,Vo1.34 No.5 Oct.205,38~40
    [39]李岳林,沈文,一种新型可变进气系统的试验研究,长沙交通学院学报,Vol. 16 No.3 Sept.2OOO,8~10
    [40]康秀玲祖炳锋,车用多气门发动机的进、排气道结构设计与研究,农业机械学报,2005年,第36卷第05期
    [41]史绍熙,苏万华,内燃机燃烧研究中的几个前沿问题.内燃机学报,1990(8):21~23
    [42]马红英,宗明建.汽车发动机的可变进气系统.职教与成教,1997:376~377
    [43]董敬,庄志,常思勤.汽车拖拉机内燃机.北京:机械工业出社,2000 :36~37
    [44]孙学伟,李丽莉.国外轿车发动机在降低油耗和排放方面的技术进展及我国的对策.汽车技术,1999(4) :1~5
    [45]杨杰民.现代汽车发动机构造.上海:上海交通大学出版社,1999 :109~111
    [46]邢世凯,闻德生,潘景昇.车用内燃机可变技术概述.拖拉机与农用运输车,2003年06期:3~6
    [47]王立彪,何邦全,谢辉等.发动机可变气门技术的研究进展.汽车技术,2005(12):4~8
    [48]王韬,秦德,郝志勇.发动机可变气门正时技术的研究.小型内燃机与摩托车. No. 3(Vol. 32) 2003
    [49]刘永军,付晓光,刘莹.国外当代轿车发动机的可变技术.天津汽车. 2001年第4期:40~43
    [50]苏岩,李理光,肖敏等.国外发动机可变配气相位研究进展.汽车技术1999(06):10~13
    [51]陈勤学,崔可润,朱国伟.可变气门系统的研究与发展.车用发动机. 2002年6月第3期(总第139期):1~5
    [52]张兆合,刘忠长,刘巽俊等.喷气式可变涡流进气系统对柴油机废气排放的影响.吉林工业大学自然科学学报. 1999年第1期:1~6
    [53]邓俊,胡宗杰等.基于可变技术的均质充量压缩着火燃烧控制.内燃机工程. 2004年10月第25卷第5期:32~37
    [54]E. Sher,T.Bar-Kohany. Optimization of Variable Valve Timing for Maximizing Performance of an unthrottled SI Engine-a Theoretical Study. Energy 27 (2002) 757-775.
    [55]AVL Boost User’s Guide. Version3.3, March 2000:3~50
    [56]李庆扬,王能超,易大义编著.数值分析.华中科技大学出版社,1986:108~141
    [57]杨连生编著.内燃机设计.北京:机械工业出版社,1980:58~67
    [58]何玲.电喷发动机可变进排气系统的研究. [硕士学位论文],哈尔滨;哈尔滨工业大学,2002
    [59]刘永长编著.内燃机热力过程模拟.北京:机械工业出版社,2001:99~110
    [60]王绍光等编著.汽车电子学.北京:清华大学出版社,2005:100~105
    [61]杨宝全.可变气门技术在汽油机上的应用. [硕士学位论文],哈尔滨:哈尔滨工程大学,2007
    [62]董力平.电控汽油机进气管长度连续可变系统.内燃机工程,1998.1
    [63]本森著.内燃机的热力学和空气动力学.第1卷.程宏.机械工业出版社,1986:65~70
    [64]Liu J P, Binham J F. Effects of Intake System Dimensions on Volumetric Efficiency-Speed Characteristics of Multi-Cylinder Engines,内燃机学报, Vol.16(1997) No.3
    [65]Peters B. Numerical simulation of unsteady flow in engine intake manifolds, USA: SAE paper 930609, 1993
    [66]贾丽冬,陈传举.内燃机进气管长度可变系统发展现状.拖拉机与农用运输车. 2004年8月第4期:63~64
    [67]Mikulic L A, etc. Development of Low Emission High Performance Four Valve Engine. SAE Paper 900227
    [68]魏春源.车用内燃机构造.北京:机械工业出版社,1997 :285~287
    [69]G.P.Blair et al. An Improved Branched Pipe Model for Multi-Cylinder Automotive Engine Calculation. PLME. 1985, 199(Dl):47~49
    [70]J.L.Lumley. Engine: An Introduction. Cambridge University Press,1999:66~79
    [71]J.Benajes. Pre-design Criteria for Exhaust Manifolds in I.C.Automotive Engines. SAE Paper 980783:111~123
    [72]A.A.Boretti. Numerical Optimization of a Racing Engine with Variable Intake and Exhaust Geometry and Valve Actuation. SAE Paper 962542:2490~2497
    [73]Adolf H.W.Bos. Intake-engine Matching for High-speed Civil Transport Powerplant Design and Analysis, Aircraft Design. 1999,(2):95~104
    [74]W.F. Stockhausen,T.A.Wiemero. Development and Application of the Ford Split Port Induction Concept. SAE 961151:1494~1507
    [75]S.V.Bohac and Klaus Landfahrer. Effects of Pulsating Flow on Exhaust Port Flow Coefficients. SAE 1999-01-0214:299~309
    [76]刘书亮等.汽油机滚动涡流模拟试验台和滚流进气道的试验研究.内燃机工程,1995(4):26~28
    [77]顾宏中.内燃机中气体流动及数值分析.北京:国防工业出版社,1985:62~91
    [78][英]R S本森著,程宏,朱倩,邵明锋译.内燃机的热力学和空气动力学.北京:机械工业出版社,1986
    [79]D Levy, Gabriella Puppo, On the Behavior of the Total Variation in CWENO Methods for Conservation Laws, Applied Numerical Mathematics, 2000(33):407~414
    [80]T Bulaty, H Niessner, Calulation of 1-D Unsteady Flows in Pipe Systems of I.C.Engines, Journal of Fluids Engineering, Vol. 107, Sept. 1985
    [81]B Peters, A D Gosman, Numerical Simulation of Unsteady Flow in Engine Intake Manifolds, SAE Paper 93-06-09
    [82]Elbert Hendricks, Alain Chevalier, Michael Jensen et al, Modeling of the Intake Manifold Filling Dynamics, SAE Paper 96-00-37
    [83]焦天民,周龙保.内燃机进气系统模拟计算新方法研究.车用发动机,2002,137(1):5~7
    [44]方适应,邓康辉,崔静等.进排气管一维非定常流动计算方法的比较.车用发动机,2000,6(3):22~25
    [85]G P Blair, S J Kirkpatrick, Experimental Validation of 1-D Modeling Codes for a Pipe System Containing Area Discontinuities, SAE Paper 95-02-76
    [86]冯迎霞,俞水良.车用发动机可变气门驱动技术进展.机电工程技术,2005第34卷第一期:22~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700