用户名: 密码: 验证码:
自然工质热泵循环和地源热泵运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以自然工质热泵循环性能和地源热泵运行特性为研究对象,从工质和热源的角度,开展了资源与环境可持续发展的热泵基础理论研究和实验研究,重点研究和分析了CO_2地源热泵和R22地源热泵的基本特点和运行规律。主要研究内容包括:
    1.自然工质热泵循环性能分析
    对自然工质CO_2、氨、碳氢化合物、水作为热泵工质的特点进行了评价与分析,重点对CO_2跨临界热泵循环性能的主要特征和影响因素进行了理论分析和研究。提出了CO_2跨临界热泵循环主要工况参数的确定方法和原则,运用当量冷凝温度,对不同工质热泵的循环性能进行了分析比较,指出在中高温热泵应用领域,CO_2热泵可以取得和传统工质热泵相竞争的优势。通过对双级压缩带膨胀机CO2跨临界热泵循环的研究,探讨了旨在提高CO2跨临界循环热泵效率的途径与措施。开展了水压缩式热泵的理论研究,指出以水为工质的热泵循环,应采用三级或多级压缩的方式。对丙烷和异丁烷热泵的循环特征进行了理论分析与总结。
    2.地源热泵运行特性理论分析
    针对以土壤为热源和热汇的特点,运用热力学的方法,对R22涡旋压缩式地源热泵和CO_2地源热泵的运行变化规律进行了理论研究,提出了CO_2地源热泵机组型式的确定方法,研究和探讨了地源热泵运行参数和运行控制策略的确定方法,指出CO_2地源热泵宜根据气体冷却器进水温度进行压力控制和容量调节,并提出了具体的运行压力控制公式。根据CO_2热泵的实验结果,拟合出了CO_2压缩机等熵效率公式,对影响CO2热泵实验样机效率的因素进行了分析和研究。
    3.地源热泵实验研究
    建立起具有两眼120m深埋管井和4眼测温辅井的地源热泵实验装置,热泵机组采用R22涡旋压缩机,ARI标定工况制冷量为21.8 kW。实验系统工艺流程和数据采集与处理系统,可以满足不同季节、不同运行条件下的地源热泵实验要求。开展了R22地源热泵的冬季工况和夏季工况的运行特性实验研究,重点对地下温度场变化规律、地下埋管换热器特性和地源热泵系统循环性能的实验结果进行了总结和分析。
    
    
    4. 地源热泵模拟方法与模型验证
    在地源热泵运行特性理论研究和实验研究的基础上,依据圆柱源理论,建立起了变热流条件下,耦合地面热泵机组和地下埋管换热器特性的R22和CO_2地源热泵系统的模拟模型,该模型可用于地源热泵系统的逐时运行特性模拟和全年能耗分析。模型验证结果表明,模拟结果与实验数据具有较高的吻合程度,表明所建模型可用于地源热泵系统的方案规划、运行控制和全年能耗分析等方面。
    5.地源热泵运行特性模拟与能耗分析
    运用所建模型,对R22地源热泵系统的全年运行特性进行了模拟研究,开展了不同土壤、不同回填材料、不同埋管长度和不同负荷容量比例的地源热泵系统的模拟研究和能耗分析,指出地源热泵的节能和安全可靠运行,必须建立在经过有效性和可靠性验证的模拟基础之上。CO2地源热泵的模拟研究结果表明,自然工质CO2应用于以土壤为热源的热泵系统时,完全可取得和R22地源热泵相接近的运行节能效果。
The dissertation investigates the coefficient of performance (COP) of heat pump with natural refrigerants and operating characteristics of the ground source heat pump theoretically and experimentally. The study considers the influence of refrigerants and heat source from the view of point of sustainable development. The work focuses on the research on the basic characteristics and performance of the heat pump using CO2 and R22 as working fluids. And the main contents are as following.
    1. Research of the coefficient of performance of the heat pump with natural refrigerants
    The properties of natural working fluids such as carbon dioxide, ammonia, hydrocarbon and water as heat pump refrigerants are analyzed and evaluated. The further analysis on basic properties of the coefficient of performance of CO2 transcritical cycle heat pump and the main effect factors are presented. The methods and the principles to confirm the main operation condition of CO2 transcritical heat pump cycle are proposed. Through comparisons on the coefficients of performance of heat pumps with different refrigerants based on the equivalent condensation temperature, the analysis indicates that there are some advantages for CO2 heat pump to compete to the conventional refrigerant heat pump in the condition of the middle and high temperature application. Two-stage compression CO2 transcritical heat pump cycle with an expander is studied in order to find the ways and measures to improve the efficiency of the CO2 heat pump. Meanwhile the compression type heat pump cycle with water as a refrigerant is analyzed theoretically and the results indicate that the three-stage or multi-stage compression type may be a good option when the heat pump with water as a refrigerant is applied. The properties of coefficients of performance of heat pumps with propane and isobutene are summarized.
    2. Analysis of the Operating Performance of the Ground Source Heat Pump
    According to the characteristics of the soil as the heat source and sink, the operation rules are studied on the ground source heat pump with scroll compressor and R22 as a coolant and the one with CO2 as a refrigerant based on the thermodynamics. The methods are brought forward and discussed to make certain the type of the CO2 ground source heat pump unit, the operation parameters and the control maneuvers of performance of the ground source heat pump. The analysis shows that the capacity regulation and the pressure control based on the inlet temperature of the gas cooler can be a better control method for CO2 ground source heat pump and the pressure formula for operation control is also proposed. According to the experimental results of CO2 heat pump, the correlation of isentropic efficiency of the CO2 compressor is given and the main factors that affect the efficiency of the prototype of the CO2 heat pump are analyzed.
    
    
    
    3.Experimental Research of the Ground Source Heat Pump
    The experimental ground source heat pump system has been set up, which consists of two wells with U-tubes inserted into 120m deep boreholes and four assistant wells for temperature test. The cooling capacity of the heat pump unit with R22 scroll compressor is 21.8kW at the ARI standard condition. The technical maneuvers of the experimental system, the data acquisition and manage systems can meet the demands of the ground source heat pump experiments at different seasons and various operation conditions. Experiments on operation property of the ground source heat pump with R22 were conducted at the winter condition and the summer condition respectively. The experimental results on the change of ground temperature profile, the characteristics of U-tube ground heat exchanger and the coefficient of performance of the ground source heat pump cycle are analyzed and summarized in special.
    4. Establishment and Validity of the Ground Source Heat Pump System Model
    According to the column source theory and with the help of existing theoretical and experimental researches of the ground source heat pump, the simulat
引文
[1] 韩景成. 中国能源消费结构优化问题. 中国能源, 2002,(6):10-13
    [2] 赵庆波,单葆国. 世界能源需求现状及展望. 中国能源, 2002, (2):34-36
    [3] 周凤起. 中国能源工业面临的挑战. 中国能源, 1999, (12):3-6
    [4] J.Hougton著,石广玉等译. 全球变暖. 北京:气象出版社,2001
    [5] Raynaud D et al. The ice core record of greenhouse gases. Science, 1993, 259: 926-934
    [6] 全球可持续发展呼唤行动. www.sina.com.cn 2002年8月27日
    [7] 蔡安定. 全球能源政策的新趋势. 能源技术, 2000, (2):3-7
    [8] 刘孜. 合理利用能源,改善环境质量,实现可持续发展. 能源技术, 2000, 2:78-79
    [9] 徐建中. 分布式供电和冷热电联产前景. 节能环保,2002,(3):10-14
    [10] 龙惟定,王长庆,丁文婷. 试论中国的能源结构与空调冷热源的选择取向. 暖通空调, 2000, 30(5):27-32
    [11] Edinger R, Kaul S. Humankind's detour toward sustainability: past, present, and future of renewable energies and electric power generation. Renewable and Sustainable Energy Reviews, 2000(4): 295-313
    [12] Sun J W. Energy demand in the fifteen European Union countries by 2010-A forecasting model based on the decomposition approach. Energy, 2001(26):549-560
    [13] 国家计委规划司. “十五”期间我国能源交通发展思路与生产力布局研究. www.china5e.com/focus/tenthfive/09/php
    [14] 康艳兵,马志永. 建筑节能领域可再生能源的利用方式. 中国能源. 2002, (6):37-40
    [15] 范存养,龙惟定. 面向地球环境时代的空调技术. 制冷与空调, 2001, (1):24-32
    [16] 王若禹. 臭氧洞的形成、危害及对策. 河南大学学报, 2001, (2):90-94
    [17] M.I.Molina, F.S.Roland. Nature, 1974, 249:810
    [18] 谢英柏,马一太等. 燃气机热泵的热电冷三联供系统分析. 工程热物理学报,2002,23(4):283-285
    [19] 朱明善. CFCs和HCFCs替代制冷剂的趋势与展望. 制冷学报, 2000, (1):2-9
    Katsuhiko Narita. Heat pumping technology-An economical and resoutce-saving energy solution that protects the environment. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May
    
    [20] 19-22, 2002:14-25
    [21] Hui S C M. Low energy building design in high density urban cities. Renewable Energy, 2001, (24):627-640
    [22] 马一太,王景刚,魏东. 自然工质在制冷空调领域里的应用分析. 制冷学报. 2002, (2):1-5
    [23] 朱明善,21世纪制冷空调行业绿色制冷空调行业的趋势与发展,暖通空调,2000,30(2): 22-26
    [24] Kawamura K, Nelson M. Cooling systems working with natural refrigerants. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May 19-22,2002:991-999
    [25] 姚杨,马最良. 浅议热泵定义. 暖通空调, 2002, 32(3):33-35
    [26] H.基恩,A.哈登费尔特著,耿惠彬译. 热泵. 中国农业机械出版社,北京:1986
    [27] ASHRAE 编著,徐伟等译. 地源热泵工程技术指南. 中国建筑工业出版社,北京:2001
    [28] ARI Standard 320 Water-source heat pump. 1998
    [29] ARI Standard 325 Ground water-source heat pump. 1998
    [30] ARI Standard 330 Ground source closed-loop heat pump. 1998
    [31] H.Halozan. Heat pump and the environment. 7th International Energy Agency Heat Pump Conference. Beijing, China, May19-22,2002:54-65
    [32] 李先瑞,郎四维. 热泵的现状与展望. 见:暖通空调新技术(1)1-4. 中国建筑工业出版社,北京:1999
    [33] Siwei L. Chinese market and technical development overview. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May 19-22,2002:389-394
    [34] Saito T. Regional report-heat pump in Asia & Pacific. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May 19-22,2002:38-46
    [35] Ryan J. North American market overview. In: 7th International Energy Agency Heat Pump Conference. May 19-22, Beijing, China:26-37
    [36] Rose R. Heat pumps in Europe-an overview. In: 7th International Energy Agency Heat Pump Conference. May19-22, Beijing, China:47-53
    [37] 龙惟定. 全球化的挑战-再论面对WTO的中国暖通空调业. 暖通空调. 2002,32(2):29-33
    [38] Payne V, O'Neal D L, Defrost cycle performance for an air-source heat pump with a scroll and a reciprocating compressor. Int. J. Refrig, 1995, 18(2):107-112.
    
    
    [39] 何雪冰,刘宪英. 热泵机组用板式冷凝器及蒸发器的选择计算. 暖通空调, 2001,31(6):58-61
    [40] 张永铨,巨永平. 变频控制的VRV空调系统. 暖通空调, 1994, 24(30):46-49
    [41] 薛卫华,刘传聚,陈沛霖. 变频控制热泵式VRV空调机组冬季运行特性研究. 节能技术, 2000, (5):3-6
    [42] 石文星,史斌华,彦启森. 变频空调器的三种算法. 暖通空调, 2000, 30(6):16-19
    [43] 谭乃秦. 城市污水处理厂低温热能利用—污水水源热泵空调. 给水排水技术动态, 2002, (9):15-20
    [44] 王景刚,马一太,魏东等. 地源热泵的应用研究,见:制冷空调新技术进展. 上海:上海交通大学出版社,2001
    [45] 周亚素,张旭,陈霈霖. 土壤源热泵系统的研究现状与发展前景. 新能源,21(12):37-42.1999
    [46] 马一太,洪芳军,王景刚. CO2跨临界双级压缩采暖热泵理论分析. 大连理工大学学报, 2001, 41卷(增刊1):5-8
    [47] 王景刚,马一太,吕灿仁. 以水为工质的制冷循环理论研究. 见:高等学校工程热物理第九届学术会议论文集,2002:93-96
    [48] Neks? P et al. CO2-heat pump water heater, characteristics, system design and experimental results, Int. J. Refrig., 1998, 21(3): 172-179
    [49] 刘万福. 温室气体减排机制及内燃机驱动热泵的研究:[博士论文]. 天津:天津大学,2002
    [50] 谢英柏. 燃气机热泵总能系统的理论分析与试验研究:[博士论文]. 天津:天津大学,2002
    [51] Nagengast B A, A history of refrigerants. In: CFCs: Time of transition. ASHRAE Copyright 1989:3-15
    [52] Lorentzen G,The use of natural refrigerants: a complete solution to the CFC/HCFC predicament. Int. J. Refrig., 1995, 18(3):190-197.
    [53] Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for car air conditioning. Int.J Refrig., 1993,16(1),4-12.
    [54] Lorentzen G. Large heat pumps using CO2 as refrigerant. In: Energy efficiency in refrigeration and global warming impact. Gent, Belgium, IIR, 12-14 May 1993
    [55] Lorentzen G. Revival of carbon dioxide as a refrigerant. Int. J. Refrig., 1994,17(5):290-310
    Vesovic V , Wakeham W A, Olchowy G A, Sengers J V, et al. The transport properties of carbon dioxide. Journal Physical Chemical Reference Data,
    
    [56] 1990, 19(3): 356-367
    [57] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596
    [58] Srinivas S P, Douglas M R, Groll E A. Heat transfer from supercritical carbon dioxide in tube-flow: a critical review. HVAC &R Research, 1998, 4(3): 281-301.
    [59] Douglas M R, Groll E A. Heat transfer analysis of air-to-carbon dioxide two-phase heat absorption and supercritical heat rejection. HVAC &R Research, 1998, 4(4): 327-345
    [60] Pettersen J, et al. Heat transfer and pressure drop characteristics of supercritical carbon dioxide in microchannel tubes under cooling. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 99-106
    [61] Pettersen J, et al. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in microchannel tubes under cooling. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 99-106
    [62] Jin Min Yin, et al. R744 gas cooler model development and validation. Int. J. Refrig., 2001, 24,:692-701
    [63] Pettersen J,et al. Flow vaporization of CO2 in mivrochannel tubes. Part I: Experimental method and two-ohase flow pattern. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 76-83
    [64] Pettersen J,et al. Flow vaporization of CO2 in microchannel tubes. Part II: Heat transfer, pressure drop, and correlation. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 84-91
    [65] Sun Z, Groll E A. CO2 flow heat transfer in horizontal tube. Part I: Flow regime and prediction of dryout. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 116-124
    [66] Sun Z, Groll E A. CO2 flow heat transfer in horizontal tube. Part II: Experimental results. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 125-141
    [67] Jürgen Süβ, Horst Kruse. Efficiency of the indicated process of CO2-compressors. Int. J. Refrig., 1998, 21(3):194-201
    [68] Hwang Y, Radermacher R. Theoretical evaluation of carbon dioxide refrigeration cycle, Int.J.HVAC&R ,1998, (4):245-264
    
    
    [69] Kauf F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. Int.J.Term. Sci., 1998, 38:325-330
    [70] Liao S M, Zhao T S, Jakodsen A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering. 2000, 20:831-841
    [71] Steimle F. CO2-drying heat pumps. In: CO2 technology in refrigeration, heat pumps and air conditioning systems. Trondheim, Norway. IEA Heat Pump Center, May 1997:13-14
    [72] Schmidt E L, et al, Applying the transcritical process to a drying heat pump, Int. J. Refrig., 1998, 21(3): 202-211
    [73] Schmidt E L , Kl?cker K, Flacke N. Heat pumps for dehumidification and drying processes in residential and commercial applications. Hot air drying heat pump using a transcritical CO2 process. In: CO2 technology in refrigeration, heat pumps and air conditioning systems. Mainz,Germany,1999
    [74] Kl?cker K, Schmidt E L, Steimle F, Carbon dioxide as working fluid in drying heat pumps. Int. J. Refrig., 2001, 24:100-107
    [75] Kruse H, Heidelck R, Süss J. The application of CO2 as a refrigerant, IIR Bulletin, 1999
    [76] Rozhentsev A, Chi-Chuan Wang. Some design features of a CO2 air conditioner, Applied Thermal Engineering. 2001, 21: 871-880
    [77] Manole D. Criteria to select operating parameters of a CO2 heat pump/refrigeration system. In: 7th International Energy Agency Heat Pump Conference. May 19-22, 2002, Beijing, China:125-136
    [78] Neks? P. CO2 Heat pump systems. Int. J. Refrig., 2002, 25:421-427
    [79] 马一太,杨昭,吕灿仁. CO2跨临界(逆)循环的热力学分析. 工程热物理学报,1998, 19(6): 665-668
    [80] 马一太,王侃宏,杨昭,吕灿仁. 带膨胀机的CO2跨(超)临界逆循环的热力学分析. 工程热物理学报,1999, 20(6): 661-665
    [81] 王侃宏,马一太,杨昭等. CO2跨临界循环高压侧压力控制的热力学分析. 工程热物理学报,2000,21(5):537-540
    [82] 马一太,王侃宏,王景刚. 超临界流体跨临界循环最优压力研究. 大连理工大学学报,2001,41(增刊1):5-8
    [83] 马一太,王侃宏,王景刚. 超临界流体及超(跨)临界循环的特性研究. 暖通空调,2002,32(1):101-104
    [84] 王侃宏. CO2跨临界循环的理论分析和实验研究: [博士论文]. 天津大学,2000
    Ma Yitai, Wang Jinggang, Zha Shitong. CO2 transcritical cycle for ground
    
    [85] source heat pump. In: 7th International Energy Agency Heat Pump Conference. Beijing, China May 19-22, 2002:981-990
    [86] Robinson D M , Groll E A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. Int. J. Refrig. 1998, 21(7): 577-589
    [87] 王景刚,马一太,魏东. 双级压缩带膨胀机CO2跨临界制冷循环研究,制冷学报,2001,(2):6-11
    [88] 马一太,魏东,王景刚等. CO2跨临界制冷循环中应用两相螺杆膨胀机的理论分析. 工程热物理学报,2001, 22(2): 138-140
    [89] Peter Heyl. Untersuchungen transkritischer CO2-Prozesse mit arbeitsleitender Entspanmung-Prozeβberechnungen, Auslegung und Test einer Expansion-Kompressions-Maschine, Der Fakult?t Masvhinenwesen der Technischen Universit?t Dresden zur Erlangyng des akademischen Grades,1999
    [90] Nickl J, Will G, Kraus W E , et al. Design considerations for second generation CO2-expander. In: 5th IIR Gustav Lorentzen conference on natural working fluids, Guangzhou, China. 2002: 189-196
    [91] 马一太,魏东,王景刚. 小型制冷装置二氧化碳膨胀机的研究. 见:全国工程热物理学术会议论文集,青岛, 2001,389-394
    [92] 范晓伟,付光轩. R744热泵系统研究动态. 暖通空调,2002,32(1):43-46
    [93] Neks? P, et al. Commercial heat pumps for water heating and heat recovery. In: CO2 technology in refrigeration, heat pumps and air conditioning systems. Mainz, Germany, 1999
    [94] Heyl P, et al. The CO2 heat pump project at the TU Dresden. In: CO2 technology in refrigeration, heat pumps and air conditioning systems. Trondheim, Norway, 1997
    [95] Saikawa M, Hashimoto K, Hasegawa H, et al. A basic study on CO2 heat pumps especially for hot water tap water supply. In: CO2 technology in refrigeration, heat pumps and air conditioning systems. Trondheim, Norway, 1997
    [96] Mukaiyama H, Kuwabara O, Izakio K, et al. Experimental results and evaluation of residential CO2 heat pump water heater. In: 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 59-66
    [97] Hihara E. R&D on heat pumps with natural working fluids in Japan. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May 19-22,2002:272-279
    Riebere R, Halozen H. CO2 heat pumps in controlled ventilation systems. In:
    
    [98] 3th IIR Gustav Lorentzen conference on natural working fluids, Oslo, Norway,1998.
    [99] 马一太,王侃宏,王景刚等. CO2跨临界循环水-水热泵的实验研究,暖通空调,2001,31(3):1-4
    [100] 马一太,王景刚,魏东等. CO2跨临界循环水-水热泵动态特性研究. 见:中国工程热物理学会第十届论文集(工程热力学与能源利用),2001:395-400
    [101] Schrey R, Schmidt E L, Steimle F. Demonstration of energy efficient and environmentally friendly heat pumping systems using CO2 as working fluid. Summary of final report, University of Essen, May 2002:1-13
    [102] Mukaiyama H, et al. Development of CO2 compressor and its application systems. In: 7th International Energy Agency Heat Pump Conference. Beijing, China, May 19-22,2002:272-279
    [103] 魏东. 二氧化碳跨临界循环换热与膨胀机机理的研究:[博士论文], 天津大学,2002
    [104] 丁国良,黄冬平,张春路等. 跨临界循环二氧化碳汽车空调研究进展. 制冷学报,2000, (2):7-14
    [105] Kusakari K. Innovate hot water supply technology conductive to arresting global warming: Development and sigificance of CO2 heat pump waater heater. In: 7th International Energy Agency Heat Pump Conference. Beijing, China , May 19-22,2002:101-111
    [106] Dorin F, Neks?e P, et al. CO2 comoressors for commercial applications. In: IEA heat pump center/IIR Workshop on CO2 technology in refrigeration, heat pump & air conditioning systems, Trondheim, Norway, 1997
    [107] Pettersen J. An Efficient New Automobile Air-Conditioning System Based On CO2 Vapor Compression, ASHRAE Trans, 1994.
    [108] Kohler J, Sonnekalb M, Kaise H, et al. Carbon Dioxide as a Refrigerant for Vehicle Air Conditioning With Application to Bus Air Conditioning, International CFC and Halon Alternatives Conference, Conference Proceedings, Washington, 1995, 376-385.
    [109] Quack H, Kraus E. Carbon Dioxide as a Refrigerant for Railway Refrigeration and Air Conditioning. In: IIR Commission B2, Hannover, 1994: 489-494
    [110] Brown J S, et al. Comparative analysis of an automotive air systems operating with CO2 and R134a. Int. J. Refrig. 2002, 25: 19-32
    [111] Park Y C, Yin J M, Bullard C W, et al. Experimental and model analysis of control and operating parameters of transcritical CO2 mobile A/C system. (c)ImechE 1999 C543/089:163-170
    
    
    [112] Granryd E. Hydrocarbons as refrigerants-an overview. Int. J. Refrig. 2001, 24:15-24
    [113] 王鑫,史琳,朱明善. 制冷剂替代物安全性评价现状和研究课题,暖通空调,2002,32(2):38-42
    [114] 田贯三. 可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究: [博士论文]. 天津大学,2000年
    [115] 李海龙. 空调系统中碳氢化合物/阻燃剂混合工质替代HCFC22的研究: [硕士论文]. 天津大学,2002年
    [116] http://www.news.uiuc.edu/scitips/01/08ammonia.html
    [117] Ingersoll L R, et al. Theory of Earth Heat Exchanger for the Heat Pump. ASHVE,1951:167-188
    [118] Bose J E. Advances in ground source heat pump systems an international overview. In: 7th International Energy Agency Heat Pump Conference. Beijing, China ,May 19-22,2002:313-324
    [119] Mancini R. Operating and Maintenance Experience with Commercial and Institutional Ground-Source Heat Pump Systems. 1996: AT-96-15-2.
    [120] Cane D, Clemes B, Morrison A.. Experriences with Commercial Ground-Source Heat Pumps. ASHRAE Journal, July:31-36. 1996
    [121] Cane D, Garnet J M. Update on Maintenance and Service Costs of Commercial Building Ground-Source Heat Pump Systems. ASHRAE Trans., 2000, 106(1):399-407
    [122] Martin M A, Madgett M G , Hughes P J. Comparing Maintenance Costs of Geothermal Heat Pump Systems: Preventive Maintenance Actions and Total Maintenance Costs. ASHRAE Trans., 2000,106(1):408-423
    [123] Yavuzturk C, Spitler J D. Comparative study to investigate operating and control strategies for hybrid ground source heat pump systems using a short time-step simulation model. ASHRAE Tans., 2000,106(2):192-209
    [124] Smith M. Real-world trial of shallow heat exchanger technology. Proceedings of the world energy engineering congress. Atlanta, October 25-27, 2000: 173-180
    [125] Van de Ven H, International Energy Agency Newsletter, 1997,15(2),9
    [126] Chiassion A, Spitler J D. Modeling approach to design of ground -source heat pump bridge deck heating system. Transportation research record 1741,2001:207-215
    [127] 刘宪英、胡鸣明、魏唐棣. 地源热泵地下埋管换热器传热模型的综述. 重庆建筑大学学报. 1999 , 21(4):106-111.
    [128] 张旭,土壤源热泵研究现状分析. www.chinahvacr.com/hotspot, 2001
    
    
    [129] Bose J E, and Parker J D. Ground-coupled heat pump Research. ASHRAE Trans., 1983, 89(2): 75-390
    [130] Metz P D. A simple computer program to model three-dimension underground heat flow with realistic Boundary conditions. Journal of Solar Energy Engineering, 1983, 105: 42-49
    [131] Mei V C. Theoretical heat pump ground coil analysis with Variable ground far-field boundary conditions. AICHE Journal, 1986, 32(7): 1211-1215
    [132] Eskilson P. Thermal Analysis of Heat Extraction Boreholes. Doctoral Thesis, Lund,Sweden:University of Lund, Department of Mathematical Physics. 1987
    [133] Deernan J D , Kavanaugh S P. Simulation of vertical U-tube ground-coupled heat pumps using the cylindrical heat source solution. ASHRAE Trans., 1991, 97(1):287-294
    [134] Cane R L D, Forgas A. Modeling of ground source heat pump performance. ASHRAE Transaction, 1991,97(1):909-925
    [135] Muraya N K , O'Neal D L , Heffington W M. Thermal interference of adjacent legs in vertical U-tube heat exchanger for a ground-coupled heat pump. ASHRAE Trans., 1996,102(1):439-445
    [136] Lei T-K. Development of a computational model for a ground-coupled heat exchanger. ASHRAE Trans., 1993, 99(1):149-154
    [137] .Rottmayer S P, Beckman W A, Mitchell J W. Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium. ASHRAE Trans., 1996,103(2):651-659
    [138] Tarnawski V R, Leong W H. Computer analysis ,Design and simulation of Horizontal ground heat exchangers .International Journal of Energy Research 1993, 17:467-477
    [139] Piechowski M. Heat and mass transfer model of a ground heat exchanger: Validation and sensitivity analysis. International Journal of Energy Research 1998, 22:965-979
    [140] Yavuzturk C, Spitler J D, Rees S J. A Transient Two-Dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers. ASHRAE Tans., 1999, 105(2):465-474
    [141] Yavuzturk C , Spitler J D, Rees S J. A short time step response factor model for t Vertical U-Tube Ground Heat Exchangers. ASHRAE Tans.,1999, 105(2):475-485
    [142] Yavuzturk C , Spitler J D , Rees S J. Field validation of a short time step response factor model for t Vertical U-Tube Ground Heat Exchangers. ASHRAE Tans., 2001,107(1):617-625
    
    
    [143] Bernier M A. Ground-coupled heat pump system simulation. ASHRAE Tans., 2001,107(1):605-616
    [144] 周亚素,张旭,陈霈霖. 土壤源热泵系统的研究现状与发展前景. 新能源,21(12):37-42.1999
    [145] Leong H, Tarnawski V R , Aittomaki A. Effect of soil type and moisture content on ground heat pump performance. Int. J.Refrig., 1998, 21(8):595-606
    [146] Lenarduzzi F J, Cragg C B H , Radhkrishna H S. The Importance of Grouting to Enhance the Performance of Earth Energy Systems. ASHRAE Trans., 2000 106(1):424-434
    [147] Austin W A. Development of an In-situ system for measure ground thermal properties. Master's thesis. Oklahoma State University. Stillwater, Oklahoma.(or : http://www.mae.okstate.edu/faculty/spitler/austin thesis.pdf. )
    [148] Kavanaugh S P. Field Tests for Ground Thermal Properties-Methods and Impact on Ground-Source Heat Pump Design. ASHRAE Trans., 2000, 106(1): DA-00-13-4.
    [149] Shonder J A, Beck J V . Field Tests of New Method for Determining Soil Formation Thermal Conductivity and Borehole Resistance. ASHRAE Trans., 2000,105(2): 458-465
    [150] Austin W A , Yavuzturk C, Spitler J D. Development of an in-situ system for measuring ground thermal properties. ASHER Trans., 2000,106(1): 365-379
    [151] Remund C. Borehole thermal resistance: laboratory and field studies. ASHER Trans., 1999,105(1): 439-445
    [152] Kavanaugh S P,.Allan M L. Testing of thermally enhanced cement ground heat exchanger grouts. ASHER Trans., 1999,105(1): 446-451
    [153] Smith M D, Perry R. Borehole grouting: field studies and thermal performance testing. ASHER Trans., 1999, 105(1): 451-457
    [154] Hellstrm G , Kjellon E. Laboratory measurements of heat transfer properties for different types of borehole heat exchangers. Proceedings of Terrastock, Stuttgart, Germany, 2000: 183-188
    [155] http://www.geothermal.okstate.edu/current
    [156] 吕灿仁,马一太. 运用热泵提高低温地热采暖系统能源利用率的分析. 天津大学学报,1982, (4)
    [157] 高祖锟,高佛佑. 土壤源热泵用于供暖的研究. 天津商学院学报,1991,11(1):1-9
    [158] 王勇、付祥钊. 地源热泵的套管式地下换热器研究,重庆建筑大学学报,1997,19(5):13-17
    
    
    [159] 刘宪英,丁勇. 浅埋竖管换热地热源热泵夏季供冷试验研究. 暖通空调,2000,30(4):1-4
    [160] 刘宪英,张素云. 地热源热泵冬夏暖冷联供试验研究. 水力电力施工机械,2000,21(1):14-22
    [161] 张旭. 土壤源热泵的实验及相关基础理论研究. 见:殷平主编,现代空调(3).北京:中国建筑工业出版社,2001:11-12
    [162] 张旭,高晓兵,简瑞民等. 土壤及其与黄沙混合物导热系数的实验研究,全国暖通空调学术会议论文集,2000:478-481
    [163] 于立强,张开黎,李芃. 垂直埋管地源热泵系统的实验研究. 见:全国暖通空调制冷学术年会学术文集,北京:中国建筑工业出版社,2000:144-152
    [164] 马一太,张嘉辉等. 地源热泵的研究与应用前景分析. 见:全国高等学校工程热物理学术会议论文集, 北京,2000
    [165] 赵军,戴船山,刘启梁. 多空介质层内同轴管式换热器的相似解. 太阳能学报,2000,21(3):274-278
    [166] 方肇洪,刁乃仁,苏登超等. 竖直U型埋管地源热泵空调系统地设计与安装. 见:殷平主编,现代空调(3). 北京:中国建筑工业出版社,2001:101-10512
    [167] 候礼泉等. 地源热泵试验装置工艺系统的研究. 见:全国暖通空调学术会议论文集,2002
    [168] Inokuty H. Graphical method of finding compression pressure of CO2refrigerating machine for maximum coefficient of performance. Proc.5th Int. Congress of Refrigeration. Rome, 1928:185-192.
    [169] 潘焕泉等.近临界区流体相态和热力学性质研究现状及发展趋势. 化学工程,1996,1:47-52
    [170] 洪芳军. CO2跨临界循环热泵热水供暖的理论和实验研究:[硕士论文].天津大学,2001
    [171] 梁贞潜,黄冬平,张春路等. 二氧化碳汽车空调器仿真与优化. 见:制冷空调技术新进展. 上海:上海交通大学出版社, 2001:164-169
    [172] 张华俊编著. 制冷压缩机. 北京:制冷压缩机.科学出版社, 1999年
    [173] 童景山. 流体的热物理性质. 北京:中国化工出版社, 1996:347-348
    [174] Chang Y S , Kim M S, Ro S T. Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. Int. J. Refrig., 2000, 23: 232-242
    [175] Purkayastha B, Bansal P K. An experimental study on HC290 and a commercial liquefied petroleum gas(LPG) mix as suitable replacenebts for HCFC22. Int. J. Refrig., 1998, 21(1): 3-17
    顾兆林,郁永章,冯诗愚. 涡旋压缩机及其它涡旋机械. 西安:陕西科学
    
    [176] 技术出版社,1998
    [177] Pettersen J, Hafner A, Skaugen G. Development of compacr heat exchangers for CO2 air-conditioning systems. Int. J.Refrig., 1998, 21(3):180-193
    [178] Ingersoll G L, Zobel O J, Ingersoll A C. Heat conduction with with engineering, geological, and other applications. New York: McGraw,1954
    [179] Caslaw H S, Jager J C. Conduction of heat in solids. Oxford,U.K: Claremore Press,1947
    [180] Incropera F P, DeWitt D P. Fundaments of heat and mass transfer. Fourth Edition. New York: McGraw Hill,1996
    [181] Paul N D, Remund C P. The effect of grout thermal conductivity on vertical geothermal heat exchanger design and performance. Final Report No.TR-108529, Electric Power Research Institue, 1997
    [182] 谢汝镛. 地源热泵系统的设计. 见:殷平主编,现代空调(3).北京:中国建筑工业出版社,2001:33-73
    [183] Zhang Q, Murphy W E. Measurement of thermal conductivity for three borehole fill materials used for GSHP. ASHRAE Transaction, 2000, 106(2):434-441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700