用户名: 密码: 验证码:
1000MW超超临界褐煤锅炉燃烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超超临界发电技术效率高,环保性能好,是当今世界洁净煤发电的主流技术之一。我国褐煤资源丰富,近年来动力用煤中褐煤的比例不断增加,但国内外都缺乏在1000MW等级锅炉上燃用我国年老褐煤的经验。因此,开发研制燃用我国褐煤的1000MW超超临界锅炉具有重要的现实意义和广阔的市场前景。国家“十一五”863计划立项开展了“1000MW超超临界褐煤锅炉关键技术研究”。1000MW超超临界锅炉广泛采用双切圆的燃烧方式,在炉内形成“冷、热角”,而褐煤灰熔点较低,极易在热角区域发生结渣。另一方面,褐煤锅炉的容积热负荷较低,炉膛尺寸较大,这将增大炉膛出口的烟气热偏差。本文针对这两个问题,采用理论分析、冷态单相流动试验和锅炉热态数值模拟等方法开展研究,并提出解决方案。
     采用数值模拟的方法对一台双切圆燃烧方式的1000MW超超临界褐煤锅炉炉膛出口热偏差进行研究,分析炉膛上部各种受热面热偏差的成因和特点。屏式辐射受热面的辐射热负荷分布与炉膛横截面尺寸有关,通常呈双峰分布,位于左、右两个半炉膛中心位置的管屏壁面热负荷最高;对于辐射-对流受热面,其中间区域烟气速度的叠加导致了较大的烟气回流区,烟气温度与速度最大值均出现在水平烟道中下部靠近两侧的位置;对流受热面热负荷的分布受流场速度分布影响最大,温度最大值也位于两侧墙附近,但截面温度分布相对均匀。对于这些受热面,烟气速度对截面热负荷分布影响很大,受热面上的热偏差与炉膛出口烟气残余旋转有很大关系。
     建立单相冷态试验台,运用冷态试验和1000MW超超临界褐煤锅炉热态数值模拟相结合的方法考察锅炉的燃尽风速、燃尽风水平摆角和部分燃尽风竖直摆角等因素对炉内空气动力场、炉内煤粉燃烧、烟气成分分布以及炉膛出口热偏差等方面的影响。研究结果表明,燃尽风比例的增加有利于空气分级燃烧的效果,但同时也会增大炉膛出口的烟气速度峰值,不利于烟气参数分布的均匀性,最佳燃尽风速为60m/s;燃尽风适当的反切摆动可以增强流场的湍动程度,弱化炉内烟气对前墙热角壁面的冲刷,大幅减小流场的旋转动量,有效减小烟气热偏差,最佳反切角度为10°;部分燃尽风喷口竖直向下摆动可以降低炉膛出口各截面上的速度最大值,并改变高速区的位置,但并不能有效减小整个水平烟道内的烟气热偏差,最佳摆动角度为竖直向下摆动10°。
     对炉内主燃区壁面的结渣趋势进行研究,发现易发生结渣的区域位于各燃烧器射流末端对同侧壁面的冲刷区域,上、下组燃烧器之间区域,上组燃烧器与燃尽风之间区域以及前墙壁面热角区域。后墙壁面热角区域并无明显结渣现象。前墙热角易发生结渣的主要原因是炉内的流场呈斜椭圆形,导致高温煤粉射流冲刷前墙壁面,而通过对炉膛冷角的一次风喷口进行反切,并不能十分有效地减轻煤粉结渣问题。
     研究结果表明,双切圆锅炉炉内斜椭圆形流场产生的根本原因在于燃烧器的非正方形布置与各燃烧器射流的不同程度偏斜。通过理论分析得到影响燃烧器射流偏斜的经验公式和关键因素,并对射流速度比值、射流冲击位置和射流冲击角度等因素进行试验验证。针对这些影响因素提出了一些工程实践中的优化和改造措施。
     提出半墙式半角式的燃烧器布置形式,搭建冷态试验台,对炉内的空气动力场进行测量,并与墙式燃烧器布置形式对比。同时通过数值模拟的方法对两种燃烧器布置形式下的炉内燃烧过程和壁面结渣趋势进行对比。对比结果证明,燃烧器采用半墙式半角式布置方式后,基本解决了斜椭圆形流场和前墙热角壁面结渣的问题,但形成的切圆流场偏向炉膛侧墙,且气流对部分壁面的冲刷情况有所加剧,整个流场的旋转动量增大,导致炉膛出口的烟气热偏差增大。
     通过整体调节燃烧器射流角度,对半墙式半角式燃烧器布置形式锅炉内的切圆流场位置进行优化,得到了更合理的流场分布并更有效的改善了各个炉膛壁面的结渣情况。通过反切燃尽风的方式来改善该燃烧器布置形式下炉膛出口的热偏差现象。由于主气流旋转动量较大,故燃尽风反切角度较大时也未在炉内形成气流反旋现象,燃尽风最佳反切角度为10°。
     本文研究结果解决了双切圆超超临界褐煤锅炉炉膛出口热偏差和炉内主燃区热角壁面结渣的问题,对该类锅炉工程设计具有重要的指导意义。
Today, the ultra-supercritical power generation technology, which shows high power efficiency and good environmental protection performance, has become one of the main technologies in the field of clean coal power generation. In China, the lignite resource is rich, and in recent years, the proportion of lignite in power coal is on the increase, but at home and abroad the experience of1000MW level boiler burning Chinese old lignite is lack. Therefore, there is important practical significance and broad market prospect to exploit and develop the1000MW ultra-supercritical boiler which is suitable for Chinese lignite burning. The Eleventh Five-year Plan863project has carried out " Research on key technologies of1000MW ultra-supercritical lignite boiler ".1000MW ultra-supercritical boilers widely adopt the dual circle tangential firing combustion method, which causes the formation of "cold and hot corners". The melting point of lignite ash is low, so slagging could easily occur in the hot corner area. On the other hand, the volume heat load of lignite boiler is low, and the furnace size is larger, which will increase the gas thermal deviation at furnace outlet. Based on these two problems, this paper carried out research work by the means of theoretical analysis, cold single-phase flow experiments and hot numerical simulation, and then proposed solution methods.
     The thermal deviation at the furnace outlet of1000MW ultra-supercritical lignite boiler which adopts the dual circle tangential firing combustion method has been studied by method of numerical simulation. The causes and characteristics of the thermal deviation on all sorts of heating surfaces in the upper furnace have been investigated. The radiative heat load distribution of the platen heating surface is related with the cross section dimensions of the furnace, it shows bimodal distribution for the object of the study, and the heat loads of the panels at the central positions of the two furnace halves are highest; for the radiative-convective heating surfaces, due to the superposition of the gas velocity in the middle region, large area of gas recirculation region is formed here, and the maximums of gas temperature and velocity both appear in the locations which are in the middle-down of horizontal flue, close to the two sides; Heat load distribution on the convective heating surfaces is affected by the velocity distribution of the airflow field to the largest extent, the maximum temperatures also appear near the two side walls, but the cross section temperature distribution is more uniform. For these heating surfaces, the gas velocity has great influence on the heat load distribution, and the thermal deviations on the heating surfaces are relational with the gas residual rotation at the furnace outlet.
     A cold single-phase scale model of the boiler has been established. Cold experiments and hot numerical simulation on the1000MW ultra-supercritical lignite boiler were combined to study the over fire air parameters. Influence of over fire air velocity, over fire air horizontal swing angles and part over fire air vertical swing angles on the aerodynamic field in furnace, the pulverized coal combustion, the gas components distribution and the thermal deviation at the furnace outlet has been investigated. The results show that the larger over fire air proportion is beneficial to the effect of the air staged combustion, but at the same time, it can also increase the gas velocity peak at the furnace outlet, which is not conducive to the uniformity of gas parameters distribution. The best over fire air velocity is60m/s. Proper horizontal swing angles of over fire air could enhance the turbulence degree of the airflow field, weaken the scouring of airflow on the front wall, substantially reduce the rotating momentum of the airflow field, and effectively decrease the gas thermal deviation. The optimal over fire air horizontal swing angle is-10°. Part over fire air vertically swing downward could reduce the velocity maximum on each section of furnace outlet, and change the location of high velocity area. But it could not effectively reduce the thermal deviation in the whole horizontal flue. The best vertical swing angle is-10°.
     Slagging tendency on the water wall in the primary zone has been studied. The areas where slagging occurs easily are the area which is scoured by the jet on the same side, the area between the upper and the lower groups of burners, the area between the upper group of burners and the over fire air, and the hot corner area on the front wall. While the hot corner area on the rear wall shows no obvious slagging phenomenon. The main reason that slagging occurs easily in the hot corner area on the front wall is the airflow field in furnace shows oblique ellipse, which results in the scouring on the front wall by high temperature jets. While, by the horizontal swing of the primary air nozzles on cold corner could not effectively reduce the slagging problem.
     Research results show that the basic reason of the formation of the oblique elliptic airflow field in the dual circle tangential firing boiler is the rectangular arrangement of the burners and the different deviation degrees of the jets. By theoretical analysis, the empirical formula and the key factors that have effects on the jet deflection have been obtained. Experimental verification of the effect of the velocity ratio, the impacting position and the impacting angle on the jet deviation has been carried out. According to these factors, some optimization and modification measures in engineering practice have been put forward.
     The half-wall-half-corner burner arrangement form has been brought forward, and a cold model was built to measure the aerodynamic field in furnace, then the experimental results were compared with wall type burner layout form. At the same time, by the method of numerical simulation, the combustion process in furnace and the slagging tendency on the water wall in the two sorts of boilers were compared. Comparison results show that by using the half-wall-half-corner burner arrangement form, the problems of the oblique elliptic airflow field and the slagging on the hot corner of front wall have been basically solved. But the airflow field centers in this sort of boiler incline to the side walls, and the scouring to part of the water walls by the jets has been intensified, the rotating momentum of the whole airflow field increases, which leads to the increace of the thermal deviation at the furnace outlet.
     By wholly adjusting the jet angles, the airflow field location in the furnace of half-wall-half-corner burner arrangement type boiler has been optimized. More reasonable airflow field distribution has been obtained, and the slagging on each furnace wall has been reduced more effectively. By changing the over fire air horizontal swing angles, the thermal deviation at the furnace outlet in this sort of boiler has been decreased. Because of the large rotating momentum of the main airflow, the anti-cyclonic phenomenon was not formed in the furnace even though the over fire air horizontal reverse swing angle is big. The optimal over fire air horizontal swing angle is-10°.
     The study in this paper has solved the problems of the thermal deviation at the furnace outlet and the slagging on the hot corner in primary combustion zone in the1000MW dual circle tangential firing ultra-supercritical lignite boiler. The results have important guiding significance to the engineering design of this sort of boiler.
引文
[1]朱桠麟,李雷,涂洁磊,等.中国能源博弈世界能源[J].文山学院学报,2013,26(3):100-105.
    [2]童瀛.中国能源安全现状问题及对策浅析[J].能源与节能,2013(11):15-17.
    [3]欧阳文喜,谢德泳,张天昊.中国能源消耗与经济增长—基于IPAT脱钩指数的脱钩分析.中南财经政法大学研究生学报,2013(1):21-27.
    [4]《中国能源发展报告(2012)》发布[J].中国煤炭,2012,9:21.
    [5]苏格.我国能源现状及前景浅析[J].科技向导,2013(17):72.
    [6] Al-Abbas A H, Naser J. Effect of Chemical Reaction Mechanisms and NOxModeling on Air-fired and Oxy-fuel Combustion of Lignite in a100-kWFurnace[J]. Energy&Fuels,2012,26(6):3329-3348.
    [7] Zeng L Y, Li Z Q, Zhao G B, et al. Numerical Simulation of CombustionCharacteristics and NOx Emissions in a300MWe Utility Boiler with DifferentOuter Secondary-Air Vane Angles[J]. Energy&Fuels,2010,24(10):5349-5358.
    [8]孙博华,赵翔.中国能源智能化管理现状及发展趋势[J].华北电力大学学报,2014(2):1-6.
    [9] Lv T, Liu L Y, Lu K. Research on Testing of Burning Lignite in1000MW UltraSupercritical Concurrent Boiler[J]. Advanced Materials Research,2012,347:3736-3739.
    [10] Yu J, Tahmasebi A, Han Y, et al. A Review on Water in Low Rank Coals: TheExistence, Interaction with Coal Structure and Effects on Coal Utilization[J].Fuel Processing Technology,2013,106:9-20.
    [11] Katalambula H, Gupta R. Low-Grade Coals: A Review of Some ProspectiveUpgrading Technologies[J]. Energy&Fuels,2009,23(7):3392-3405.
    [12]白向飞.中国褐煤及低阶烟煤利用与提质技术开发[J].煤质技术.2010,(6):9-11.
    [13]马煜,李希国.大型风扇磨煤机磨制高水分褐煤运行特性研究[J].电站系统程,2012,(1):35-36.
    [14]孙喜保.能源利用效率亟待提高[J].能源研究与利用,2012,(2):5-6.
    [15]路野,吴少华.玉环1000MW超超临界锅炉低NOx燃烧系统的设计和NOx性能考核试验简析[J].锅炉制造,2008,(4):1-4+8.
    [16]章明川,牛天况,范卫东,等.∏型布置切圆燃烧锅炉超大型化发展的一些动向及分析展望—介绍一种新的单炉膛双切圆燃烧方式[J].锅炉技术,2001,(2):1-6+32.
    [17] Habib M A, Ben‐Mansour R, Abualhamayel H I. Thermal and EmissionCharacteristics in a Tangentially Fired Boiler Model Furnace[J]. InternationalJournal of Energy Research,2010,34(13):1164-1182.
    [18]樊险峰,张志伦,吴少华.国产首台百万千瓦超超临界锅炉的启动调试和运行[J].动力工程,2008,4:497-501.
    [19]樊泉桂.超临界和超超临界锅炉煤粉燃烧新技术分析[J].电力设备,2006,(2):23-25.
    [20]李虎,张峰.1000MW超超临界机组2953t/h锅炉设计特点及生产实践[J].电力设备,2007,(5):6-10.
    [21]莫耀伟.1000MW超超临界燃煤机组锅炉爆管原因分析[J].华东电力,2008,(2):16-21.
    [22] Zhou Y G, Zhang M C, Xu T M, et al. Effect of Opposing Tangential PrimaryAir Jets on the Flue Gas Velocity Deviation for Large-Scale Tangentially FiredBoilers[J]. Energy&Fuels,2009,23(11):5375-5382.
    [23]刘建全,孙保民,胡永生,等.某1000MW超超临界双切圆锅炉燃烧特性的数值模拟与优化[J].中国电机工程学报,2012,20:34-41+136.
    [24] Liu H, Xin N N, Cao Q X, et al. Numerical Simulation of the Influence of OverFire Air Position on the Combustion in a Single Furnace Boiler with DualCircle Firing[J]. Korean Journal of Chemical Engineering,2009,26:1137-1143.
    [25]申春梅.1000MW单炉膛双切圆锅炉炉内燃烧过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2006:50-78.
    [26] Tanetsakunvatana V, Kuprianov V I. Experimental Study on Effects ofOperating Conditions and Fuel Quality on Thermal Efficiency and EmissionPerformance of a300-MW Boiler Unit Firing Thai Lignite[J]. Fuel processingtechnology,2007,88(2):199-206.
    [27]郭琴琴,杨震,张建文.锡林浩特褐煤燃烧特性试验研究[J].锅炉技术,2008,39(2):45-51.
    [28]刘辉,吴少华,赵广播,等.煤粉粒度对元宝山褐煤燃烧特性的影响[J].哈尔滨工业大学学报,2008,40(3):419-422.
    [29] Sis. Evaluation of Combustion Characteristics of Different Size ElbistanLignite by Using TG/DTG and DTA[J]. Journal of Thermal Analysis andCalorimetry,2007,88(3):863-870.
    [30]Bosoaga A, Panoiu N, Mihaescu L, et al. The Combustion of Pulverised LowGrade Lignite[J]. Fuel,2006,85(10-11):1591-1598.
    [31]苏毅,王芸,吴文广等.水分对稻秆热解特性的影响[J].中国电机工程学报,2010,(26):107-112.
    [32] Demirbas A. Effect of Initial Moisture Content on the Yields of Oily ProductsFrom Pyrolysis of Biomass[J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):803-815.
    [33] Darmstadt H, Pantea D, Summchen L, et al. Surface and Bulk Chemistry ofCharcoal Obtained by Vacuum Paralysis of Bark: Influence of FeedstockMoisture Content[J]. Journal of Analytical and Applied Paralysis,2000,53(11):1-17.
    [34] Yip K, Wu H, Zhang D K. Mathematical Modeling of Collie Coal ParalysisConsidering the Effect of Steam Produced in Situ from Coal Inherent Moistureand Paralytic Water[J]. Proceedings of the Combustion Institute,2009,32(2):2675-2683.
    [35]徐通模.燃烧学[M].北京市:机械工业出版社,2011.
    [36]宋宝军,郝莉丽.浅谈大容量高效褐煤锅炉的发展现状及发展趋势[J].锅炉制造,2007,2:25-27.
    [37]石磊.宝日希勒发电厂褐煤锅炉制粉系统选择[J].吉林电力,2006,34(4):22-24.
    [38]邱亚林,杨丽,俞炳丰,等.云南地区劣质褐煤燃烧技术[J].能源技术,2006,27(2):83-84.
    [39]唐浩,钟北京,傅维标.大型褐煤锅炉煤粉再燃技术的数值模拟[J].热能动力工程,2006,21(4):378-436.
    [40]郭永红,孙保民,刘彤.褐煤的超细粉再燃中NOx的生成与还原的数值模拟[J].中国电机工程学报,2005,25(9):94-98.
    [41]秦明,吴少华,孙绍增.六角切圆燃烧褐煤煤粉锅炉低NOx燃烧技术研究[J].中国电机工程学报,2005,25(1):158-162.
    [42]马林转,何屏,王华,等.云南昭通褐煤热解试验研究[J].昆明理工大学学报(理工版),2005,3:23.
    [43] Jiang L. Energy Conservation Investment; A Comparison Between China andthe USA[J]. Energy Policy,2007,35(2):916-924.
    [44]Janos M. Beer. High Efficiency Electric Power Generation: The EnvironmentalRole[J]. Progress in Energy and Combustion Science,2007,33(2):107-134.
    [45]刘建全.超(超)临界机组锅炉燃烧特性试验与优化研究[D].北京:华北电力大学,2012:5-10.
    [46]王莹,李长志.双炉膛锅炉炉内空气动力特性实验研究[J].哈尔滨工程大学学报,2002,23(3):33-35.
    [47]朱彤,范卫东,信伟,等.双炉膛炉内空气动力场的数值模拟研究[J].热能动力工程,1997,12(6):401-404.
    [48]申春梅,孙锐,吴少华.1GW单炉膛双切圆炉内煤粉燃烧过程的数值模拟[J].中国电机工程学报,2006,26(15):51-57.
    [49]胡志宏,杨兴森,王军,等.1000MW超超临界锅炉燃烧优化调整[J].锅炉技术,2008,39(4):42-46.
    [50]朱予东,张树坡,徐雷,等.不同工况下附加风对超超临界锅炉燃烧特性的影响[J].热力发电,2009,38(1):45-48.
    [51]高正阳,宋玮,方立军,等.1000MW超超临界机组双切圆锅炉NO排放特性的数值模拟[J].中国电机工程学报,2009,(32):12-18.
    [52]严响林,顾昌,龚广雄,等.一次风微反切对结渣和残余扭转的影响及其数值模拟[J].华东电力,2005,33(8):54-58.
    [53]周武,庄正宁,刘泰生,等.切向燃烧锅炉炉膛结渣问题的研究[J].中国电机工程学报,2005,25(4):133-137.
    [54]窦文宇,周月桂,周屈兰,等.引进型600MW切向燃烧锅炉烟气偏差的试验研究[J].动力工程,1999,(2):38-41+81.
    [55] Zhou Y G, Xu T M, Hui S E, et al. Experimental and Numerical Study on theFlow Fields in Upper Furnace for Large Scale Tangentially Fired Boilers[J].Applied Thermal Engineering,2009,29(4):732-739.
    [56]周月桂,徐通模,惠世恩,等.四角切向燃烧锅炉水平烟道烟温偏差形成机理的研究[J].动力工程,2001,(5):1422-1425+1399.
    [57]周俊虎,宋国良,陈寅彪,等.2008t/h四角切圆燃烧锅炉炉膛出口烟温偏差的试验研究[J].热力发电,2003,32(6):31-35.
    [58]史习仁,张才根.大容量锅炉烟侧热力偏差和攻关研究成效[J].锅炉技术,1998,(3):1-8.
    [59]段耀辉,蔡新春,武卫红,等.2080t/h四角切圆燃烧锅炉改变配风方式的数值模拟[J].电站系统工程,2011,(2):8-10.
    [60]朱彤,孙绍增.300MW双炉膛锅炉中煤粉颗粒的运动轨迹[J].同济大学学报:自然科学版,2001,29(4):431-435.
    [61]朱彤,马喜晨.角置射流偏转的分析模型及应用[J].动力工程,1999,19(4):260-264.
    [63]夏昭知,何佩鏊.角置切圆燃烧炉膛内燃烧器射流的偏转[J].动力工程,1982,5:002.
    [63]周志军,黄镇宇.射流偏转及实际炉膛切圆的分析计算方法[J].浙江大学学报:自然科学版,2000,34(6):642-646.
    [64]张泽,吴少华.炉内喷嘴射流刚性的理论模型及试验研究[J].中国电机工程学报,2001,21(9):104-109.
    [65]周涌,由长福,祁海鹰,等.锅炉结渣过程数值模拟研究进展[J].燃烧科学与技术,2004,10(4):375-382.
    [66] Wang H, Harb J N. Modeling of Ash Deposition in Large-Scale CombustionFacilities Burning Pulverized Coal[J]. Progress in Energy and CombustionScience,1997,23(3):267-282.
    [67] Wilemski G, Srinivasachar S, Sarofim A F. Modeling of Mineral MatterRedistribution and Ash Formation in Pulverized Coal Combustion[C].Engineering Foundation Conference on Inorganic Ash Transformations andAsh Deposition during Combustion.1992:545-564.
    [68] Wilemski G, Srinivasachar S. Prediction of Ash Formation in Pulverized CoalCombustion with Mineral Distribution and Char Fragmentation Models[J]. TheImpact of Ash Deposition on Coal Fired Plants. London: Taylor&Francis,1993:151-164.
    [69] Richards G H. Investigation of Mechanism for the Formation of Fly Ash andAsh Deposit for Two Powder River Basin Coals[D]. USA: Brigham YoungUniversity,1994:43-70.
    [70] Beer J M, Sarofim A F, Barta L E. From Coal Mineral Matter Properties to FlyAsh Deposition Tendencies: A Modelling Route[J]. Inorganic Transformationand Ash Deposition During Combustion,1992:71-94.
    [71] Benson S A, Hurley J P, Zygarlicke C J, et al. Prediction Ash Behavior inUtility Boilers[J]. Energy&Fuels,1993,7(6):746-754.
    [72] Shuen J S, Solomon A S P, Faeth G M, et al. Structure of Particle-LadenJets-Measurements and Predictions[J]. AIAA journal,1985,23(3):396-404.
    [73] Wang H, Harb J N. Modeling of Ash Deposition in Large-Scale CombustionFacilities Burning Pulverized Coal[J]. Progress in Energy and CombustionScience,1997,23(3):267-282.
    [74] Kalio G A, Reeks M W. A. Numerical Simulation of Particle Deposition inTurbulentboundary Layers[J]. International Journal of Multiphase Flow,1989,15(3):433-446.
    [75] Lee F C C, Lockwood F C. Modelling Ash Deposition in Pulverized Coal-FiredApplications[J]. Progress in Energy and Combustion Science,1998,25(2):117-132.
    [76] Im K H, Chung P M. Particulate Deposition from Turbulent Parallel Streams[J].AIChE Journal,1983,29(3):498-505.
    [77] Walsh P M, Sayre A N, Loehden D O, et al. Deposition of Bituminous Coal Ashon an Isolated Heat Exchanger Tube: Effects of Coal Properties on DepositGrowth[J]. Prog. Energy Combust.Sci.,1990,16(4):327-346.
    [78] Frenkel J. Kinetic Theory of Liquids[R]. Oxford,1946.188-195.
    [79] Kalmanovitch D P, Frank M. An Effective Model of Viscosity for AshDeposition Phenomena; In Mineral Matter and Ash Deposition from Coal[J].New York: Engineering Foundation,1990,89-101.
    [80] Kondratiev A, Jak E. Predicting Coal Ash Slag Flow Characteristics (ViscosityModel for the A1z03-Ca0-`Fe0'-SiOz system)[J]. Fuel,2001,80(14):1989-2000.
    [81]周勇.锅炉结渣过程数值模拟研究和燃烧优化设计[D].北京:清华大学,2005:4-10.
    [82] Watt J D, Fereday F. The Flow Properties of Slags Formed from the Ashes ofBritish Coals: Part1, Viscosity of Homogeneous Liquid Slags in Relation toSlag Composition[J]. Inst. Fuel,1969,42(338):99-103.
    [83] Senior C L, Srinivasachar S. Viscosity of Ash Particles in Combustion SystemsFor prediction of Particle Sticking[J]. Energy&Fuels,1995,9(2):277-283.
    [84] Li Z Q, Zeng L Y, Zhao G B, et al. Numerical Simulations of CombustionCharacteristics and Nox Emissions for Two Configurations of Swirl CoalBurners in a300MWe Wall-Fired Boiler[J]. Numerical Heat Transfer, Part A:Applications,2011,55(6):547-593.
    [85] Erickson T A, Allan S E, Mccollor D P, et al. Modelling of Fouling andSlagging in Coal-Fired Utility Boilers[J]. Fuel Progress Technology,1995,44(1):55-171.
    [86] Fang Q Y, Wang H J, Wei Y, et al. Numerical Simulations of the SlaggingCharacteristics in a Down-fired Pulverized-coal Boiler Furnace[J]. FuelProcessing Technology,2010,91(1):88-96.
    [87]张善军,穆林,尹洪超.锅炉结渣过程研究与结渣数值模拟[J].节能技术,2010,28(161):262-267.
    [88]赵伶玲,周强泰,赵长遂.花瓣燃烧器流场特性分析与研究[J].燃烧科学与技术,2007,13(1):20-24.
    [89] Zhao L L, Zhou Q T, Zhao C S. Flame Characteristics in a Novel Petal SwirlBurner[J]. Combustion and Flame,2008,155(1):277-288.
    [90]王振.典型煤种及混煤对NOx排放和锅炉结渣影响的数值模拟研究[D].上海:上海交通大学,2012:46-85.
    [91] Zeng L Y, Li Z Q, Cui H, et al. Effect of the Fuel Bias Distribution in thePrimary Air Nozzle on the Slagging Near a Swirl Coal Burner Throat[J].Energy&Fuels,2009,23(10):4893-4899.
    [92] Liu R W, Hui S E, Yu Z Y, et al. Effect of Air Distribution on AerodynamicField and Coal Combustion in an Arch-Fired Furnace[J]. Energy&Fuels,2010,24(10):5514-5523.
    [93] Ren F, Li Z Q, Zhang Y B, et al. Influence of the Secondary Air-Box DamperOpening on Airflow and Combustion Characteristics of a Down-Fired300-MWe Utility Boiler[J]. Energy&Fuels,2007,21(2):668-676.
    [94] Ren F, Li Z Q, Chen Z C, et al. Influence of the Down-Draft Secondary Air onthe Furnace Aerodynamic Characteristics of a Down-Fired Boiler[J]. Energy&Fuels,2009,23(5):2437-2443.
    [95] Li Z Q, Fan S B, Su W, et al. Influence of the Outer Secondary Air Vane Angleon the Flow Field of a Down-Fired Pulverized-Coal300MWe Utility Boilerwith Swirl Burners[J]. Energy&Fuels,2010,24(7):3884-3889.
    [96]He B S, Chen M Q, Liu S M, et al. Measured Vorticity Distributions in a Modelof Tangentially Fired Furnace[J]. Experimental Thermal and Fluid Science,2005,29(5):537-554.
    [97] Li Y Q, Zhou H C. Experimental Study on Acoustic Vector Tomography of2-DFlow Field in an Experiment-Scale Furnace[J]. Flow Measurement andInstrumentation,2006,17(2):113-122.
    [98] Pan L M, Ji H C, Cheng S M, et al. An Experimental Investigation forCold-State Flow Field of Regenerative Heating Annular Furnace[J]. AppliedThermal Engineering,2009,29(16):3426-3430.
    [99] Zhou Y G, Zhang M C, Xu T M, et al. Effect of Opposing Tangential PrimaryAir Jets on the Flue Gas Velocity Deviation for Large-Scale Tangentially FiredBoilers[J]. Energy&Fuels,2009,23(11):5375-5382.
    [100]Li Z Q, Kuang M, Yang P F, et al. Flow-Field Deflection within a ColdSmall-Scale Model for a Down-Fired300MWe Utility Boiler at AsymmetricStaged-Air Distribution[J]. Energy&Fuels,2011,25(1):86-96.
    [101]Li Z Q, Kuang M, Zhang J, et al. Influence of Staged-Air on Airflow,Combustion Characteristics and NOx Emissions of a Down-FiredPulverized-Coal300MWe Utility Boiler with Direct Flow Split Burners[J].Environmental Science&Technology,2010,44(3):1130-1136.
    [102]Kuang M, Li Z Q, Zhang Y, et al. Asymmetric Combustion Characteristics andNOx Emissions of a Down-Fired300MWe Utility Boiler at Different BoilerLoads[J]. Energy,2012,37(1):580-590.
    [103]Ren F, Li Z Q, Chen Z C, et al. Experimental Investigations into Gas/ParticleFlows in a Down-Fired Boiler: Influence of the Vent Air Ratio[J]. Energy&Fuels,2010,24(3):1592-1602.
    [104]Li Z Q, Fan S B, Liu G K, et al. Influence of Staged-Air on CombustionCharacteristics and NOx Emissions of a300MWe Down-Fired Boiler withSwirl Burners[J]. Energy&Fuels,2010,24(1):38-45.
    [105]Fan S, Li Z, Zhu Q. Influence of Inner Secondary Air Vane Angle onCombustion Characteristics and NOx Emissions of a Down-FiredPulverized-Coal300MWe Utility Boiler[J]. Combustion Science andTechnology,2013,185(6):975-989.
    [106]任枫. FW型W火焰锅炉高效低NOx燃烧技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:1-213.
    [107]Fan S B, Li Z Q, Yang X H, et al. Influence of Outer Secondary-Air VaneAngle on Combustion Characteristics and NOx Emissions of a Down-FiredPulverized-Coal300MWe Utility Boiler[J]. Fuel,2010,89(7):1525-1533.
    [108]韩才元.煤粉燃烧[M].北京:科学出版社,2001,377-380.
    [109]韩才元.大型炉膛燃烧空气动力模化[J].热力发电,1990,(4):35-46.
    [110]Spalding D B. Mathematical Models of Turbulent Flames; A Review[J].Combustion Science and Technology,1976,13(1-6):3-25.
    [111]Spalding D B. Mathematical Modles of Continuous Combustion[J]. EmissionsFrom Cotinuous Combustion System, Plenum Press,1972.
    [112]Spalding D B. Basic Two-Phase Flow Modeling in Reactor Sagety andPerformance[J]. ERRI Workshop Proceedings,1980,2:72-81.
    [113]Tian Z F, Witt P J, Schwarz M P, et al. Numerical Modeling of Victorian BrownCoal Combustion in a Tangentially Fired Furnace[J]. Energy&Fuels,2010,24(9):4971-4979.
    [114] Strandstr m K, Mueller C, Hupa M. Development of an Ash ParticleDeposition Model Considering Build-Up and Removal Mechanisms[J]. Fuelprocessing technology,2007,88(11):1053-1060.
    [115]曾令艳.不同旋流燃烧器煤粉燃烧、NOx形成及结渣趋势的研究[D].哈尔滨:哈尔滨工业大学,2011:51-110.
    [116]Gao Z Y, Chen D F, Du W Y, et al. Numerical Investigation on the NOEmissions of W-shaped Boiler at Different Air Distributions[C]. Asia-PacificPower and Energy Engineering Conference (APPEEC), Chengdu, China,2010.
    [117] Zhou H, Mo G, Si D, et al. Numerical Simulation of the NOx Emissions in a1000MW Tangentially Fired Pulverized-Coal Boiler: Influence of theMulti-group Arrangement of the Separated over Fire Air[J]. Energy&Fuels,2011,25(5):2004-2012.
    [118]Ren F, Li Z Q, Liu G K, et al. Numerical Simulation of Flow and CombustionCharacteristics in a300MWe Down-Fired Boiler with Different Overfire Airangles[J]. Energy&Fuels,2011,25(4):1457-1464.
    [119]Bradley D, Lawes M, Park H Y, et al. Modeling of Laminar Pulverized CoalFlames with Speciated Devolatilization and Comparisons with Experiments[J].Combustion and flame,2006,144(1):190-204.
    [120]Shih T H, Liou W W, Shabbir A A. New k-ε Eddy Viscosity Model for HighReynolds Number Turbulent Flows-model Development and Validation[J].Computers Fluids,1995,24(3):227-238.
    [121]Gosman A D, Loannides E. Aspects of Computer Simulation of Liquid-fuelledCombustors[C]. AIAA19th Aerospace Science Meeting,1981,81:323-333.
    [122]Cheng P. Two-dimensional Radiation Gas Flow by a Moment Method[J].AIAA Journal,1964,2:1662-1664.
    [123]Smoot L D, Smith P J. Coal Combustion and Gasification[M]. New York:Plenum Press,1989:163-264.
    [124]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991:199-203.
    [125]湛志钢,熊扬恒,周昊,等.超超临界1000MW机组锅炉煤粉分配器的数值模拟[J].热力发电,2011,5:20-23+34.
    [126]唐孝清.煤燃烧中结渣判别指数及飞灰沉积过程综合数值模拟[D].武汉:华中科技大学,2009:17-49.
    [127]张波,孙忠伟,文军,等.220t/h电站锅炉防结渣改造方案的数值模拟[J].燃烧科学与技术,2007,1:91-95.
    [128]陈辉,王文祥,严毅.当前1000MW超超临界锅炉的主要技术特点[J].锅炉制造,2009,(1):10-14.
    [129]岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术[M].北京:中国电力出版社,2003.
    [130]蔡芃.大型电站锅炉过热器管壁温度三维计算研究[D].北京:华北电力大学,2010.
    [131]王新生.华能玉环电厂超超临界1000MW机组锅炉特点[J].热力发电,2008,(3):1-4.
    [132]Fan W D, Lin Z C, Li Y Y, et al. Effect of Air-Staging on AnthraciteCombustion and Nox Formation[J]. Energy Fuels,2008,23(1):111-120.
    [133]Fan W D, Lin Z C, Kuang J G, et al. Impact of Air Staging along FurnaceHeight on NOx Emissions from Pulverized Combustion[J]. Fuel ProcessingTechnology,2010,91(6):625-634.
    [134]Ren F, Li Z Q, Chen Z C, et al. Influence of the Over-Fire Air Angle on theFlow Field in a Down-Fired Furnace Determined by a Cold-FlowExperiment[J]. Fuel,2011,90(3):997-1003.
    [135]Ren F, Li Z Q, Chen Z C, et al. Influence of the Overfire Air Ratio on the NOxEmission and Combustion Characteristics of a Down-Fired300-MWe UtilityBoiler[J]. Environmental Science&Technology,2010,44(16):6510-6516.
    [136]孙保民,白涛,郭永红,等.1025t/h四角切圆锅炉OFA反切消旋数值模拟研究[J].电站系统工程,2012,(1):1-4.
    [137]周月桂,章明川,徐通模,等.四角切向燃烧锅炉烟道烟速偏差的实验研究与数值模拟[J].中国电机工程学报,2001,21(1):69-73.
    [138]周月桂,窦文宇,蒋宏利,等.切向燃烧锅炉炉膛结构对烟道烟气偏差的影响[J].西安交通大学学报,1999,(6):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700