用户名: 密码: 验证码:
微燃机富氧燃烧室数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分布式能源系统的发展以及能源利用多样化及环保要求的提高,微型燃气轮机在我国得到越来越多的关注。燃烧室是微型燃气轮机的核心部件之一,也是能源高效、清洁利用的关键设备。深入开展烟气循环富氧燃烧室研究,对提高对能源的高效、清洁利用具有很强的现实意义。本文以国家自然科学基金为依托,研究了50KW烟气循环富氧燃烧室设计方法,并设计了烟气循环富氧燃烧室实验系统。在此基础上对富氧燃烧室性能进行了数值模拟和实验研究。
     论文首先在国内外普遍技术经验水平的基础上进行了燃烧室热力计算和设计计算,初步设计了烟气循环富氧燃烧室。根据预混燃烧特点,采用适用于旋流流场RNGk-ε湍流模型,平均混合分数/PDF燃烧模型和有限速率的EDC模型及SIMPLEC算法,对初步设计燃烧室进行冷态流场和燃烧模拟。在模拟结果的基础上进行结构优化设计,经过多次模拟优化,确定了烟气循环富氧燃烧室模型。
     运用数值方法和实验方法对烟气循环富氧燃烧室性能进行研究,结论如下:
     1、富氧燃烧室进行设计时,根据优化结果各参数做如下选择:燃烧室最大横截面积计算经验系数应该为原经验系数的2倍左右;火焰管横截面积与燃烧室最大横截面积之比取0.65-0.7;燃烧室环型通道高度为原来环状通道高度的1.5倍左右;一次风过量空气系数取1.5~1.8;一次风量占总风量应大于20%,一次射流深度为(0.3~0.5)Df;同时增加掺混段长度及掺混冷却孔采用大孔方式增强紊流掺混。
     2、富氧燃烧室模拟过程发现:(1)随着入口气温升高燃烧温度也升高,甲烷和一氧化碳分布范围向燃烧区缩小并逐渐稀薄,总压损失系数和温度不均匀系数也逐渐降低,但燃烧效率一直保持在99%以上;(2)入口氧浓度提高,燃烧温度升高,当氧浓度达30%后温度不再升高;入口氧浓度提高,甲烷和一氧化碳分布范围逐渐向燃烧区缩小并逐渐稀薄,总压损失系数升高;出口温度不均匀系数随氧浓度变化表现为,氧浓度为30%设计工况时最小,偏离设计值则增大;氧浓度为21%时燃烧效率为97%,氧浓度大于24%后燃烧效率保持99%以上;(3)随负荷升高燃烧温度也升高;甲烷和一氧化碳分布范围逐渐向燃烧区缩小;总压损失系数降低;温度不均匀系数在负荷为50%以下时逐渐升高,负荷超过50%后逐渐降低;负荷变化时燃烧效率始终保持99%以上。
     3、通过数值研究发现该燃烧室具有如下污染物排放特性:在设计工况下,燃烧室出口NOx排放浓度基本维持在0.00005mol/mol。随入口温度升高NOx生成增加,表现为NOx相同生成速率特征等势面逐渐由掺混区向燃烧区扩展;随入口氧浓度提高NOx生成速率增大且增幅加大,当氧浓度达35%后NOx生成速率刁不再增加;入口水分对NOx生成有抑制作用,但水分大于10%后燃烧室出口NOx排放浓度不在降低。
     4、通过实验发现:(1)值班火焰稳定性不随气流压力变化而变化,但随燃气流量变化略有变化,在气流较大变化范围内值班火焰可以保持稳定燃烧;(2)值班火焰随氧浓度有较大变化,随着氧浓度逐渐降低,火焰由白炽状态转变为桔黄色,当氧浓度为22%时火焰呈现兰色,氧浓度18%时火焰出现燃烧不稳定,氧浓度为14%时值班火焰熄火;(3)值班火焰燃/风比随燃烧室进风量增加呈下降趋势,当燃风比降低为0.02-0.03时值班火焰仍可以保持稳定燃烧。
     论文进行的一系列研究工作为进一步开展烟气循环富氧燃烧室的结构设计、流场优化、实验研究等提供了参考。
With the development of the distributed energy systems and the energy utilization approaches, and the increasing environmental requirements, the micro gas turbines (MGT) technology has attracted increasing attention in China. The combustor, which is also a key component in the efficient and clean utilization of energy, plays a vital role in the MGT. Investigating the flue gas recirculation based oxygen-enriched combustor is crucial for the efficient and clean utilization of energy. Based on the National Natural Science Foundation project, in this thesis the design methods of50KW flue gas recirculation based oxygen-enriched combustor are investigated and an experimental platform is built up.Finally the performances of the combustor are experimentally and numerically evaluated.
     On the basis of common technical experiences, the thermal calculations and the design computations are implemented, the flue gas recirculation based oxygen-enriched combustor is preliminarily designed. According to the characteristics of the premixed combustion, the cold-state flow field and the combustion of the combustor are simulated by the RNG turbulence model, the average mixture fraction/PDF combustion model and the finite rate of the EDC model and the SIMPLEC algorithm. Based on the numerical results, the structure of the combustor is optimized, and the resulting model is determined.
     The performances of the combustor are investigated by experimental and numerical approaches, and the main research finding is summarized as follows.
     1. By the optimization design, the resulting parameters of the combustor are outlined as follows:the maximum cross-sectional area empirical coefficient of the combustor is about two times larger than the original empirical coefficient; the ratio between the cross-sectional area of the flame tube and the maximum cross-sectional area of the combustor is0.45-0.56; the height of the annular channel is about1.5times higher than that of original channel; the air surplus coefficient of the primary air is1.5-1.8; the ratio of the primary air volume and the total air volume should be higher than20%; the depth of the jet is (0.3-0.5) Df. Additionally, the turbulent mixing intensity should be enhanced by increasing the length of the mixing and the diameter of the cooling hole.
     2. By the numerical simulations, the following research findings are obtained:(1) the combustion temperature in the flame tube increases with the rising inlet temperatures. The concentration distributions of methane and carbon monoxide gradually decrease near the combustion area. The total pressure loss coefficient and the uneven temperature coefficient gradually decrease, and the combustion efficiency exceeds99%;(2) the combustion temperature in the flame tube increases with the increase of the inlet oxygen concentration, and the combustion temperature will remain unchanged when the oxygen concentration is higher than30%. The concentration distributions of methane and carbon monoxide near combustion zone gradually decrease, and the total pressure loss coefficient increases. The uneven temperature distribution coefficient in the outlet is the smallest when the designed concentration of oxygen is30%, which will increase with the rising deviations of the designed values. When the concentration of oxygen is21%, the combustion efficiency is97%. When the concentration of oxygen is higher than24%, the combustion efficiency is higher than99%;(3) the combustion temperature increases with the increase of loads. The concentration distributions of methane and carbon monoxide near combustion zone gradually decrease, and the total pressure loss coefficient decreases. The uneven temperature distribution coefficient will gradually increase when the load is lower than50%; however, when the load is higher than50%, and the uneven temperature distribution coefficient will decrease; the combustion efficiency is higher than99%.
     3. By the numerical simulation approach, the following pollutant emission characteristics are obtained:the concentration of NOx in the exit is about0.00005mol/mol in the designed combustor. With the increase of temperature, the potential surface of the NOx generation ratio in the flame tube gradually expands to the combustion zone from the mixing zone. With the rising oxygen concentration, the generation ratio of NOx will increase, which will remain unchanged when the oxygen concentration exceeds35%. The inlet moisture will restrain the formation of NOx, and the NOx emission concentration does not decrease when the moisture content is higher than10%.
     4. Experimental results indicate that:(1) the relationship of the pressure and the gas flow rate and the on working flame is weak, and the working torch can remain stable combustion in a large range of the gas flow rate;(2) there is close correlation between the working torch and the oxygen concentration, the color of the flame will become orange from the incandescent state with the increase of the oxygen concentration. When the oxygen concentration is22%, the color of the flame is blue, and the flame is instable when the oxygen concentration is18%, and the working flame will extinguish when the oxygen concentration is14%;(3) the fuel/air ratio of the working torch descends with the decrease of the inlet air volume, and the working flame can ensure the stable combustion when the fuel air ratio decreases to0.02-0.03.
     These research findings pave a way for the development of the structure design of the flue gas circulating based oxygen-rich combustor, the optimization of the flow field and experimental studies.
引文
[1]郭琳.分布式能源发展待破题[J].中国投资,2011,3(7):82-83
    [2]葛青峰,王永志.分布式能源发展的战略选择[J].中国电力企业管理,2011,8(15): 63-63
    [3]Akorede. M. F., Hizam. H, Pouresmaeil. E. Distributed energy resources and benefits to the environment[J]. Renewable and Sustainable Energy Reviews, 2010,14(2):724-734
    [4]Borges. C. L.T. An overview of reliability models and methods for distribution systems with renewable energy distributed generation[J]. Renewable and Sustainable Energy Reviews,2012,16(6):4008-4015
    [5]Lagorse. J., Paire. D., Miraoui. A. A multi-agent system for energy management of distributed power sources[J]. Renewable Energy, 2010,35(1):174-182
    [6]倪维斗.我国的能源现状与战略对策(PPT).2014
    [7]高书歧.利用煤层气建设“分布式能源系统”的可行性研究[J].2006,15(、3):50-52
    [8]徐建中,隋军,金红光.分布式能源系统现状及趋势[J].太阳能,2004,(4): 4-16
    [9]徐建中.科学用能与分布式能源系统[J].中国能源,2005,27(8):7-10
    [10]华贲,左政,杨艳利.分布式能源系统对中国天然气下游市场开拓的重要性[J].沈阳工程学院学报(自然科学版),2006,2(2):97-103
    [11]张泽.分布式能源系统将引领用能革命[J].环境,2006,(11):32-34
    [12]王振铭.我国天然气分布式能源站的发展与建议[J].热电技术,2011,(109):65-70
    [13]Ackermann. T., Andersson. G, Soder L. Distributed generation:a definition[J]. Electric power systems research,2001,57(3):195-204
    [14]Pepermans. G, Driesen. J.. Haeseldonckx. D., et al. Distributed generation: definition, benefits and issues[J]. Energy policy,2005,33(6):787-798
    [15]El-Khattam.W.,Salama.M.M. A.Distributed generation technologies,definitions and benefits[J].Electric Power Systems Research,2004,71(2):119-128
    [16]Gillette. S. F.Market development of Micro turbine combined heat and power applications[J].Cogeneration and Distributed Generation Journal,2004,19(2): 46-59
    [17]Pilavachi. P. A. Mini and micro-gas turbines for combined heat and power[J]. Applied Thermal Engineering,2002,22(18):2003-2014
    [18]Marantan. A. Optimization of integrated micro turbine and absorption chiller systems in CHP for buildings applications[D]. University of Maryland, College Park,2002
    [19]Pilavachi. P. A. Power generation with gas turbine systems and combined heat and Power[J]. Applied Thermal Engineering,2000,20(15-16):1421-1429
    [20]龚婕,华贲.分布式能源:联产和联供[J].工厂动力,2007,17(2):1-6
    [21]陈霖新.冷热电联供是我国推行分布式能源系统的主要形式[J].工厂动力,2004,14(4):1-8
    [22]Kuhn. V, Klemes. J, Bulatov 1.Micro CHP:Overview of selected technologies, Products and field test results[J]. Applied Thermal Engineering,2008,22(18): 2039-2048
    [23]杨勇平,徐二树.分布式能量系统[J].现代电力,2007,24(5):72-376
    [24]何源.分布式能源系统的分析及优化[D].天津:天津大学,2007
    [25]杨敏林,杨晓西,金红光.分布式能源系统集成方案研究[J].东莞理工学院学报,2006,13(4):113-116
    [26]于丹,吴君华,等.分布式能源系统在某现代商城应用的可行研究[J].能源技术(上海),2005,26(5):215-216
    [27]国家发展改革委.关于发展天然气分布式能源的指导意见[EB/OI.]http://www.mof.gov.cn/zhengwuxinxi/zhengcefabu/201110/t20111018_60027 3.htm
    [28]Peirs. J, Reynaerts D, Verplaetsen F. Amicroturbine for electric power generation. Sensors and Actuators A[J].2004,113(1):86-93
    [29]魏兵,王志伟,等.微型燃气轮机冷热电联供系统及其在国外的发展状况[J].电力需求侧管理,2006,8(6):62-64
    [30]世界燃气轮机手册编委会.世界燃气轮机手册[M].北京:航空工业出版社,2011:4-411
    [31]焦树建.燃气轮机燃烧室[M].北京:机械工业出版社,1990:2-370
    [32]彭泽琰,刘刚.航空燃气轮机原理[M].北京:国防工业出版社,2008:15-50
    [33]黄庆宏.汽轮机与燃气轮机原理及应用[M].南京:东南大学出版社,2005:1-200
    [34]Cocco. D, Tola. V, Cau G. Performance evaluation of chemically recuperated gas turbine (CRGT) power plants fuelled by di-methyl-ether (DME)[J]. Energy, 2006,31(10):1446-1458
    [35]Abdallah. H, Harvey S. Thermodynamic analysis of chemically recuperated gas turbines[J]. International journal of thermal sciences,2001,40(4):372-384
    [36]Kesser. K. F, Hoffman M A, Baughn J W. Analysis of a basic chemically recuperated gas turbine power plant[J]. Journal of engineering for gas turbines and power,1994,116(2):277-284
    [37]Carcasci. C., Facchini. B., Harvey. S. Design issues and performance of a chemically recuperated aeroderivative gas turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1998,212(5):315-329
    [38]Reddy. K. S., Reddy. D. N., Prasad. C. M. V. CFD Analysis of Fuel Distribution in Concentric Swirling Flows in a Reverse Flow Gas Turbine Combustor[C]//ASME Turbo Expo 2006:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2006:853-865
    [39]Gupta. A. K. Gas turbine combustion:prospects and challenges[J]. Energy conversion and management,1997,38(10):1311-1318
    [40]宋举星.燃料电池与微型燃气轮机联合循环系统性能分析[D].济南:山东大学,2006
    [41]刘道平.美国的先进微型燃气轮机规划[J].能源研究与信息,2002,18(1):58-60
    [42]Energeies. Summary of the Micro turbine Technology Summit, Re Port No. DOE/ORO 2081,1998
    [43]国家高技术研究发展计划(863计划)重大专项可行性报告.科技部能源办公室,2002
    [44]赵士杭.新概念的微型燃气轮机的发展[J].燃气轮机技术,2001,14(2):8-13
    [45]靳智平.微型燃气轮机发电在我国的应用前景[J].电力学报,2004,19(2):95-97
    [46]杨策,刘宏伟等.微型燃气轮机技术[J].热能动力工程,2003,18(1):1-4
    [47]王建,王志伟.微型燃气轮机在我国能源工业中的发展前景[J].发电设备,2006,20(6):394-397
    [48]翁一武,苏明,等.先进微型燃气轮机的特点与应用前景[J].热能动力工程,2003,18(2):111-116
    [49]张昊志,李政,等.正在兴起的微透平技术[J].动力工程,2001,21(6):1532-1538
    [50]Sisworahardjo. N. S, EI-Shaak. M. Y, Alam. M. S. Neural network controller for micro-turbine power plants[J]. Electric Power Systems Research,2008, 78(8):1378-1384
    [51]焦树建.燃气轮机燃烧室[M].北京:清华大学出版社,1980:15-30
    [52]钟芳源.燃气轮机设计基础[M].北京:机械工业出版社,1987:50-90
    [53]Locke. R. J, Hicks. Y. R, Anderson. R. C, et al. Emission performance of a micro gas turbine pp-combustor with fuel film evaporation[J]. Combustion Science and Technology,1998, (1-6):33-38
    [54]Yang. C, Wu. D, Chen. C. Numerical performance analysis of an annular miniature gas turbine power system using fuels with low heating values[J]. International Journal of Numerical Methods For Heat,2010,20(2):794-810
    [55]李张硕,汪军,尹航,等.微型燃气轮机燃烧室热力性能的实验研究[J]. 能源研究与信息,2008,(2):110-114
    [56]于丹,吴君华,等.分布式能源系统在某现代商城应用的可行研究[J].能源技术(上海),2005,26(5):215-216
    [57]余南华,王岳,秦永革.冷热电联产系统与微型燃气轮机[J].可再生能源,2003,36(5):33-34
    [58]Colombo. L. P., Armanaseo. M. F, Perego. O. Experimentation on a co-generative System based on a Micro turbine[J]. Applied Thermal Engineering,2007,27(4):705-711
    [59]Gamou. S., Ito. K., Yokoyama. R. Optimal operational planning of cogeneration systems with microturbine and desiccant air-conditioning units[C]. ASME Turbo Expo 2004:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2004:603-611
    [60]Gamou. S., Ito. K., Yokoyama. R. Parametric study on economic feasibility of microturbine cogeneration systems by an optimization approach[C]. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. American Society of Mechanical Engineers,2003: 779-786.
    [61]Massardo. A. F., MeDonald. C. F., Korakianitis. T. Microturbine/fuel-cell coupling for high-efficiency electrical-Power generation[J]. Journal of Engineering for Gas Turbines and power,2002,124(1):110-116
    [62]Zhang. X., Wang. Y., Guo. J., et al. A unified model of high-temperature fuel-cell heat-engine hybrid systems and analyses of its optimum performances. International Journal of Hydrogen Energy,2014,39(4):1811-1825
    [63]和彬彬.以微型燃气轮机为核心的先进能量系统研究[D].北京:华北电 力大学,2010
    [64]Alfaro. J. A.. Lecuona. A., Roa. J., et al. Integrated Pressurized Gasification of Bio mass for Small Gas Turbines[C]. ASME Turbo Expo 2006:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2006:307-314
    [65]Sucipta. M., Kimijima. S., Suzuki. K. Solid oxide fuel cell-micro gas turbine hybrid System using natural gas mixed with bio mass gasified fuel[J]. Journal of the Electrochemical Society,2008,155(3):B258-B263
    [66]李孝堂等.现代燃气轮机技术[M].北京:航空工业出版社,2006:10-350
    [67]Waitz. I. A., Gauba. G, Tzeng. Y. S. Combustors for micro-gas turbine engines[J]. Journal of Fluids Engineering,1998,120(1):109-117
    [68]Bowen. C., Reader. G. T., Potter. I. J. NOx emissions-formation, control and the future[C]. Intersociety Energy Conversion Engineering Conference.1994: 1151-1156
    [69]Kim. S. K., Kim. Y. M. Prediction of detailed structure and NOx formation characteristics in turbulent non-premixed hydrogen jet flames. Combustion science and technology,2000,156(1-6):107-137
    [70]Miura. S., Tsukamoto. T., Kawagoe. M., et al. NOx formation with various combustion processes of premixed gas[J]. Mitsubishi Heavy Industries Technical Review,1979,16:44-55
    [71]Miller. J. A., Bowman. C. T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science,1989,15(4): 287-338
    [72]Turns. S. R. An introduction to combustion[M]. New York:McGraw-Hill, 1996
    [73]Zeldovich. Y. B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim, URSS,1946,21:577-583
    [74]Bowman. C. T. Kinetics of nitric oxide formation incombustion processes[C]. Symposium (International) on Combustion. Elsevier,1973,14(1):729-738
    [75]Hanson. R. K., Salimian. S. Combustion Chemistry [M]. Combustion Chemistry,1984:1-421
    [76]岑可法,姚强,骆仲央,等.高等燃烧学[M].杭州:浙江大学出版社,2002:10-700
    [77]赵坚行.热动力装置的排气污染与噪声[M].北京:科学出版社,2009:15-250
    [78]Fenimore. C. P. Formation of nitric oxide from fuel nitrogen in ethylent flames. Combustion and Flames,1972,19(2):289-296
    [79]Fenimore. C. P. Formation of nitric oxide in premixed hydrocarbon flames[C]. Symposium (International) on Combustion. Elsevier,1971,13(1):373-380
    [80]Fenimore. C. P. Reactions of fuel-nitrogen in rich flame gases. Combustion and Flames,1976,26:249-256
    [81]Fenimore. C. P. Formation of nitric oxide in premixed hydrocarbon flames[C]. Symposium (International) on Combustion. Elsevier,1971,13(1): 373-380
    [82]Fenimore. C. P. Reactions of fuel-nitrogen in rich flame gases. Combustion and Flames,1976,26:249-256
    [83]Fenimore. C. P., H. A. Fraenkel. Formation and inter-conversion of fixed-nitrogen species in laminar diffusion flames. Symposium (International) on Combustion,1981:143-149
    [84]Robert. E. Jones. Gas turbine engine emission-problems, progress and future. Progress in Energy and Combustion Science,1978, (4):73-113
    [85]金如山,航空燃气轮机燃烧室[M].北京:宇航出版社,1985:1-498
    [86]Pavri. R, Moore G D. Gas turbine emissions and control[R]. GE Reference Library,2001
    [87]Biagioli. F., Giithe. F. Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners[J]. Combustion and Flame,2007, 151(1):274-288
    [88]Adachi. S., Iwamoto. A., Hayashi. S., et al. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine cornbustor[J]. Proceedings of the Combustion Institute,2007,31(2):3131-3138
    [89]侯宽新.基于详细化学反应机理的燃烧室燃烧流场计算[D].南京:南京航空航天大学,2007
    [90]Furuhata. T., Amano. S., Yotoriyama. K., et al. Development of can-type low NOx combustor for micro gas turbine (fundamental characteristics in a primary combustion zone with upward swirl) [J]. Fuel,2007,86(15):2463-2474
    [91]Schneider. D. R., Bogdan. Z. Effect of heavy fuel oil/natural gas co-combustion on pollutant generation in retrofitted power plant[J]. Applied thermal engineering,2007,27(11):1944-1950
    [92]张昊,朱民,张志军.分级预混燃烧的稳定性[J].动力工程,2006,26(2):221-228
    [93]冯冲,祁海鹰,谢刚,等.干式低NOx燃气轮机燃烧室的燃料/空气预混均匀性问题分析[J].电机工程学报,2011,31(17):9-19
    [94]汪凤山.低NOx排放微型燃气轮机燃烧室的数值模拟及实验研究[D].北 京:中国科学院研究生院(工程热物理研究所),2009
    [95]Kautz. M., Hansen. U. The externally-fired gas-turbine (EFGT-Cycle) for decentralized use of biomass. Applied Energy,2007(84):795-805P
    [96]Levy. Y., Sherbaum. V., Arfi P. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabaticcombustor. Applied Thermal Engineering, 2004 (24):1593-1605P
    [97]Rehan. N., Bolland O. Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. International Journal of Greenhouse Gas Control,2007,1(1):19-30
    [98]Zhang. X., Han W., Hong H., et al. A chemical intercooling gas turbine cycle with chemical-looping combustion[J]. Energy,2009,34(12):2131-2136
    [99]Guo. Y. C., Chan. C. K., Lau K. S. Numerical studies of pulverized coal combustion in a tubular coal combustor with slanted oxygen jet[J]. Fuel,2003, 82(8):893-907
    [100]Garrido-Lopez. D., Sarkar. S. Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation[J]. Proceedings of the Combustion Institute,2005,30(1):621-628
    [101]Huang. Y, Yang. V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science,2009,35(4): 293-364
    [102]Pizza. G, Frouzakis. C. E., Mantzaras. J., et al. Dynamics of premixed hydrogen/air flames in microchannels[J]. Combustion and Flame,2008,152(3): 433-450
    [103]Temme. J. E., Allison P. E., Driscoll J. F. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV. Combustion and Flame,161(4):958-970
    [104]Furuhata. T., Amano. S., Yotoriyama K., et al. Development of can-type low NOx combustor for micro gas turbine (fundamental characteristics in a primary combustion zone with upward swirl)[J]. Fuel,2007,86(15):2463-2474
    [105]Adachi. S., Iwamoto. A., Hayashi. S., et al. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor [J]. Proceedings of the Combustion Institute,2007,31(2):3131-3138
    [106]Fureby. C., Grinstein. F. F., Li G., et al. An experimental and computational study of a multi-swirl gas turbine combustor[J]. Proceedings of the Combustion Institute,2007,31(2):3107-3114
    [107]Yoshida. Y., Oyakawa. K., Aizawa. Y, et al. A high-temperature catalytic combustor with starting burner[J]. Journal of engineering for gas turbines and power,2001,123(3):543-549
    [108]Dalla. B. R. A., Rostrup-Nielsen. T. Application of catalytic combustion to a 1.5 MW industrial gas turbine[J]. Catalysis Today,1999,47(1):369-375
    [109]Kuper. W. J., Blaauw. M., Van. Der. Berg. F., et al. Catalytic combustion concept for gas turbines[J]. Catalysis Today,1999,47(1):377-389
    [110]Vaillant. S. R., Gastec. A. S. Catalytic combustion in a domestic natural gas burner[J]. Catalysis today,1999,47(1):415-420
    [111]钟北京,洪泽恺.微燃烧器内甲烷催化燃烧的数值模拟[J].热能动力工程,2003,18(6):584-588
    [112]严河清,张甜,王鄂凤,等.甲烷催化燃烧催化剂的研究进展[J].武汉大学学报,2005,51(2):161-166
    [113]张巍,翁一武,刘爱虢.生物质气微型燃气轮机燃烧室的数值模拟[J].热能动力工程.2009,24(1):100-104
    [114]尹娟,翁一武,刘雅黔.超低热值燃料微型燃气轮机中压气机的流场分析与性能预测[J].汽轮机技术,2009(3):161-164
    [115]尹娟,翁一武.贫燃催化燃烧燃气轮机的燃烧与系统性能分析[J].中国电机工程学报,2010,30(11):1-7
    [116]张园锁,翁一武.超低热值燃气催化燃烧室特性的模拟[J].能源技术,2008,29(4):187-193
    [117]崔玉峰,吕煊,徐纲,等.无焰燃烧模型燃烧室动态特性分析[J].中国科学,2010,40(9):1044-1051
    [118]王逊,张世铮,蔡睿贤.采用烟气再循环和燃烧室回注水的燃气轮机循环分析及优化[J].工程热物理学报,1998,19(4):410-413
    [119]Li. H., Ditaranto. M., Berstad. D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture [J]. Energy,2011,36(2): 1124-1133
    [120]Li. H., Haugen. G., Ditaranto. M., et al. Impacts of exhaust gas recirculation (EGR) on the natural gas combined cycle integrated with chemical absorption CO2 capture technology [J]. Energy Procedia,2011,4:411-1418
    [121]ElKady. A. M., Ursin. T. P., Lynghjem. A., et al. Application of exhaust gas recirculation in a DLN F-class combustion system for post combustion carbon capture[J]. ASME-Journal of Engineering for Gas Turbines and Power,2009, 131(3), DOI:10.1115/1.2982158
    [122]Ditaranto. M, Hals. J., Bjorge. T. Investigation on the in-flame NO reburning in turbine exhaust gas[J]. Proceedings of the Combustion Institute,2009,32(2): 2659-2666
    [123]Buhre. B. J. P., Elliott. L. K., Sheng. C. D., et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in energy and combustion science,2005,31(4):283-307
    [124]Tan. Y., Croiset. E., Douglas. M. A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85(4):507-512
    [125]Wolsky A M, Daniels E J, Jody B J. Recovering CO2 from large-and medium-size stationary combustors[J]. Journal of the Air & Waste Management Association,1991,41(4):449-454
    [126]Herzog. H., Golomb. D., Zemba. S. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean[J]. Environmental Progress,1991,10(1):64-74
    [127]付忠广,王志鹏,史亮亮.燃煤锅炉微油点火燃烧器的数值计算分析[J].工程热物理学报,2008,29(4):609-612
    [128]杨浩林.CH4/富氧扩散火焰的燃烧特性和NOx排放的研究[D].合肥:中国科学技术大学,2006
    [129]Smart. J. P., Patel. R., Riley. G. S. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout [J]. Combustion and flame,2010,157(12):2230-2240
    [130]Seepana. S, Jayanti. S. Flame. Structure and NO generation in oxy-fuel combustion at high pressures[J]. Energy Conversion and Management,2009, 50(4):1116-1123
    [131]Zhang. D. Y., Zhou. H. C. Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships[J]. Fuel,2007,86(10):1552-1559
    [132]Ng. W. B., Syed. K. J., Zhang. Y. The study of flame dynamics and structures in an industrial-scale gas turbine combustor using digital data processing and computer vision techniques [J]. Experimental thermal and fluid science,2005, 29(6):715-723
    [133]程勇,汪军.旋流燃烧室内湍流流动的PIV实验研究[J].上海理工大学学报,2004,26(05):454-456
    [134]张健,普勇,周力行.湍流旋流燃烧瞬时速度PDF的实验测量[J].工程 热物理学报,2004,25(4):707-713
    [135]Eldrainy. Y. A., Saqr. K. M., Aly. H. S., et al. CFD insight of the flow dynamics in a novel swirler for gas turbine combustors[J]. International Communications in Heat and Mass Transfer,2009,36(9):936-941
    [136]Brewster. B. S., Cannon. S. M., Farmer. J. R., et al. Modeling of lean premixed combustion in stationary gas turbines[J]. Progress in Energy and Combustion Science,1999,25(4):353-385
    [137]Stone. C. P. Large-EddySimulation. Of combustion dynamics in swirling flows[M]. UMI, Georgia Institute of Technology,2003:135-1350
    [138]Boudier. G, Gicquel. L. Y. M., Poinsot. T, et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber [J]. Proceedings of the Combustion Institute,2007,31(2):3075-3082
    [139]张丽芬,吴丁毅,刘振侠.采用热-流耦合方法对火焰筒壁温三维数值模拟[J].汽轮机技术,2006,48(4):275-280
    [140]胡好生,蔡文祥,赵坚行,等.回流燃烧室燃烧过程的三维数值模拟[J].航空动力学报,2008,23(3):454-459
    [141]D. Choudhury. Introduction to the renormalization group method and turbulence modeling, Fluent Inc.1993
    [142]雷宇,徐纲,房爱兵,等.燃气轮机合成气燃烧室动态特性的实验研究[J].工程热物理学报,2005,26(6):1057-1061
    [143]雷宇,房爱兵,徐纲,等.燃气轮机合成气燃烧室燃料气加湿实验研究[J].工程热物理学报,2008,29(1):161-164
    [144]崔玉峰,徐纲.湍流燃烧模型对合成气燃烧室模拟结果的影响.中国工程热物理学会2006年学术会议:296-304
    [145]徐纲,房爱兵,雷宇,等.燃气轮机中热值合成气燃烧室改造技术-现场调试与考核[J].工程热物理学报,2007,28(6):1043-1046
    [146]朱彤,张毅勋.低热值煤气高温空气燃烧数值模拟[J].同济大学学报,2002,30(8):932-937
    [147]张欣刚,任静,徐治皋.燃气轮机燃烧室预混燃烧不稳定性的数值研究[J].动力工程,2007,27(6):810-816
    [148]赵晓燕,李祥晟,丰镇平.燃气轮机低热值合成气燃烧室内三维湍流流动的数值模拟研究[J].动力工程,2009,29(4):330-335
    [149]颜应文,马力伟,赵坚行.模型燃烧室内瞬态湍流的大涡模拟[J].力学季刊,2006,27(1):23-28
    [150]颜应文,赵坚行,张靖周.燃烧室污染物生成大涡模拟模型的研究[J].航 空动力学报,2007,22(1):150-155
    [151]周力行.湍流燃烧的大涡模拟和RANS-SOM模型的DNS检验.FLUENT UGM会议,2006:23-30
    [152]王方,周力行,许春晓.二阶矩亚网格燃烧模型对射流火焰的大涡模拟[J].燃烧科学与技术,2006,12(3):221-225
    [153]傅维标,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1984:1-400
    [154]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,1980:1-511
    [155]Bruno. J. C., Ortega-Lopez. V., Coronas. A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using bio gas:Case study of a sewage treatment plant[J]. Applied Energy,2009,86(6):837-847
    [156]桑振远.100kW微型燃气轮机总体方案分析[D].哈尔滨:哈尔滨工程大学,2006
    [157]李张硕,汪军,尹航,等.微型燃气轮机燃烧室热力性能的实验研究[J].能源研究与信息,2008,24(2):110-114
    [158]焦树建.原型燃烧室的低压模拟实验[J].燃气轮机技术,1995,8(4):36-43
    [159]汪凤山,孔文俊,王宝瑞,等.进气温度对微燃机燃烧室燃烧特性的影响分析[J].工程热物理学报,2007,28(2):331-334
    [160]赵忠琥,何佩鏊,秦裕琨.煤粉燃烧器设计及运行[M].北京:机械工业出版社,1987:1-600
    [161]航空发动机设计手册(第九册)[M].北京:航空工业出版社,1999
    [162]Launder. B. E., Spalding. D. B. The numerical computation of turbulent flows[J]. Computer methods in applied mechanics and engineering,1974,3(2): 269-289
    [163]Spalding. D. B., Villasenor. F. Numerical simulation of Kelvin-Helmholtz instability in a stratified shear flow[J]. Physico Chemical Hydrodynamics, 1987,9:379-386
    [164]Spalding. D. B., Wu. J. Z. Y. Numerical studies of propagating flames exhibiting the Landau and Rayleigh-Taylor instabilities[M]. Computational Fluid Dynamics Unit, Imperial College of Science and Technology,1986
    [165]Deng. W., Klemic. J. F., Li. X., et al. Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J]. Proceedings of the Combustion Institute,2007,31(2):2239-2246
    [166]Baukal. Jr. C. E. Heat Transfer in Industrial Combustion. Springer,2000: 1-446
    [167]Lamnaouer. M., Ryder. R. C., Brankovic. A, et al. Reduced combustion time model for methane in gas turbine flow fields[J]. Journal of Natural Gas Chemistry,2009,18(2):145-155
    [168]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000:100-322
    [169]Petrova. M. V., Williams. F. A. A small detailed chemical-kinetic mechanism for hydrocarbon combustion[J]. Combustion and Flame,2006,144(3): 526-544
    [170]韩昭沧.燃料及燃烧[M].北京:冶金工业出版社(第二版),2007:1-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700