用户名: 密码: 验证码:
乙烯—醋酸乙烯酯橡胶和无机填料改性尼龙1010的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为我国特有的尼龙品种,尼龙1010具有很好的耐磨性、自润滑性以及低温性能等诸多优点,但尼龙1010的冲击强度对缺口比较敏感,其缺口冲击强度较低。本论文选用乙烯-醋酸乙烯酯共聚物(EVA)以及合适的增容剂,通过熔融共混的方法成功制备了高抗冲尼龙1010材料,系统研究了相关的增韧机理,采用粒子间距模型揭示了共混物结构-性能之间的联系。
     首先,研究了一种醋酸乙烯酯(VA)含量为40 wt%的乙烯-醋酸乙烯酯橡胶(EVM 400)对尼龙1010的增韧效果。尼龙1010/EVM 400共混物的缺口冲击强度随EVM 400用量的增加而提高,在EVM 400用量由40 ph(rper hundred nylon 1010)增加到80 phr时,尼龙1010/EVM 400共混物的缺口冲击强度从22.8 kJ/m2骤增到62.3 kJ/m2,发生脆韧转变。马来酸酐接枝乙烯-醋酸乙烯酯共聚物(EVA-g-MAH)能显著提高尼龙1010/EVM 400(100/20)共混物的缺口冲击强度,相应共混物在EVA-g-MAH用量由2.5 phr增加到5 phr时发生脆韧转变,缺口冲击强度由19.3 kJ/m2升高到57.8 kJ/m2。扫描电镜表明EVA-g-MAH能有效改善EVM 400在尼龙1010中的分布,分散相粒径随EVA-g-MAH用量增加而显著降低。对共混物断裂形貌分析的结果表明尼龙1010基体的剪切屈服是冲击过程中能量吸收的主要形式,是增韧的主要机理。尼龙1010/EVM 400和尼龙1010/EVM 400/EVA-g-MAH共混物发生脆韧转变的临界粒子间距约为0.2μm,当粒子间距低于该值时,共混物表现为韧性断裂。
     接着,将所用抗冲改性剂扩展到一系列具有不同VA含量以及门尼粘度的EVA,通过熔融共混制备了各种尼龙1010/EVA/EVA-g-MAH(80/15/5)共混物。在门尼粘度相对较低的情况下,VA含量在28~60 wt%的EVA能显著提高尼龙1010的缺口冲击强度。EVA中VA含量对尼龙1010/EVA/EVA-g-MAH(80/15/5)共混物缺口冲击强度的影响与EVA的玻璃化转变温度(Tg)和结晶度有关。在VA含量相同的情况下,高门尼粘度EVA在尼龙1010基体中更容易发生聚集,对尼龙1010的增韧效果低于相应的低门尼粘度EVA。尼龙1010/EVA/EVA-g-MAH(80/15/5)共混物的缺口冲击强度与粒子间距间的关系基本符合粒子间距模型。
     将增韧尼龙1010所用抗冲改性剂的种类进一步扩展到不同弹性体,比较不同弹性体对尼龙1010的增韧效果。选用乙烯-辛烯共聚物(POE)、苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)和EVM三种不同弹性体以及相应的马来酸酐接枝弹性体(POE-g-MAH、SEBS-g-MAH和EVA-g-MAH)作为增容剂与尼龙1010熔融共混,制备了不同的尼龙1010/弹性体/马来酸酐接枝弹性体共混物。在未使用马来酸酐接枝弹性体的情况下,三种弹性体中EVM对尼龙1010的增韧效果最好,相应共混物的缺口冲击强度最高。在所有弹性体增韧尼龙1010的共混物中,尼龙1010//SEBS-g-MAH(80/20)共混物则在室温下具有最高的缺口冲击强度,尼龙1010/POE-g-MAH(80/20)共混物的低温韧性最好。采用修正的断裂有用功(EWF)模型,通过单边缺口三点弯曲(SEN3PB)实验对三种弹性体增韧尼龙1010共混物的断裂力学行为进行研究,结果表明当分散相粒径小于1μm时共混物的极限比断裂能(u0)随分散相粒径增加而增加,而当分散相粒径大于1μm时,u0则显著下降;耗散能密度(ud)则随分散相粒径增加而降低。外部塑性变形区是断裂过程中能量耗散的主要区域,基体的剪切屈服是增韧的主要机理。
     与弹性体共混改性虽然能大幅度提高尼龙1010的缺口冲击强度,但材料的刚性却由于加入弹性体而显著下降。因此,选用玻璃纤维(GF)对尼龙1010/弹性体共混物进行增强改性,通过熔融共混制备了尼龙1010/POE-g-MAH/GF复合材料。尼龙1010/POE-g-MAH/GF复合材料的屈服强度、弯曲强度和模量随GF用量增加几乎呈线性增加。采用修正的EWF模型研究了尼龙1010/POE-g-MAH/GF复合材料的断裂力学行为,发现复合材料的u0随GF用量的增加先增加然后逐渐降低,在GF用量为10 wt%时,u0达到最大;复合材料的ud则随GF用量的增加而逐渐降低。尼龙1010/GF复合材料的临界应力场强度因子随GF用量增加而逐渐提高,这表明GF能够提高尼龙1010抵御裂纹的能力。通过POE-g-MAH和GF共同改性,尼龙1010的冲击强度和屈服强度有了明显提高,吸水率显著下降,维卡软化点则基本保持不变。
     通过熔融共混的方法制备尼龙1010/笼型结构多面体齐聚倍半硅氧烷(POSS)复合材料,研究POSS对尼龙1010热稳定性的影响。POSS能在一定程度上提高尼龙1010的积分程序分解温度和800 oC时的残炭量。对尼龙1010/POSS复合材料在氮气气氛下的热降解动力学研究表明:尼龙1010在氮气气氛中的非等温降解为一级反应,POSS能显著提高尼龙1010的非等温降解反应的活化能,但对反应级数影响很小。对尼龙1010/POSS复合材料的使用寿命预测表明:在温度相对较低的情况下,POSS能显著提高尼龙1010的使用寿命。热重-红外联用分析表明尼龙1010在氮气气氛下的降解产物主要为小分子的低聚物,POSS并不改变尼龙1010降解产物的组成。
     最后,研究了EVM和尼龙1010在加工过程中的反应性。在不同加工温度下制备了尼龙1010/EVM 8939(VA含量90 wt%)(50/50)共混物,尼龙1010/EVM 8939(50/50)共混物的拉伸强度和断裂伸长率随加工温度升高先增加而后逐渐降低。对甲基苯磺酸(TsOH)显著降低了尼龙1010/EVM 8939(50/50)共混物的拉伸强度和断裂伸长率;亚磷酸三苯酯(TPPi)则能提高共混物的断裂伸长率。EVM与TsOH在高温下可以发生化学反应。通过热重、热重-红外联用以及核磁共振等分析手段表明相关反应机理为:EVM在TsOH作用下发生水解,生成具有类似于乙烯-乙烯醇共聚物结构的产物,该产物在TsOH的作用下进一步发生分子内脱水生成主链含有双键的结构。当EVM中的VA含量较高时则将生成主链含有共轭双键的结构,该结构赋予EVM与TsOH反应产物许多优良性能,具有潜在的应用价值。
     本论文的主要创新之处:
     (一)截至目前为止,关于尼龙1010共混改性的相关报道较少。本论文首次使用高VA含量(40 wt%)的乙烯-醋酸乙烯酯橡胶(EVM 400)对尼龙1010进行抗冲改性,成功制备了高抗冲尼龙1010(缺口冲击强度大于50 kJ/m2)。并通过粒子间距模型揭示了尼龙1010/EVM 400共混物结构与性能之间的关系,计算出了EVM 400增韧尼龙1010的临界粒子间距为0.2μm。
     (二)将增韧尼龙1010所用的抗冲改性剂扩展到一系列具有不同VA含量(0~90 wt%)和不同门尼粘度的乙烯-醋酸乙烯酯共聚物(EVA),当所用EVA的VA含量在28~60 wt%范围内时,成功制备了高抗冲尼龙1010。系统地研究了EVA对尼龙1010的增韧效果,并将增韧效果与EVA的玻璃化转变温度和结晶度相关联。
     (三)在前面研究的基础上,通过使用弹性体和玻璃纤维对尼龙1010进行增韧和增强改性,显著提高了尼龙1010的韧性和刚性,尼龙1010的吸水率明显降低而耐热性则基本保持不变,成功制备出综合性能良好的尼龙1010复合材料。采用修正的断裂有用功模型和线弹性断裂力学模型对尼龙1010复合材料的断裂力学行为进行研究,研究玻璃纤维用量对复合材料断裂力学参数的影响。
     (四)首次选用笼型结构多面体齐聚倍半硅氧烷(POSS)来改善尼龙1010的热稳定性,并研究了尼龙1010及尼龙1010/POSS复合材料在氮气气氛下的非等温降解动力学,POSS能显著提高尼龙1010降解反应的表观活化能但并未改变反应级数。
     (五)初步研究了乙烯-醋酸乙烯酯橡胶(EVM)和尼龙1010在高温下的反应性,报道了EVM和TsOH在高温条件下的反应性,通过核磁共振、热重-红外联用等分析表征方法探索了相关的反应机理,EVM和TsOH反应后,EVM的耐溶剂性、玻璃化转变温度和力学性能均有所提高,而体积电阻率则显著下降。EVM和TsOH两者之间的反应具有重要的应用价值。
As a Chinese unique nylon, nylon 1010 has good abrasion resistance, self lubrication and low temperature properties, but it has low notched impact strength due to its low crack propagation energy. In this work, ethylene-vinyl acetate copolymers (EVA) and its maleated version (EVA-g-MAH) were chosen as impact modifiers to toughen nylon 1010 through melt blending, and nylon 1010 blends with high notched impact strength were obtained. The related toughening mechanism was systematically investigated, and the interparticle distance (ID) model was used to reveal the relationship between the notched impact strength and morphology of nylon 1010 blends.
     Firstly, ethylene-vinyl acetate rubber with 40 wt% VA content (EVM 400) was used as impact modifier for nylon 1010 and its toughening effect was investigated. The notched impact strength of nylon 1010/EVM 400 blends increased with increasing EVM 400 content. A brittle-ductile transition (BDT) was observed when the EVM 400 content increased from 40 phr (per hundred nylon 1010) to 80 phr, and the notched impact strength increased from 22.8 kJ/m2 to 62.3 kJ/m2. For nylon 1010/EVM 400 (100/20) blend, the notched impact strength increased significantly after the addition of EVA-g-MAH, and a BDT was also observed when EVA-g-MAH content increased from 2.5 phr to 5 phr. Scanning electron microscope showed EVA-g-MAH significantly improved the dispersion of EVM 400 in nylon 1010 matrix, and the number average diameter (dn) of EVM 400 particles decreased significantly with increasing EVA-g-MAH content. The ID model showed that a sharp BDT was observed for nylon 1010/EVM 400 and nylon 1010/EVM 400/EVA-g-MAH blends when the interparticle distance was about 0.2μm, independent of the addition of EVA-g-MAH.
     Then, the impact modifiers used were expanded to a series of EVA with different VA content and Mooney viscosity. The VA content and Mooney viscosity of EVA significantly affected the notched impact strength of nylon 1010/EVA/EVA-g-MAH (80/15/5) blends. The nylon 1010/EVA/EVA-g-MAH (80/15/5) blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content ranged from 28 wt% to 60 wt%. The effect of VA content on the notched impact strength of nylon 1010/EVA/EVA-g-MAH (80/15/5) blends was related to the glass transition temperature (Tg) and crystallinity of EVA. For nylon1010/EVA/EVA-g-MAH (80/15/5) blends with EVA with the same VA content, high viscosity of EVA usually led to low notched impact strength due to the serious aggregation of EVA in nylon 1010 matrix. A relationship between the notched impact strength and morphology of nylon 1010/EVA/EVA-g-MAH (80/15/5) blends was generally in agreement with the ID model.
     The impact modifiers used were further expanded to different elastomers, and the toughening effects of different elastomers on nylon 1010 were compared. Ethylene-1-octene copolymer (POE), styrene-ethylene-butadiene-styrene block copolymer (SEBS), EVM and also their corresponding maleated versions (POE-g-MAH, SEBS-g-MAH, and EVA-g-MAH) were melt blended with nylon 1010. The elastomer type significantly affected the notched impact strength of nylon 1010/elastomer/maleated elastomer blends. EVM had the best toughening effect on nylon 1010 in the absence of maleated elastomers were added. Among all the nylon 1010/elastomer/maleated elastomer blends, nylon 1010/SEBS-g- MAH (80/20) blend had the highest notched impact strength at room temperature, and nylon 1010/POE-g-MAH (80/20) blend had the best low temperature toughness. The modified essential work of fracture (EWF) was used to characterize the fracture behavior of nylon 1010/elastomer/maleated elastomer blends. The limited fracture energy (u0) of the blends increased with increasing dn when the dn was below 1μm and decreased sharply when dn was over 1μm, while the dissipative energy density (ud) increased with decreasing dn. The energy consumed in the outer plastic zone was the main part of dissipated energy during the fracture process, and the shear yielding of nylon 1010 matrix was the main toughening mechanism.
     Although the notched impact strength of nylon 1010 could be significantly increased by blending nylon 1010 with suitable elatomers, the stiffness of nylon 1010 decreased obviously due to the addition of elastomers. A good trade-off between stiffness and toughness was obtained by the combination of POE-g-MAH and glass fiber (GF). The yield strength, flexural strength and modulus almost linearly increased with increasing GF content. The modified EWF model was used to characterize the fracture behavior of nylon 1010/POE-g-MAH/GF composites. For nylon 1010/POE-g-MAH/GF composites, with increasing GF content, ud gradually decreased and u0 reached the maximum value at the GF content of 10 wt%. The critical stress intensity factor of nylon 1010/GF composites increased with increasing GF content, suggesting GF could enhance the crack resistance of nylon 1010. POE-g-MAH and GF significantly increased the toughness and stiffness of nylon 1010, and decreased the water absorption ratio of nylon 1010.
     The effect of Polyhedral Oligomeric Silsesquioxane (POSS) on the thermal stability of nylon 1010 was also investigated. POSS increased the integral procedure decomposition temperature and char yield at 800 oC of nylon 1010. The Doyle-Ozawa and Friedman methods were used to characterize the non-isothermal decomposition kinetics of nylon 1010 and its composites in nitrogen. The non-isothermal decomposition of nylon 1010 in nitrogen was first order reaction. POSS significantly increased the activation energy of nylon 1010 but had little effect on the reaction order. The lifetime of nylon 1010 and nylon 1010/POSS composites decreased with increasing temperature. POSS significantly prolonged the lifetime of nylon 1010, especially at relatively low temperatures. TG coupled FTIR showed the non-isothermal decomposition products of nylon 1010 were polyamide oligomers, and POSS did not change the formulation of the decomposition products.
     Finally, the reaction between EVM and nylon 1010 during melt blending was also investigated. Nylon 1010/EVM 8939 (VA content, 90 wt%) (50/50) blends were prepared at different mixing temperatures. Both the tensile strength and the elongation at break of nylon 1010/EVM 8939 (50/50) blends went through maximum values with increasing mixing temperature. p-toluenesulfonic acid (TsOH) significantly decreased the tensile strength and elongation at break of nylon 1010/EVM 8939 (50/50) blends, while triphenyl phosphate obviously increased the elongation at break of nylon 1010/EVM 8939 (50/50) blends. An obvious reaction was observed between EVM and TsOH during melting mixing at elevated temperature. The related reaction mechanism was further studied and could be interpreted as follows: EVM was hydrolyzed in the existence of TsOH, and then the hydrolyzation product was intra-molecule dehydrated to form conjugated double bonds. Such conjugated double bonds contributed many excellent properties to EVM materials, which has potential application in future.
     The innovations of this dissertation are list as follows:
     (1) The impact modification of nylon 1010 had not been widely investigated. In this work, ethylene-vinyl acetate rubber with 40 wt% VA content (EVM 400) was firstly used as impact modifier to toughen nylon 1010, and nylon 1010/EVM 400 blends with high notched impact strength (over 50 kJ/m2) were successfully prepared. The relationship between the morphology and the notched impact strength of nylon 1010/EVM 400 blends was revealed by the interpaticle distance (ID) model, and the critical ID for EVM 400 toughened nylon 1010 was around 0.2μm, which has not been reported before.
     (2) The impact modifiers used were further expanded to a series of ethylene-vinyl acetate copolymer (EVA) with different VA content (0 ~ 90 wt%) and Mooney viscosity. Nylon 1010 with high notched impact strength (over 50 kJ/m2) was prepared when the VA content of EVA ranged from 28 wt% ~ 60 wt%. The toughening effects of EVA with different VA content on nylon 1010 were further related to the glass transition temperature and crystallinity of EVA.
     (3) Maleated ethylene-1-ocetene copolymers (POE-g-MAH) and glass fiber (GF) were used to modify nylon 1010. After the addition of POE-g-MAH and GF, the notched impact strength and the yield strength of nylon 1010 significantly increased, while the water absorption ratio of nylon 1010 obviously decreased. Nylon 1010 composites with good comprehensive properties were successfully prepared. The modified essential work of fracture and linear elastic fracture machanics were used to investigate the fracture behavior of nylon 1010 composites. The effect of GF content on the fracture parameters was investigated.
     (4) Polyhedral Oligomeric Silsesquioxane (POSS) was firstly used to enhance the thermal stability of nylon 1010. The non-isothermal decomposition kinetics of nylon 1010 and nylon 1010/POSS composites in nitrogen were investigated. POSS significantly increased the activation energy but had little effect on the reaction order.
     (5) Exploring research was carried out on the reaction between EVM and nylon 1010. The reaction between EVM and TsOH during melt mixing was also invesigated, and related reaction mechanisms were studied in terms of NMR, TGA-FTIR and etc. The reaction between EVM and TsOH contributed EVM many excellent properties such as increased solvent resistance, glass transition temperature, mechanical properties and decreased volume resistivity, which has potential application in future.
引文
[1] Vtracki L. A., Polymer Alloys and Blends: Thermodynamics and Rheology. New York: Hanser Publishers: 1990.
    [2]吴培熙,张留城,聚合物共混改性.北京:中国轻工业出版社: 1996.
    [3] Broutman L. J.,McGarry F. J., Fracture surface work measurements on glassy polymers by a cleavage technique. II. Effects of crosslinking and preorientation. Journal of Applied Polymer Science, 1965, 9 (2): 609-626.
    [4] Mostovoy S.,Ripling E. J., Fracture toughness of an epoxy system. Journal of Applied Polymer Science, 1966, 10 (9): 1351-1371.
    [5] Yin N.,Zhang Y.,Zhang Y.,Zhang X.,Zhou W., Preparation and properties of PC/SAN alloy modified with styrene-ethylene-butylene-styrene block copolymer. Journal of Applied Polymer Science, 2007, 106 (1): 637-643.
    [6] Kalkar A. K.,Deshpande A. A.,Kulkarni M. J., In situ composites from blends of polycarbonate and a thermotropic liquid-crystalline polymer: The influence of the processing temperature on the rheology, morphology, and mechanical properties of injection-molded microcomposites. Journal of Applied Polymer Science, 2007, 106 (1): 34-45.
    [7] Hale W.,Keskkula H.,Paul D. R., Fracture behavior of PBT-ABS blends compatibilized by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers. Polymer, 1999, 40 (12): 3353-3365.
    [8] Wildes G.,Keskkula H.,Paul D. R., Fracture characterization of PC/ABS blends: effect of reactive compatibilization, ABS type and rubber concentration. Polymer, 1999, 40 (25): 7089-7107.
    [9] Kudva R. A.,Keskkula H.,Paul D. R., Fracture behavior of nylon 6/ABS blends compatibilized with an imidized acrylic polymer. Polymer, 2000, 41 (1): 335-349.
    [10]王文广,塑料改性实用技术.北京:中国轻工业出版社: 2000.
    [11]殷敬华等,聚合物共混物(译):组成与性能(下卷).北京:科学出版社: 2004.
    [12] Dijkstra K.,ter Laak J.,Gaymans R. J., Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber) blends. Polymer, 1994, 35 (2): 315-322.
    [13] Okada O.,Keskkula H.,Paul D. R., Fracture toughness of nylon 6 blends with maleated ethylene/propylene rubbers. Polymer, 2000, 41 (22): 8061-8074.
    [14] Wang X.,Li H., Compatibilizing effect of ethylene-vinyl acetate-acrylic acid copolymer on nylon 6/ethylene-vinyl acetate copolymer blended system: Mechanical properties, morphology and rheology. Journal of Materials Science, 2001, 36 (22): 5465-5473.
    [15] Wang X.,Li H.,Ruckenstein E., Cooperative toughening and cooperative compatibilization: The nylon 6/ethylene-co-vinyl acetate/ethylene-co-acrylic acid blends. Polymer, 2001, 42 (22): 9211-9216.
    [16] Chow W. S.,Abu Bakar A.,Mohd Ishak Z. A.,Karger-Kocsis J.,Ishiaku U. S.,Effect of maleic anhydride-grafted ethylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. European Polymer Journal, 2005, 41 (4): 687-696.
    [17] Filippi S.,Minkova L.,Dintcheva N.,Narducci P.,Magagnini P., Comparative study of different maleic anhydride grafted compatibilizer precursors towards LDPE/PA6 blends: Morphology and mechanical properties. Polymer, 2005, 46 (19): 8054-8061.
    [18] Lievana E.,Karger-Kocsis J., Impact Modification of PA-6 and PBT by Epoxy-Functionalized Rubbers. Macromolecular Symposia, 2003, 202 59-66.
    [19] Sun S. L.,Tan Z. Y.,Xu X. F.,Zhou C.,Ao Y. H.,Zhang H. X., Toughening of nylon-6 with epoxy-functionalized acrylonitrile-butadiene- styrene copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43 (16): 2170-2180.
    [20]张雪娇,程永清,刚性粒子增韧聚苯乙烯的研究.材料导报, 2005, (06): 82-84.
    [21]史学涛,张广成,陈挺,刘铁民,无机刚性粒子增韧增强PP研究进展.中国塑料, 2005, (11): 6-11.
    [22]羊海棠,杨瑞成,冯辉霞,李迎春,陈奎,袁晓波,纳米二氧化硅粒子增韧聚丙烯的研究.甘肃工业大学学报, 2003, (02): 34-36.
    [23]任显诚,白兰英,王贵恒,张伯兰,纳米级CaCO3粒子增韧增强聚丙烯的研究.中国塑料, 2000, (01): 22-26.
    [24]吴永刚,马懿,李敬泽,姜郁英,无机刚性粒子增韧PP的研究.中国塑料, 1999, (04): 29-33.
    [25]张雪娇,聚苯乙烯的刚性无机粒子增韧.化学工业与工程技术, 2007, (05): 44-46.
    [26]陈兴明,肖波,朱世富,赵北君,纳米级SiO2粒子对HDPE增强增韧研究.四川师范大学学报(自然科学版), 2003, (01): 67-68.
    [27]于建,陆明亚,孙喜梅, HDPE树脂的无机刚性粒子增韧.清华大学学报(自然科学版), 2002, (05): 591-594.
    [28]唐卫华,金日光,我国刚性粒子增韧HDPE的研究进展.现代塑料加工应用, 2001, (02): 59-64.
    [29]权英,杨明山,严庆,王志勋,金日光,纳米刚性粒子对硬质PVC的增韧增强效果.北京化工大学学报(自然科学版), 2002, (06): 23-26.
    [30]宗志宇,许涌深,戴建华,无机纳米粒子增强增韧聚合物的研究进展.天津化工, 2003, (02): 18-21.
    [31]冯嘉春,陈鸣才,无机刚性粒子增韧高分子研究进展.中国塑料, 2000, (11): 10-15.
    [32]孟季茹,梁国正,秦华宇,赵磊,刚性粒子增韧增强聚合物的研究概况.塑料, 2002, (02): 47-51.
    [33]张金柱,汪信,陆路德,徐迎宾,纳米无机粒子对塑料增强增韧的“裂缝与银纹相互转化”机理.工程塑料应用, 2003, (01): 20-22.
    [34]吕坤,聚合物增韧机理研究进展.现代塑料加工应用, 2000, (04): 50-54.
    [35]唐清华,李伟,王孝军,吴艳,杨杰,有机刚性粒子增韧聚苯硫醚的研究.塑料工业, 2006, (09): 14-17.
    [36]陈哲,王琪,徐僖,超细聚酰胺6粒子增韧聚丙烯体系的研究.高分子学报,2001, (01): 13-16.
    [37]季根忠,刘维民,齐陈泽,阎逢元,刚性粒子增韧聚合物机理研究.高分子通报, 2005, (01): 50-54.
    [38]刘宏治,杨桂生,欧玉春,王笃金,核-壳粒子增韧聚合物的研究进展.高分子通报, 2006, (09): 1-15.
    [39] Lovell P. A.,McDonald J.,Saunders D. E. J.,Young R. J., Studies of rubber-toughened poly(methyl methacrylate): 1. Preparation and thermal properties of blends of poly(methyl methacrylate) with multiple-layer toughening particles. Polymer, 1993, 34 (1): 61-69.
    [40] Shah N., Effect of modifier concentration on the fracture behaviour of rubber-modified PMMA. Journal of Materials Science, 1988, 23 (10): 3623-3629.
    [41]吴广峰,赵俊枫,杨海东,冯之榴,张会轩, AIM核壳增韧剂/PVC树脂共混体系性能.复合材料学报, 2005, (03): 30-34.
    [42] Cheng T. W.,Keskkula H.,Paul D. R., Thermal aging of impact-modified polycarbonate. Journal of Applied Polymer Science, 1992, 45 (3): 531-551.
    [43] Brady A. J.,Keskkula H.,Paul D. R., Toughening of poly(butylene terephthalate) with core-shell impact modifiers dispersed with the aid of polycarbonate. Polymer, 1994, 35 (17): 3665-3672.
    [44] Aerdts A. M.,Groeninckx G.,Zirkzee H. F.,van Aert H. A. M.,Geurts J. M., Preparation of epoxy-functionalized methyl methacrylate-butadiene-styrene core-shell particles and investigation of their dispersion in polyamide-6. Polymer, 1997, 38 (16): 4247-4252.
    [45]范宏,王建黎, PBA/PMMA型核壳弹性粒子增韧环氧树脂研究.高分子材料科学与工程, 2001, (01): 121-124.
    [46]程晓华,于德梅,核-壳聚合物粒子增韧改性工程塑料.化工新型材料, 2001, (05): 23-25.
    [47] Mertz E. H.,Claver G. C.,Baer M. J., Studies on heterogeneous polymeric systems. Journal of Polymer Science, 1956, 22 325.
    [48] Newman S.,Strella S., Stress-strain behavior of rubber-reinforced glassy polymers. Journal of Applied Polymer Science, 1965, 9 (6): 2297-2310.
    [49] J. A. Schmitt H. K., Short-time stress relaxation and toughness of rubber-modified polystyrene. Journal of Applied Polymer Science, 1960, 3 (8): 132-142.
    [50] Pearson R. A.,Yee A. F., Toughening mechanisms in elastomer-modified epoxies - Part 2 Microscopy studies. Journal of Materials Science, 1986, 21 (7): 2475-2488.
    [51]孙树林,徐新宇,杨海东,张会轩,二元乙丙橡胶的环氧官能化及其增韧尼龙6的研究.高分子学报, 2005, (03): 368-373.
    [52]佀庆波,周超,张冠英,张会轩,基体组成对橡胶改性的PVC/PMMA共混物断裂行为的影响.中国塑料, 2006, (12): 35-38.
    [53] Borggreve R. J. M.,Gaymans R. J.,Schuijer J., Impact behaviour of nylon-rubber blends: 5. Influence of the mechanical properties of the elastomer. Polymer, 1989, 30 (1): 71-77.
    [54] Steenbrink A. C.,Litvinov V. M.,Gaymans R. J., Toughening of SAN with acrylic core-shell rubber particles: particle size effect or cross-link density? Polymer, 1998, 39 (20): 4817-4825.
    [55] Dijkstra K.,Van Der Wal A.,Gaymans R. J., Nylon-6-rubber blends - Part IV Cavitation and yield in nylon-rubber blends. Journal of Materials Science, 1994, 29 (13): 3489-3496.
    [56] Lazzeri A.,Bucknall C. B., Applications of a dilatational yielding model to rubber-toughened polymers. Polymer, 1995, 36 (15): 2895-2902.
    [57] Oshinski A. J.,Keskkula H.,Paul D. R., Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6. Polymer, 1992, 33 (2): 268-283.
    [58] Oshinski A. J.,Keskkula H.,Paul D. R., The role of matrix molecular weight in rubber toughened nylon 6 blends: 3. Ductile-brittle transition temperature. Polymer, 1996, 37 (22): 4919-4928.
    [59]冯威,李佐邦,高分子合金的增韧机理.合成树脂及塑料, 1999, (06): 41-44.
    [60] Okamoto Y.,Miyagi H.,Mitsui S., New cavitation mechanism of rubber dispersed polystyrene. Macromolecules, 1993, 26 (24): 6547-6551.
    [61]郑强,冯金茂,俞月初,益小苏,聚合物增韧机理研究进展.高分子材料科学与工程, 1998, (04): 12-15.
    [62] Bucknall C. B.,Smith R. R., Stress-whitening in high-impact polystyrenes. Polymer, 1965, 6 (8): 437-446.
    [63] Gent A. N., Hypothetical mechanism of crazing in glassy plastics. Journal of Materials Science, 1970, 5 (11): 925-932.
    [64] Bragaw C., Nano-silica Bead-filled Polyproplene. Polymer Preprints, 1970, 11 368.
    [65] Argon A. S., Role of Heterogeneities in the Crazing of Glassy Polymers Pure Applied Chemistry, 1975, 43.
    [66] Bucknall C. B.,Clayton D.,Keast W. E., Rubber-toughening of plastics - Part 2 Creep mechanisms in HIPS/PPO blends. Journal of Materials Science, 1972, 7 (12): 1443-1453.
    [67] Bucknall C. B.,Clayton D., Rubber-toughening of plastics - Part 1: Creep mechanisms in HIPS. Journal of Materials Science, 1972, 7 (2): 202-210.
    [68] Bucknall C. B.,Clayton D.,Keast W., Rubber-toughening of plastics - Part 3 Strain damage in HIPS and HIPS/PPO blends. Journal of Materials Science, 1973, 8 (4): 514-524.
    [69] Bucknall C. B.,Partridge I. K.,Ward M. V., Rubber toughening of plastics - Part 7 Kinetics and mechanisms of deformation in rubber-toughened PMMA. Journal of Materials Science, 1984, 19 (6): 2064-2072.
    [70] Kramer E. J.,Berger L. L., Fundamental processes of craze growth and fracture. Advances in Polymer Science, 1990, 91--92.
    [71] van der Wal A.,Mulder J. J.,Oderkerk J.,Gaymans R. J., Polypropylene-rubber blends: 1. The effect of the matrix properties on the impact behaviour. Polymer, 1998, 39 (26): 6781-6787.
    [72] Oshinski A. J.,Keskkula H.,Paul D. R., Role of matrix molecular weight in rubber toughened nylon 6 blends: 3. Ductile-brittle transition temperature. Polymer, 1996, 37 (22): 4919-4928.
    [73] Oshinski A. J.,Keskkula H.,Paul D. R., Role of matrix molecular weight in rubber toughened nylon 6 blends: 1. Morphology. Polymer, 1996, 37 (22): 4891-4907.
    [74] Oshinski A. J.,Keskkula H.,Paul D. R., Role of matrix molecular weight in rubbertoughened nylon 6 blends: 2. Room temperature izod impact toughness. Polymer, 1996, 37 (22): 4909-4918.
    [75] van der Wal A.,Nijhof R.,Gaymans R. J., Polypropylene-rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer, 1999, 40 (22): 6031-6044.
    [76] Huang J. J.,Keskkula H.,Paul D. R., Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers: Morphology and Izod impact behavior. Polymer, 2004, 45 (12): 4203-4215.
    [77] Huang J. J.,Keskkula H.,Paul D. R., Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers. Polymer, 2006, 47 (2): 639-651.
    [78] Huang J. J.,Paul D. R., Comparison of fracture behavior of nylon 6 versus an amorphous polyamide toughened with maleated poly(ethylene-1-octene) elastomers. Polymer, 2006, 47 (10): 3505-3519.
    [79] Marechal P.,Coppens G.,Legras R.,Dekoninck J.-M., Amine/anhydride reaction versus amide/anhydride reaction in polyamide/anhydride carriers. Journal of Polymer Science, Part A: Polymer Chemistry, 1995, 33 (5): 757-766.
    [80] Dijkstra K.,Wevers H. H.,Gaymans R. J., Nylon 6/rubber blends. VII. Temperature-time effects in the impact behaviour of nylon/rubber blends. Polymer, 1994, 35 (2): 323-331.
    [81] Borggreve R. J. M.,Gaymans R. J.,Schuijer J.,Housz J. F. I., Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer, 1987, 28 (9): 1489-1496.
    [82] Lazzeri A.,Bucknall C. B., Dilatational bands in rubber-toughened polymers. Journal of Materials Science, 1993, 28 (24): 6799-6808.
    [83] Steenbrink A. C.,Van Der Giessen E., A numerical study of cavitation and yield in amorphous polymer-rubber blends. Journal of Engineering Materials and Technology, Transactions of the ASME, 1997, 119 (3): 256-261.
    [84] Gent A. N.,Tompkins D. A., Surface energy effects for small holes or particles in elastomers. Journal of Polymer Science, Part A-2: Polymer Physics, 1969, 7 (9): 1483-1487.
    [85] van der Wal A.,Verheul A. J. J.,Gaymans R. J., Polypropylene-rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer, 1999, 40 (22): 6057-6065.
    [86] Kayano Y.,Keskkula H.,Paul D. R., Evaluation of the fracture behaviour of nylon 6/SEBS-g-MA blends. Polymer, 1997, 38 (8): 1885-1902.
    [87] Huang J. J.,Keskkula H.,Paul D. R., Elastomer particle morphology in ternary blends of maleated and non-maleated ethylene-based elastomers with polyamides: Role of elastomer phase miscibility. Polymer, 2006, 47 (2): 624-638.
    [88] Wu S., Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer, 1985, 26 (12): 1855-1863.
    [89] Yang J.,Zhang Y.,Zhang Y., Brittle-ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer, 2003, 44 (17): 5047-5052.
    [90] Arostegui A.,Nazabal J., Critical inter-particle distance dependence and super-toughness in poly(butylene terephthalate)/grafted poly(ethylene-octene) copolymerblends by means of polyarylate addition. Polymer, 2003, 44 (18): 5227-5237.
    [91] William G. P., Polymer toughness and impact resistance. Polymer Engineering and Science, 1999, 39 (12): 2445-2460.
    [92] Jiang W.,Yuan Q.,An L.,Jiang B., Effect of cavitations on brittle-ductile transition of particle toughened thermoplastics. Polymer, 2002, 43 (4): 1555-1558.
    [93] Bartczak Z.,Argon A. S.,Cohen R. E.,Weinberg M., Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer, 1999, 40 (9): 2331-2346.
    [94] Jiang W.,Liang H.,Jiang B., Interparticle distance-temperature-strain rate equivalence for the brittle-tough transition in polymer blends. Polymer, 1998, 39 (18): 4437-4442.
    [95] Jiang W.,An L.,Jiang B., Brittle-tough transition in elastomer toughening thermoplastics: Effects of the elastomer stiffness. Polymer, 2001, 42 (10): 4777-4780.
    [96]澎治汉,施祖培,塑料工业手册(聚酰胺).北京:化学工业出版社: 2001.
    [97]祝燮权,实用五金手册.上海:上海科学技术出版社: 1998.
    [98] H Arimoto M. I., M Hirai, Y Chatani Crystal structure of theγ-form of nylon 6. Journal of Polymer Science, Part A: General Papers, 1965, 3 317.
    [99] Arimoto H., Notes on nylon 6 single crystal. Journal of Polymer Science, Part B: Polymer Physics, 1963, 1 57-61.
    [100] Cho J. W.,Paul D. R., Glass fiber-reinforced polyamide composites toughened with ABS and EPR-g-MA. Journal of Applied Polymer Science, 2001, 80 (3): 484-497.
    [101] Laura D. M.,Keskkula H.,Barlow J. W.,Paul D. R., Effect of glass fiber and maleated ethylene-propylene rubber content on tensile and impact properties of Nylon 6. Polymer, 2000, 41 (19): 7165-7174.
    [102] Laura D. M.,Keskkula H.,Barlow J. W.,Paul D. R., Effect of glass fiber and maleated ethylene - Propylene rubber content on the impact fracture parameters of nylon 6. Polymer, 2001, 42 (14): 6161-6172.
    [103]薛恩钰,曾敏修等,阻燃科学及应用.北京:国防工业出版社: 1988.
    [104] Chen Y.,Wang Q.,Yan W.,Tang H., Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polymer Degradation and Stability, 2006, 91 (11): 2632-2643.
    [105] Liu Y.,Wang Q.,Fei G.,Chen Y., Preparation of polyamide resin-encapsulated melamine cyanurate/melamine phosphate composite flame retardants and the fire-resistance to glass fiber-reinforced polyamide 6. Journal of Applied Polymer Science, 2006, 102 (2): 1773-1779.
    [106] Wu Z. Y.,Xu W.,Xia J. K.,Liu Y. C.,Wu Q. X.,Xu W. J., Flame retardant polyamide 6 by in situ polymerization ofε-caprolactam in the presence of melamine derivatives. Chinese Chemical Letters, 2008, 19 (2): 241-244.
    [107] Liu Y.,Wang Q., Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polymer Degradation and Stability, 2006, 91 (12): 3103-3109.
    [108] Fei G.,Liu Y.,Wang Q., Synergistic effects of novolac-based char former with magnesium hydroxide in flame retardant polyamide-6. Polymer Degradation and Stability, 2008, 93 (7): 1351-1356.
    [109] Rothon R. N.,Hornsby P. R., Flame retardant effects of magnesium hydroxide.Polymer Degradation and Stability, 1996, 54 (2-3 SPEC. ISS.): 383-385.
    [110] Wang X.-H.,Zhang H.-X.,Jiang W.,Wang Z.-G.,Liu C.-H.,Liang H.-J.,Jiang B.-Z., Toughening of nylon with epoxidised ethylene propylene diene rubber. Polymer, 1998, 39 (12): 2697-2699.
    [111] Oshinski A. J.,Keskkula H.,Paul D. R., Rubber toughening of polyamides with functionalized block copolymers: 2. Nylon-6,6. Polymer, 1992, 33 (2): 284-293.
    [112] Yu Z. Z.,Ou Y. C.,Hu G. H., Influence of interfacial adhesion on toughening of polyethylene-octene elastomer/nylon 6 blends. Journal of Applied Polymer Science, 1998, 69 (9): 1711-1718.
    [113] Lu M.,Keskkula H.,Paul D. R., Reactive coupling of core-shell impact modifiers to polyamide matrices using styrene-maleic anhydride copolymers. Polymer, 1993, 34 (9): 1874-1885.
    [114] Lu M.,Keskkula H.,Paul D. R., Toughening of nylon 6 with core-shell impact modifiers: Effect of matrix molecular weight. Journal of Applied Polymer Science, 1996, 59 (9): 1467-1477.
    [115] Yu Z. Z.,Ou Y. C.,Qi Z. N.,Hu G. H., Toughening of nylon 6 with a maleated core-shell impact modifier. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36 (11): 1987-1994.
    [116] Hu Y.,Wang S.,Ling Z.,Zhuang Y.,Chen Z.,Fan W., Preparation and combustion properties of flame retardant Nylon 6/montmorillonite nanocomposite. Macromolecular Materials and Engineering, 2003, 288 (3): 272-276.
    [117] Ahn Y.-C.,Paul D. R., Rubber toughening of nylon 6 nanocomposites. Polymer, 2006, 47 (8): 2830-2838.
    [118] Meisenheimer H.,Zens A., Handbook of Speciality Elastomers. Boca Raton: CRC Press: 2008.
    [119]张庆虎,高性能乙华平(EVM)橡胶的特性及应用.世界橡胶工业, 2000, (05): 41-49.
    [120]张庆虎,乙华平(EVM)橡胶的特性及应用.特种橡胶制品, 2001, (02): 18-22.
    [121] Meisenheimer H., Properties of EVM compounds in relation to the vinyl acetate content of the polymer. KGK-Kautschuk und Gummi Kunststoffe, 1999, 52 (11): 8.
    [122] Pazur R. J.,Ferrari L.,Meisenheimer H., EVM copolymers: The forgotten rubber. Rubber World, 2005, 231 (5): 27-34.
    [123] Meisenheimer H., Levapren - Jacket for non-corrosive low smoke safety cables. Levapren. Einsatz fur Ummantelungen von raucharmen, korrosionsfreien Sicherheitskabeln, 1990, 43 (1): 41-42.
    [124] Meisenheimer H., Low smoke, non-corrosive, fire retardant cable jackets based on HNBR and EVM. Rubber World, 1991, 204 (3): 19-22, 47.
    [125]陈红.纳米橡胶增韧尼龙1010的制备与表征[学位论文].郑州大学2005.
    [126]张淑玲.尼龙1010/热塑性聚氨酯弹性体共混体系的研究[学位论文].吉林大学2005.
    [127]石彪,彭少贤,陈绪煌,胡爱红,李海燕, PA-1010/ABS合金的性能研究.塑料科技, 2002, (03): 4-6.
    [128] Bucknall C. B.,Heather P. S.,Lazzeri A., Rubber toughening of plastics - Part 12Deformation mechanisms in toughened nylon 6,6. Journal of Materials Science, 1989, 24 (6): 2255-2261.
    [129] Bucknall C. B.,Stevens W. W., Rubber toughening of plastics - Part 5 Fatique damage mechanisms in ABS and HIPS. Journal of Materials Science, 1980, 15 (12): 2950-2958.
    [130] Bucknall C. B.,Lazzeri A., Rubber toughening of plastics - Part XIII: Dilatational yielding in PA6.6/EPR blends. Journal of Materials Science, 2000, 35 (2): 427-435.
    [131] Wu S., Impact fracture mechanisms in polymer blends: rubber-toughened nylon. Journal of Polymer Science. Part A-2, Polymer Physics, 1983, 21 (5): 699-716.
    [132] Wong S. C.,Mai Y. W., Effect of rubber functionality on mechanical and fracture properties of impact-modified nylon 6,6/polypropylene blends. Key Engineering Materials, 1998, 137 55-62.
    [133] Jiang W.,Yu D.,Jiang B., Brittle-ductile transition of particle toughened polymers: Influence of the matrix properties. Polymer, 2004, 45 (19): 6427-6430.
    [134] Gonzalez I.,Eguiazabal J. I.,Nazabal J., Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: Effects of clay loading on morphology and mechanical properties. European Polymer Journal, 2006, 42 (11): 2905-2913.
    [135] Yu Z. Z.,Ke Y. C.,Ou Y. C.,Hu G. H., Impact fracture morphology of nylon 6 toughened with a maleated polyethylene-octene elastomer. Journal of Applied Polymer Science, 2000, 76 (8): 1285-1295.
    [136]于杰,金志浩,雷华,刘一春,罗筑,聚合物材料缺口冲击强度与断面粗糙度参数R~s的关系.高分子学报, 1999, (05): 612-615.
    [137] Tessier M.,Marechal E., Study of the synthesis of poly(isobutylene-b-amide-11) by polycondensation ofα,ω-dianhydride oligoisobutylene withα,ω-diamino oligoamide-11. I. Study of amine-anhydride and amide-anhydride reactions on low molecular weight models and on oligomers and polymers. Journal of Polymer Science, Part A: Polymer Chemistry, 1988, 26 (10): 2785-2810.
    [138] Liu Z. H.,Kwok K. W.,Li R. K. Y.,Choy C. L., Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer, 2002, 43 (8): 2501-2506.
    [139] Hermann Meisenheimer A. Z., Handbook of Specialty Elastomers. New York: CRC Press: 2007.
    [140]陈民杰,张军,万吴军,尼龙66/乙烯-醋酸乙烯酯共聚物接枝马来酸酐共混体系的研究(I)乙烯-醋酸乙烯酯共聚物熔融接枝马来酸酐的制备与表征.弹性体, 2003, (06): 16-20.
    [141]张军,陈民杰,万吴军,殷会玉,尼龙/乙烯-醋酸乙烯酯共聚物接枝马来酸酐共混体系的研究.中国塑料, 2003, (02): 33-38.
    [142] Favis B. D.,Chalifoux J. P., Effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing. Polymer Engineering and Science, 1987, 27 (21): 1591-1600.
    [143] Karger-Kocsis J.,Kallo A.,Kuleznev V. N., Phase structure of impact-modified polypropylene blends. Polymer, 1984, 25 (2): 279-286.
    [144] Wu S., Formation of dispersed phase in incompatible polymer blends: interfacialand rheological effects. Polymer Engineering and Science, 1986, 27 (5): 335-343.
    [145] Avgeropoulos G. N.,Weissert F. C.,Biddison P. H.,Boehm G. G. A., Heterogeneous blends of polymers: rheology and morphology, 1976, 49 (1): 93-104.
    [146] Paul D. R.,Bucknall C. B., Polymer Blends: Formulation and Performance. John Wiley & Sons, Inc: 2000.
    [147] Chow W. S.,Bakar A. A.,Ishak Z. A. M., Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites. Journal of Applied Polymer Science, 2005, 98 (2): 780-790.
    [148] Muratoglu O. K.,Argon A. S.,Cohen R. E.,Weinberg M., Microstructural fracture processes accompanying growing cracks in tough rubber-modified polyamides. Polymer, 1995, 36 (25): 4787-4795.
    [149] Irwin G. R., Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics Transactions of the ASME, 1957, 24 (79): 361.
    [150] Rice J. R., Plane strain deformation near a crack tip in a power-law hardening materials. Journal of the Mechanics and Physics of Solids, 1968, 16 1-12.
    [151] Rice J. R.,Paris P. C.,Merkle J. G., Some further results of J-integral analysis and estimatesProgress in flaw growth and fracture toughness testing. American Society for Testing and Materials STP 536, 1973, 231-245.
    [152] Rice J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics Transactions of the ASME, 1968, 35 379-386.
    [153] J. D. G Sumpter,C.E Turner, Method for Laboratory Determination of Jc. American Society for Testing and Materials STP 601, 1976, 3-18.
    [154] Broberg K. B., Crack growth criteria and non-linear fracture mechanics. Journal of the Mechanics and Physics of Solids, 1971, 19 (6): 407-418.
    [155] Broberg K. B., On stable crack growth. Journal of the Mechanics and Physics of Solids, 1975, 23 (3): 215-237.
    [156] Wu J.,Mai Y. W.,Cotterell B., Fracture toughness and fracture mechanisms of PBT/PC/IM blend - Part I Fracture properties. Journal of Materials Science, 1993, 28 (12): 3373-3384.
    [157] Mai Y.-W.,Powell P., Essential work of fracture and J-integral measurements for ductile polymers. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29 (7): 785-793.
    [158] Wu J.,Mai Y. W., The essential fracture work concept for toughness measurement of ductile polymers. Polymer Engineering and Science, 1996, 36 (18): 2275-2288.
    [159] Mai Y. W.,Cotterell B., On the essential work of ductile fracture in polymers. International Journal of Fracture, 1986, 32 (2): 105-125.
    [160] Mai Y.-W., On the plane-stress essential fracture work in plastic failure of ductile materials. International Journal of Mechanical Sciences, 1993, 35 (12): 995-1005.
    [161] Cotterell B.,Reddel J. K., The essential work of plane stress ductile fracture. International Journal of Fracture, 1977, 13 (3): 267-277.
    [162] Vu-Khanh T.,De Charentenay F. X., MECHANICS AND MECHANISMS OF IMPACT FRACTURE IN SEMI-DUCTILE POLYMERS. Polymer Engineering and Science, 1985, 25 (13): 841-850.
    [163] Vu-Khanh T., Determination of the impact fracture parameters in ductilepolymers. Polymer, 1988, 29 (11): 1979-1984.
    [164] Okada O.,Keskkula H.,Paul D. R., Facture toughness of nylon-6 blends with maleated rubbers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42 (9): 1739-1758.
    [165] Laura D. M.,Keskkula H.,Barlow J. W.,Paul D. R., Effect of rubber particle size and rubber type on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer, 2003, 44 (11): 3347-3361.
    [166] Jae Whan C.,Paul D. R., Glass fiber-reinforced polyamide composites toughened with ABS and EPR-g-MA. Journal of Applied Polymer Science, 2001, 80 (3): 484-497.
    [167] Karger-Kocsis J.,Friedrich K.,Bailey R. S., Fatigue crack propagation in short and long glass fiber reinforced injection-molded polypropylene composites Advanced Composite Materials,, 1991, 1 (2): 103.
    [168] Cox H. L., The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 3 72-79.
    [169] Krenchel H., Fiber Reinforcement. Kopenhagen: Akademisk Forlag: 1964.
    [170] Laura D. M.,Keskkula H.,Barlow J. W.,Paul D. R., Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer, 2002, 43 (17): 4673-4687.
    [171] Muratoglu O. K.,Argon A. S.,Cohen R. E.,Weinberg M., Toughening mechanism of rubber-modified polyamides. Polymer, 1995, 36 (5): 921-930.
    [172] Muratoglu O. K.,Argon A. S.,Cohen R. E.,Weinberg M., Microstructural processes of fracture of rubber-modified polyamides. Polymer, 1995, 36 (25): 4771-4786.
    [173] Speroni F.,Castoldi E.,Fabbri P.,Casiraghi T., Mechanisms of energy dissipation during impact in toughened polyamides: a SEM analysis. Journal of Materials Science, 1989, 24 (6): 2165-2176.
    [174] Friedrich K., Microstructural efficiency and fracture toughness of short fiber/thermoplastic matrix composites. Composites Science and Technology, 1985, 22 (1): 43-74.
    [175] Spahr D. E.,Friedrich K.,Schultz J. M.,Bailey R. S., Microstructure and fracture behaviour of short and long fibre-reinforced polypropylene composites. Journal of Materials Science, 1990, 25 (10): 4427-4439.
    [176] Chen W. Y.,Wang Y. Z.,Kuo S. W.,Huang C. F.,Tung P. H.,Chang F. C., Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine. Polymer, 2004, 45 (20): 6897-6908.
    [177] Fina A.,Abbenhuis H. C. L.,Tabuani D.,Camino G., Metal functionalized POSS as fire retardants in polypropylene. Polymer Degradation and Stability, 2006, 91 (10): 2275-2281.
    [178] Fina A.,Abbenhuis H. C. L.,Tabuani D.,Frache A.,Camino G., Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability, 2006, 91 (5): 1064-1070.
    [179] F. Baldi F. B., L. Ricco, O. Monticelli, T. Ricc, Mechanical and structural characterization of POSS-modified polyamide 6. Journal of Applied Polymer Science, 2006, 100 (4): 3409-3414.
    [180] Zhou Z. Y., Zhang Y., Zhang Y. X., Yin N. W., Rheological behavior of polypropylene/octavinyl polyhedral oligomeric silsesquioxane composites. Journal ofPolymer Science Part B: Polymer Physics, 2008, 46 (5): 526-533.
    [181] Bruce X. Fu L. Y., Rajesh H. Somani, Steven X. Zong, Benjamin S. Hsiao, Shawn Phillips, Rusty Blanski, Patrick Ruth,, Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science Part B: Polymer Physics, 2001, 39 (22): 2727-2739.
    [182] Liu Y. R.,Huang Y. D.,Liu L., Effects of TriSilanolIsobutyl-POSS on thermal stability of methylsilicone resin. Polymer Degradation and Stability, 2006, 91 (11): 2731-2738.
    [183] Mather P. T.,Jeon H. G.,Romo-Uribe A.,Haddad T. S.,Lichtenhan J. D., Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers. Macromolecules, 1999, 32 (4): 1194-1203.
    [184] Haddad T. S.,Lichtenhan J. D., Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules, 1996, 29 (22): 7302-7304.
    [185]周志勇.反应加工制备聚合物/POSS复合材料的结构与性能研究[学位论文].上海交通大学博士论文2008.
    [186] Doyle C. D., Estimating Thermal Stability of Experimental Polymers by Empirical Thermogravimetric Analysis. Analytical Chemistry., 1961, 33 (1): 77-79.
    [187] Wu C. S.,Liu Y. L.,Chiu Y. C.,Chiu Y. S., Thermal stability of epoxy resins containing flame retardant components: An evaluation with thermogravimetric analysis. Polymer Degradation and Stability, 2002, 78 (1): 41-48.
    [188] Park S. J.,Cho M. S., Thermal stability of carbon-MoSi2-carbon composites by thermogravimetric analysis. Journal of Materials Science, 2000, 35 (14): 3525-3527.
    [189] Masatoshi Iji S. S., Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polymers for Advanced Technologies, 1998, 9 (10-11): 593-600.
    [190] Fina A.,Tabuani D.,Carniato F.,Frache A.,Boccaleri E.,Camino G., Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta, 2006, 440 (1): 36-42.
    [191] Friedman H. L., Kinetics and Gaseous Products of Thermal Decomposition of Polymers. Journal of Macromolecular Science, Part A, 1967, 1 (1): 57 - 79.
    [192] Horowitz H. H.,Metzger G., A new analysis of thermogravimetric traces. Analytical Chemistry, 1963, 35 (10): 1464-1468.
    [193] Coats A. W.,Redfern J. P., Kinetic Parameters from Thermogravimetric Data. Nature, 1964, 201 (4914): 68-69.
    [194] Kissinger H. E., Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 1957, 29 (11): 1702-1706.
    [195] Chi Z.,Yao X.,Zhang Y.,Xu J., Thermal decomposition kinetics of thermotropic liquid crystalline polyesterimides. Journal of Applied Polymer Science, 2005, 98 (6): 2467-2472.
    [196] Doyle C. D., Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 1961, 5 (15): 285-292.
    [197] Ozawa T., A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan 1965, 38 (11): 1881-1886.
    [198] Li X.-G.,Huang M.-R.,Guan G.-H.,Sun T., Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating rate methods. Polymer International, 1998, 46 (4): 289-297.
    [199] Zhang L.,Ma J.,Zhu X.,Liang B., Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene-2,6-naphthalate) by single heating rate methods. Journal of Applied Polymer Science, 2004, 91 (6): 3915-3920.
    [200] Saikrasun S.,Wongkalasin O., Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester. Polymer Degradation and Stability, 2005, 88 (2): 300-308.
    [201] Saha B.,Maiti A. K.,Ghoshal A. K., Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochimica Acta, 2006, 444 (1): 46-52.
    [202] Vyazovkin S.,Wight C. A., Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate. Chemistry of Materials, 1999, 11 (11): 3386-3393.
    [203] Levchik S. V.,Weil E. D.,Lewin M., Thermal decomposition of aliphatic nylons. Polymer International, 1999, 48 (6-7): 532-557.
    [204] Montaudo G.,Puglisi C.,Samperi F., Chemical reactions which occur in the thermal treatment of polycarbonate/polyethyleneterephthalate blends, investigated by direct pyrolysis mass spectrometry. Polymer Degradation and Stability, 1991, 31 (3): 291-326.
    [205] Montaudo G.,Puglisi C.,Samperi F., Chemical reactions occurring in the thermal treatment of polymer blends investigated by direct pyrolysis mass spectrometry: polycarbonate/polybuthyleneterephthalate. Journal of Polymer Science, Part A: Polymer Chemistry, 1993, 31 (1): 13-25.
    [206] Montaudo G.,Puglisi C.,Samperi F., Chemical reactions occurring in the thermal treatment of PC/PMMA blends. Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36 (11): 1873-1884.
    [207]白绘宇.聚对苯二甲酸丁二醇酯/聚碳酸酯共混物结构与性能的研究[学位论文].上海交通大学博士论文2005.
    [208] Takeda Y.,Paul D. R., Phase homogenization of mixtures of poly(m-xylene adipamide) and nylon 6 by interchange reactions. Polymer, 1991, 32 (15): 2771-2778.
    [209] Takeda Y.,Paul D. R., The effect of physical interactions on melt-phase homogenization of mixtures of poly(m-xylene adipamide) with aliphatic polyamides induced by interchange reactions. Polymer, 1992, 33 (18): 3899-3907.
    [210] Ho J. C.,Wei K. H., Ester-amide exchange in blends of liquid-crystalline copolyester and polyamide 6. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38 (16): 2124-2135.
    [211] Montaudo G.,Puglisi C.,Samperi F., Exchange reactions occurring through active chain ends: Melt mixing of nylon 6 and polycarbonate. Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32 (1): 15-31.
    [212] Montaudo G.,Puglisi C.,Samperi F.,Lamantia F. P., Synthesis of AB and ABA block copolymers as compatibilizers in nylon 6/polycarbonate blends. Journal of Polymer Science, Part A: Polymer Chemistry, 1996, 34 (7): 1283-1290.
    [213] Equiazabal J. I.,Nazabal J., On the miscibility and interchange reactions in bisphenol a polycarbonate/nylon 6 blends. Die Makromolekulare Chemie.Macromolecular Symposia 1988, 20-21
    [214] Samperi F.,Puglisi C.,Alicata R.,Montando G., Essential role of chain ends in the nylon-6/poly(ethylene terephthalate) exchange. Journal of Polymer Science, Part A: Polymer Chemistry, 2003, 41 (18): 2778-2793.
    [215] Denchev Z.,Kricheldorf H. R.,Fakirov S., Sequential reordering in condensation copolymers, 6: average block lengths in poly(ethlene terephthalate) - Polyamide 6 copolymers as revealed by NMR spectroscopy. Macromolecular Chemistry and Physics, 2001, 202 (4): 574-586.
    [216] Pillon L. Z.,Utracki L. A., Compatibilization of polyester/polyamide blends via catalytic ester-amide interchange reaction. Polymer Engineering and Science, 1984, 24 (17): 1300-1305.
    [217] Pillon L. Z.,Utracki L. A.,Pillon D. W., Spectroscopic study of poly (ethylene terephthalate)/poly(-amide-6,6) blends. Polymer Engineering and Science, 1987, 27 (8): 562-567.
    [218]钱震宇,周宁,史建中,郭宝华, PA1010的熔融扩链反应.合成树脂及塑料, 2002, (04): 17-21.
    [219]容建华,王一中,苏华武,余鼎声,含磷化合物对尼龙66的扩链研究.塑料工业, 1999, (04): 7-9.
    [220]谢吉星,杨荣杰,亚磷酸三苯酯扩链制备高分子量聚乳酸.高分子材料科学与工程, 2008, (01): 11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700