用户名: 密码: 验证码:
独立式内燃机热泵系统及其控制特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立式内燃机热泵系统是在普通内燃机热泵系统上整合一套发电系统实现的,主要包含发动机子系统、热泵子系统、发电子系统、末端能量利用子系统和智能控制系统五个部分,是内燃机热泵的新的发展。内燃机驱动的独立式热泵能够产生冷、热、电,其电力能够满足自身用电,废热可以用来生产生活热水。本文的主要研究内容如下:
     (1)提出了新型内燃机热泵空调形式-余热复合式(独立式)燃气机热泵空调系统。该系统由一个核心的(独立式)燃气机热泵和房间一次换热器、二次换热器以及风机、水泵等一些附属设备组成。建立了包括房间墙壁传热模型、燃气机热泵模型、换热器模型、空气处理模型等数学模型,研究了余热复合式(独立式)燃气机热泵空调系统性能和节能特性。结果表明余热复合式(独立式)燃气机热泵空调系统能够较好的利用系统余热实现空调系统的节能高效运行。
     (2)独立式内燃机热泵系统控制特点包括多变量、非线性、强耦合、大延迟等。提出了神经网络非线性PID控制方法、多目标联合控制方法和PID神经元神经网络预测控制方法来控制本系统运行,并且针对这些方法做了仿真研究和实验研究。结果表明该系列智能控制方法不但具有结构简单,工作稳定,各参数物理意义明确和工程上易于实现等优点,又具有并行结构和学习记忆功能及任意函数逼近的能力,在不同工况下具有广泛的自适应性。
     (3)独立式内燃机热泵智能控制系统复杂,除了包括实现特定功能的控制算法和控制策略,还包括实现这些控制方法的硬件和软件系统。本文采用分级递阶智能控制策略将智能控制系统的软硬件有机的组织起来,形成一个协调多功能的智能控制系统。实验证明,本智能控制方式能够较为有效地控制独立式内燃机热泵系统。
     (4)搭建了独立式内燃机热泵系统及其智能控制系统样机,并进行了实验。实验包括内燃机驱动的独立式热泵系统特性和总体性能、各个控制方法效果和总体控制效果实验以及变末端水流量系统性能实验等。实验证明,本系统是一个绿色高效的能量利用系统,本智能控制系统能够较为有效的控制系统稳定、安全、高效的运行。
Including engine subsystem, heat pump subsystem, generating subsystem, terminal energy use subsystem and intelligence control system, independent engine-driven heat pump (IEHP) is a new development of engine-driven heat pump (GEHP). With the only one input energy - natural gas, IEHP can realize cold, heat, hot water and electricity which is enough to itself to users. The main contents are summarized as follows:
     (1)The (independent) engine-driven heat pump air-conditioning system with waste heat utilized was proposed, which includes core (independent) engine-driven heat pump, primary heat interchanger, second heat interchangers and fans, pumps. Some mathematical models, such as the room wall heat transfer model, the engine-driven heat pump model, the heat interchanger model, the air conditioning model, was established. The performance and the energy conservation characteristic for the GEHP/IEHP with waste heat utilized. The results show that (independent) engine-driven heat pump air-conditioning system with waste heat utilized can save energy.
     (2)In view of the control characteristic for the engine heat pump speed, the electronic expansion valve and the system water leakage temperature the neural network non-linear PID control method, the multi-objective union control method and the non-linear forecast control method was proposed. The simulation research and the experimental study indicate these methods can effectively control system. The results indicate that the structure for control method is simple, the control system works stablely, its robust is strong, various parameters physics significance is clear and it is easy to realize in the project, and also has the parallel structure and the essence studies ability. It has memory function and can approach arbitrary function, so it has widespread auto-adapted under the different operating mode.
     (3)For the complexity for intelligence control of IEHP which includes control algorithm and control strategy, the graduation hierarchical intelligence control strategy was used in the system to organically organize the control software and hardware to form one multi-purpose intelligence control system. This control strategy also was for the first time in this domain application. The experiment proved that this intelligence control system can control this system effectively.
     (4) The IEHP prototype was built and some experiments for the system performance and the overall performance, each control method effect and the overall control effect experiment had been carried on. The experimentals show the system is a green highly effective energy use system without commercial power and the intelligence control system can highly effectively, tenderly stablely and safely, controls the system.
引文
[1]谢力,BP世界能源统计2006,国外石油动态,2006,(13):1-99
    [2]《世界能源消费现状和可再生能源发展趋势》报告,中华人民共和国国家发展和改革委员会,2006
    [3]刘元成,利用蒸发冷却的空调系统仿真计算:[硕士学位论文],北京:北京机械工业学院,2006
    [4]周邦宁,燃气空调,北京:中国建筑工业出版社,2005
    [5]谭平,天然气对大气质量的影响,煤气与热力,1999
    [6]李景明,李剑,谢增业等,中国天然气资源研究,石油勘探与开发,2005,32(2)15-18
    [7]张荣荣,燃气发动机驱动热泵机组的运行特性及动态仿真:[博士学位论文],上海:上海交通大学,2005
    [8]凌云,GHP热泵装置的应用基础研究:[硕士学位论文],上海:上海交通大学,2002
    [9]杨昭,张世钢等,燃气热泵及其它供热空调系统的能源利用分析评价,太阳能学报,2001,22(2):171-175
    [10]马一太,杨昭,谢英柏,燃气机热泵在我国的应用前景,流体机械,2002,30:55-58
    [11]吕灿仁,马一太,高顺庆,论京津地区发展燃气热泵节能,节能,1984(6): 17-18
    [12]徐锐,论应用燃气空调平衡城市的能源结构,大众科技,2005,77(3):54-57
    [13]戴永庆,耿惠彬,蔡小荣,燃气空调及其应用,机电设备,2003,2:15-21
    [14]江亿,东部城市天然气应用方式探讨,中国工程科学,2002,4(10):36-39
    [15]符建坤,周志鹏,董斌奇,天然气在制冷空调技术中的应用,建筑热能通风空调,2003(5):27-34
    [16]孙志高,天然气在空调供热中的应用分析,制冷与空调,2004,4(5):17-19
    [17]Montagnon P E, Ruckloy A I L. The festival hall heat pump. J Inst Fuel,1953. 1: 318-321
    [18]Shelton Sam V.Natural gas I.E. Engine driven heat pumps.6th heat pump technology conference.Tulsa,Oklahoma,1982. X-1-X-2
    [19]Eustace, V A. Testing and applications of a high temperature gas engine driven heat pump. Journal of Heat Recovery Systems, 1984. 4(2): 257-263
    [20]Masao O, Toshimi K, Masaaki M, etc. First commercialized direct-expansion type gas engine heat pump. Proceedings of the 1986 International Gas Research Conference. Government Inst Inc, 1987. 581-592
    [21]Welsby P, Diggory P J, Devotta S. Evaluation of microcomputer-based control system for a domestic sized engine-driven water-to-water heat pump. InternationalJournal of energy research, 1988. 12: 275-291
    [22]Morgan J R,McNamara T R,Lindsay B B.Installation and operating experience of a gas engine-driven chiller with engine heat Recovery.ASHRAE Transactions,1989. 95(1):953-959
    [23]Taira K.Development of a 2.5-RT multiple-indoor-unit gas engine heat pump.ASHRAE Transactions,1992. 98(1):982-988
    [24]Kaneko T,Obitani M,Imura T.The performance of a four-ton gas-engine-driven heat pump.ASHRAE Transactions,1992. 98(1):989-993
    [25]Nowakowski G A,Inada M,Dearing M P.Development and field testing of a high-efficiency engine-driven gas heat pump for light commercial applications.ASHRAE Transactions,1992. 98(1):994-1000
    [26]Nowakowski G,Merten G,Brogan J.Field performance of a 3-ton natural gas engine-driven heating and cooling system.ASHRAE Transactions,1995. 101(2):1382-1388
    [27]Kaneko T,Obitani M,Imura T.The performance of a four-ton gas-engine-driven heat pump.ASHRAE Transactions,1992. 98(1):989-993
    [28]Inada M, Haramura, S, Momose, Y. Development of engines for gas engine heat pump system. Proceedings of the 1986 International Gas Research Conference, 1987. 648-657
    [29]Rusk R P,Gerpen Van J H,Nelson R M,etc.Development and use of a mathematical model of an engine-driven heat pump.ASHRAE Transactions,1990. 96(2):282-290
    [30]Colosimo D D.Introduction to engine-driven heat pumps-concepts,approach,and economics.ASHRAE Transactions,1987. 93(2.1):987-996
    [31]Rasmussen R W,MacArthur J W,Grald E W,etc.Performance of engine-driven heat pumps under cycling conditions.ASHRAE Transactions,1987. 93(2.1):1078-1090
    [32]Sherwood G T, William G A,Thomas A,etc.Relevance of existing heat pump testing and rating method assumptions to residential gas engine heat pumps.ASHRAE Transactions,1998.104(1B):1449-1462
    [33]Kirby S, etc. Development of an emissions test procedure for unitary combustion engine-driven heat pumps. ASHRAE Transactions,1998.104(1B):1463-1470
    [34]谢英柏,燃气机热泵总能系统的理论分析与实验研究:[博士学位论文],河北:华北电力大学, 2002
    [35]蒋一军,燃气机驱动空调系统及其实验研究:[硕士学位论文],南京:东南大学, 2004
    [36]严小军,燃气压缩式热泵空调系统初步研究:[硕士学位论文],南京:东南大学, 2003
    [37]杨昭,程珩,孙政等,燃气机驱动的供热空调系统容量调节的研究,制冷学报,2002,23(3):56-56
    [38]杨昭,程珩,张世钢等,燃气压缩式热泵空调系统的实验研究,工程热物理学报,2003,24(6):920-922
    [39]杨昭,张世钢,程珩等,天然气发动机驱动的水-水热泵的实验研究,制冷学报,2003,24(1):9-12
    [40]杨昭,程珩,张金亮,天然气热泵排烟换热器优化及实验,天然气工业,2006,26(5):133-136
    [41]马一太,谢英柏,杨昭等,燃气机热泵变负荷特性的实验研究,热科学与技术,2003,3:199-203
    [42]张世钢,燃气机热泵仿真与优化匹配研究:[博士学位论文],天津:天津大学, 2003
    [43]候根富,王威,穆春峰,燃气热泵式冷热水机组运行特性分析,煤气与热力,2001,21
    [44]候根富,段常贵,马最良,风冷燃气机驱动压缩式热泵冷热水机组运行特性实验研究,暖通空调,2001,1: 5-8
    [45]刘芬宁,胡美丽,骆光明,内燃机热泵的研究及其在工业上的应用,热泵在我国的应用与发展问题专家研讨会,广州科学院能源研究所, 1988: 125-130
    [46]凌云,程惠尔,李明辉,天然气发动机驱动热泵装置利用效率的分析,煤气与热力,2003,23(1):11-14
    [47]盛凯夫,饶如鳞,燃气机驱动冷热电联供系统的发展前景,煤气与热力,2002,6: 500-514
    [48]耿惠彬,燃气发动机驱动的热泵型冷热水机组的部分负荷特性,制冷技术,2003
    [49]Cikanek H A, Wepfer W J. Performance simulation of a natural gas fired IC engine drive (NGICE) heat pump system. 19th Intersociety Energy Conversion Engineering Conference, 1984. 1374-1380.
    [50]Van R, Mindert L D. Computer model of a gas engine driven compression heat pump used for field evaluation. Proceedings of the 1986 International Gas Research Conference, 1987. 638-647
    [51]Dentice, Sasso, Sibilio. Exergy analysis of the gas engine driven heat pump (GHP) American Society of Mechanical Engineers. Advanced Energy Systems Division (Publication) AES,1994. 263-269
    [52]Mateja Trobec Lah, Fuzzy control for the illumination and temperature comfort in a test chamber, Building and environment, 2005, 40: 1626-1637
    [53]Wolfe V L, Getman R P. Gas engine heat pump performance in a southern climate. ASHRAER Transactions: Symposia, 1995. 1289-1395
    [54]Chen F C, Mei V C, Domitrovic R E. Test of an improved Gas Engine-Driven Heat Pump. ASHRAER Transactions: Symposia, 1998.1471-1477
    [55]Zhang R R, Lu X S, Li S Z, Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model. Energy Conversion and Management, 2005. 46: 1714-1730
    [56]Li Y L, Zhang X S, Cai L, A novel parallel-type hybrid-power gas engine-driven heat pump system. International Journal of Refrigeration, 2007. 30: 1134-1142
    [57]Li S Z, Zhang W G, Zhang R R, Cascade fuzzy control for gas engine driven heat pump. Energy Conversion and Managemen, 2005.46: 1757-1766
    [58]Lian Z W, Park S, Huang W. Conception of combination of gas engine-driven heat pump and water-loop heat pump system. International Journal of Refrigeration, 2005.28: 810-819
    [59]程珩,燃气机热泵系统变容量调节的研究:[博士学位论文]天津:天津大学,2006
    [60]Wang R Z, Oliveira R G, Adsorption refrigeration - An efficient way to make good use of waste heat and solar energy. Progress in Energy and Combustion Science, 2006. 32: 424-458
    [61]Zhang L Z, Design and testing of an automobile waste heat adsorption cooling system. Applied Thermal Engineering, 2000. 20:103-114
    [62]Howell J R, Peterson J L. Preliminary Performance Evaluation of a Hybrid Vapor Compression/Liquid Desiccant Air Conditioning System. ASME Paper 86-WA/Sol.9, Anaheim, Calif., 1986
    [63]Parsons B K , Pesaran A A, Bharathan D. Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem, ASHRAE Transactiongs,1989. 95: 835-844
    [64] Burns P R, Mitchell J W, Beckman W A. Hybrid desiccant cooling systems in super market applicationgs. ASHRAE Trans 91(Part-1B),1985. 457-468
    [65]黄显飞,秦朝葵,天然气发动机驱动的复合空调系统,能源技术,2003(24):5,198-204
    [66]Lee Y B, Ro S T, Frost Formation on a Vertical Plate in Simultaneously Developing Flow. Experimental Thermal and Fluid Science, 2002. 26: 939-945
    [67]Cheng C H, Shin C C, Frost Formation and Crystal Growth on a Cold Plate in Atmospheric air Flow. International Journal of Heat and Mass Transfer, 2002. 45: 4289-4303
    [68]Na B, Webb R L, Mass transfer on and within a frost layer, Int J Heat Mass Transfer, 2004. 47(5): 899-911
    [69]电子工业部第十设计研究院,空气调节设计手册,北京:中国建筑工业出版社,1995
    [70]谢德强,单元式燃气压缩式热泵仿真与控制策略研究:[硕士学位论文],天津:天津大学,2001
    [71]Parish H C, ASHRAE Standard Method of Testing: Forced Convention and Natural Convention Air Coolers Refrigeration. ASHRAE Transactions, 1982. 81, 25-72
    [72]杨昭,田贯三,刘靖等,湿工况开停控制空调系统季节能效比的研究,工程热物理学报,2000.21(1):9-12
    [73]赵毅,燃气压缩式水-水热泵机组智能控制的仿真研究:[硕士学位论文],天津;天津大学,2002
    [74]杜明星,燃气机热泵自动控制系统的研究:[硕士学位论文],天津:天津大学,2005
    [75]郭宗仁等,可编程序控制器及其通信网络技术,北京:人民邮电出版社,1999
    [76]郭宗仁等,胶合板生产的分布式控制系统的研究与实现,95’中国智能自动化学术会议论文集,天津:中国自动化学会,1995
    [77]钟义信,中华科技的新崛起<序>,中国人工智能学会第9届全国学术会议论文集,北京:北京邮电大学出版社,2001
    [78]ANSI/ASHRAE 116-1983.Methods of Testing for Seasonal Efficiency of Umtary Air Conditioners and Heat Pumps,1983.116: 74-81
    [79]杨昭,赵海波,徐振军,燃气机热泵的全年性能优化研究,工程热物理学报,2008,29(2):21-24
    [80]Cruhle W D,Isemann R. Modeling and control of a refrigerant evaporator. Joural of Dynamic Systems, Measurement and Control, 1985. 107: 235-240
    [81] Hattori M et al. Automotive refrigeration system controller with a simple precompensator. Proceedings of the 29th Conference on Decision and control, IEEI, December,1990. 1590-1591
    [82]Outtagarts A, Haberschill P, Lallemand M. The transient response of an vaporator fed through an electronic expansion valve. INT J of Energy Research, 1997. 21:793-807
    [83]陈芝久,制冷系统热动力学,北京:机械工业出版社,1998
    [84]丁国良,张春路,制冷空调装置智能仿真,北京:科学出版社,2002
    [85]宣宇清,房间空调器建模与仿真研究:[硕士学位论文],湖南:中南大学,2003
    [86]杨世铭,传热学,北京:高等教育出版社,1987
    [87]吴业正,韩宝琦,制冷原理及设备,陕西:西安交通大学出版社,1998
    [88]蔡增基,龙天渝,流体力学泵与风机,北京:中国建筑工业出版社,1999
    [89]陈轶光,空气源热泵结霜/除霜特性的数值模拟与实验研究:[硕士学位论文],天津:天津商学院,2006
    [90]彦启森,空气调节用制冷技术,北京:中国建筑工业出版社,1983
    [91]张祉佑,制冷原理与设备,北京:机械工业出版社,1987
    [92]Hosoda T,Uzuhashi H,Kobayshi N, "Louver fin heat tranfer" Japanese Research, 1997. 6(2): 69-77
    [93]周伟东,小型冷库制冷装置动态仿真与优化:[硕士学位论文],大连:大连海事大学,2003
    [94]Sanders C. The influence of frost formation and defrosting on the performance of air coolers: [ph.D Dissertation], Delft, Netherlands; Technische Hogeschool, 1974
    [95]李刚,黄翔,颜苏芊,喷水室热、质传递的理论分析,纺织高校基础科学学报,2002,15(4):337-340
    [96]Xu Y, Qin C K. Natural gas engine driven chiller systems and the waste heat usage, Energy Technol, 2002. 23(4): 162-167.
    [97]ANSI/ASHRAE 116-1983.Methods of Testing for Seasonal Efficiency of Umtary Air Conditioners and Heat Pumps,1983.116:74-81。
    [98]ARI Standard 210/240, Unitary Air-Conditioners and Air-source Heat Pump Equipment, 1989
    [99]彦启森.赵庆珠,关于房间空调器季节能效比的实验方法与计算,节能空调器技术高级研讨班,1993,4
    [100]姜益强,姚杨,马最良,空气源热泵冷水机组供热最佳能量平衡点的研究,哈尔滨建筑大学学报,2001:34(30):83-87
    [101]李岳林,汪长军,刘志强,汽油机非稳定加速工况燃烧模型的建立及应用,内燃机工程,2004,25(6):19-22
    [102]杨昭,张世钢,刘斌等,燃气热泵及其他供热空调系统的能源利用分析评价,太阳能学报,2001,22(3):171-175
    [103]龙惟定,范存养,上海地区使用风冷热泵冷热水机组的经济性分析,暖通空调,1995.5:3-7
    [104]杨昭,张启,马一太,热泵空调除湿系统变工况运行季节用能效率的研究,太阳能学报,2000,21(1):29-34
    [105]王伟,张晶涛,柴天佑,PID参数先进整定方法综述,自动化学报, 2000, 26(3): 347-355
    [106]Wang Q G, Lee T H, Fung H W, et a1. PID tuning for improved performance. IEEE Trans Control Systems Tech, 1999. 7(4): 457-465
    [107]苏玉鑫,段宝岩,一种新型非线性PID控制器,控制与决策,2003, 18(1): 126-128
    [108]Chen W C, Chang N B, Chen J. Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment. Water Research, 2003. 37: 95-107
    [109]Iplikci S, Denizhan Y. An improved neural network based targeting method for chaotic dynamics. Chaos, Solitons and Fractals, 2003. 17: 523-529
    [110]Chen J H, Huang T. Applying neural networks to on-line updated PID controllers for nonlinear process control. Journal of Process Control, 2004. 14: 211-230
    [111]Zaheer-uddin M, Tudoroiu N. Neuro-PID tracking control of a discharge air temperature system. Energy Conversion and Management, 2004. 45: 2405-2415
    [112]Shu H L, Pi Y G. PID neural networks for time-delay systems. Computers and Chemical Engineering, 2000. 24: 859-862
    [113]Lian R J, Lin B F, Huang J H. A grey prediction fuzzy controller for constant cutting force in turning. International Journal of Machine Tool and Manufacture, 2005. 45(9): 1047-1056
    [114]Feng H M, Wong C C. An on-line rule turning grey prediction fuzzy control system design //Proceedings of the 2002 International Joint Conference on Neural Networks, 2002. 1505-1506
    [115]Chou C H. A variable structure controller based on the grey prediction technology //Proceedings of the American Control Conference, 2001. 1505-1506
    [116] Ding C C, Lee K T. Optimal design for power system dynamic stabilizer by grey prediction PID control. IEEE ICIT’02. Bangkok, Thailand,2002
    [117]Wu W Y, Chen S P. A prediction method using the grey model GMC(1,n) combined with the grey relational analysis: a case study on internet access population forecast. Applied Mathematics and Computation, 2005. 169: 198-217
    [118]Tien T. A research on the deterministic grey dynamic model with multiple inputs DGDMMI(1,1,1). Applied Mathematics and Computation, 2003.139: 401-416
    [119]Li S J, Liu Y X, Cao H Y. Application of improved PID network to nonlinear system control. GKSTS International Transaction on Computer Science and Engineering, 2006. 28(1): 27-36
    [120]邓聚龙,灰色控制系统.武汉:华中理工大学出版社,1997
    [121] Deng J L, Li B Q. Models for grey series. The Journal of Grey System, 1990. (3): 217-232
    [122]Lee C C. Fuzzy in control system: fuzzy logic controller, Part 1, Part 2. IEEE Trans.Syst., Man, and Cybem., 1990. 20(2):404-434
    [123]李世勇等,模糊控制和智能控制理论与应用,哈尔滨:哈尔滨工业大学出版社,1990
    [124]焦李成,神经网络的应用与实现,西安:西安电子科技大学出版社,1993
    [125]闫纪红,神经网络模型辨识及模型结构确定的研究,哈尔滨:哈尔滨工业大学,1999
    [126]程珩,燃气机热泵的实验研究及电力燃气负荷季节调整:[硕士学位论文],天津:天津大学,2002
    [127]罗公亮,卢强,智能控制与常规控制,自动化学报,1994,20(3):324-332
    [128]冯日海,刘嘉,殷树言等,智能短路过渡二氧化碳气体保护电弧焊数字控制系统,焊接学报,2006,27(10):69-72
    [129]冯日海,刘嘉,殷树言等,短路过渡CO2焊全数字控制系统,机械工程学报,2005,41(11):207-212
    [130]徐德,孙同景.可编程序控制器(PLC)应用技术.山东:山东科学技术出版社,2000
    [131]谢克明,夏路易,可编程控制器原理与程序设计,北京:电子工业出版社,2002
    [132]宫淑贞,王冬青,徐世许,可编程控制器原理及应用,北京:人民邮电出版社,2002
    [133]刘敏,可编程控制技术,北京:机械工业出版社,2000
    [134]刘策,李金伴,人工神经网络在PLC控制系统故障诊断中的应用,机床与液压,2003(4):323-236
    [135]陈益飞,薛应成,PLC模糊神经网络变频调速系统,电气传动自动化,2004,26(1):36-38
    [136]段铁群,王萍,黄宇辉等,基于PLC的模糊自整定PID参数控制器在变频调速恒压供气系统中的应用,电机与控制学报,2003,7(4):348-351
    [137]EX56电子膨胀阀说明书,艾默生电气公司所属ALCO控制器公司,2003
    [138]谭才彪,姚凯学,刘成业,PLC控制系统的干扰来源分析和抗干扰设计,贵州大学学报(自然科学版),2006(23),1:64-67
    [139]易定忠,6M25往复式压缩机状态监测系统研究: [硕士学位论文],湖南:中南大学,2006
    [140]杨克远,周丽佩,赵越等,一种改进的数字滤波方法,大庆石油学院学报,2003,2
    [141]闰虎民,张永飞,PLC控制系统中模拟量采样的数字滤波算法研究,机电产品开发与创新,2007(20),4:136-137
    [142]向红军,雷彬,基于单片机系统的数字滤波方法的研究,电测与仪表,2005
    [143]周英武,王苏岩,李宏男,结构实验中一种高保真的数字滤波算法,重庆建筑大学学报,2006,6
    [144]张祉祐,制冷原理与设备,北京:机械工业出版社,1987
    [145]张祉祐,常鸿寿,张华俊等,制冷原理与制冷设备,北京:机械工业出版社,1995
    [146]吴志红,电子膨胀阀与热力膨胀阀用于冷库控制的对比性研究:[硕士学位论文],上海;上海理工大学,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700