用户名: 密码: 验证码:
基于DSP的双丝脉冲MAG高速焊逆变式电源数字化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双丝脉冲MAG高速焊技术集高效优质和自动化于一体,愈来愈受到重视,已成为国内外焊接领域的研究热点,但是国内的相关研究起步相对较晚,并且还不能批量生产这种双丝焊装备。本论文在广东省科技计划(No.2007A010300005)项目的资助下,结合电力电子技术和数字化控制技术,提出了基于DSP的双丝脉冲MAG高速弧焊电源的数字化系统,并对其特性和应用进行了研究。
     论文首先分析双丝脉冲MAG高速焊相关特征,完善了协同控制的主从机双丝脉冲MAG焊总体方案。分析了主从机逆变式弧焊电源主电路拓扑结构,根据输出功率要求,弧焊电源主电路采用并联式全桥逆变主电路拓扑结构;针对双丝脉冲MAG焊控制系统的要求,分析了外特性的选择和多相位协同控制方案。
     设计了以DSP为核心的硬件和软件控制系统,实现了双丝高速焊的多相位数字化协同控制。通过对双丝高速焊试验场所干扰源的分析,进行了硬件和软件的抗干扰设计。针对双丝高速焊主从机电源峰值阶段恒流+基值阶段恒流外特性方式的电弧自调节能力差,电弧电压波动大的缺点,本论文采用电压阈值方法和PI控制基值时间方法来控制弧长,实现了双丝高速焊过程中弧长的稳定控制。
     为了实现双丝脉冲MAG焊电源多参数的精确给定、记忆与显示问题,本课题设计了基于DSP+LCD结构的数字化人机交互系统。本论文进行了DSP与LCD、触摸屏、EEPROM等接口的硬件设计,并在此基础上进行了相应的软件设计,通过RS232总线与焊接过程控制系统进行通信,实现了弧焊电源人机界面的数字化。
     应用所研制的双丝脉冲MAG高速焊多相位数字化协同控制电源装备进行了大量的双丝高速焊工艺试验。试验结果表明,所研制的双丝脉冲MAG高速焊电源控制系统满足设计要求,实现了双丝焊同步、交替和随机三种相位输出焊接过程,并在合适的脉冲焊参数匹配条件下,焊接过程稳定、焊接速度快、焊缝成形好。
Twin-wire pulsed MAG high speed welding technology possesses the advantages of high efficiency, quality and automation, and is paid much more attention today, it has become the research focus in the welding field. However, our country’s research on it is later and can’t produce this kind of twin-wire welding equipment in batch production. Under the project of Guangdong Industrial Technology research (No.2007A010300005), based on power electronics and digital control, this paper presents a research on the multi-phase digital synchronic control systems base on DSP for twin-wire pulsed MAG high speed welding power supply and their character and application.
     Firstly, the features of twin-wire pulsed MAG high speed welding are analyzed. The control system based on I/O communication of master and slave power supply is proposed. The main-circuit topology of the master and slave inverter is analyzed, and with the request of output power, the parallel full bridge inverter topology. To meet the requirements of control system for twin-wire pulsed MAG high speed welding power supply, the selection of external characteristic and the multi-phase digital synchronic control system are put forward.
     Secondly, the hardware and software of the multi-phase digital synchronic control system based on DSP are designed, it has been proved that the hardware and software are feasible and practical. Disturbance resistance of the hardware and software is also designed via investigating disturbance source of welding location.
     Thirdly, because the power supply choose the constant current external characteristic, it causes the disadvantages of weak arc voltage self-adjusting ability in master and slave power supply. In order to overcome the disadvantages and achieve the control of arc length, the voltage threshold method and PI control method of pulse base’s time are adopted.
     Fourth, the digital system controller based on DSP and LCD of human machine interface (HMI) is designed in order that the Pulse MAG welding power supply’s parameters can be given accurately, stored and displayed.This paper has designed the hardware about DSP with LCD, touch screen, EEPROM and other interface’s circuit, and the corresponding software has also been designed. The human machine interface communicates with the welding process control system through the RS232 bus. It has achieved a digital man-machine interface.
     Finally, the technologic experiment of twin-wire welding was done with the equipment of twin-wire pulsed MAG high speed welding power supply and its multi-phase digital synchronic control system. The results of the experiment demonstrate that the developed twin-wire power supply’s control system meet the design requirements, the twin-wire welding process was realized in synchronization, alternation and random three type phases output mode, and the merits of twin-wire pulsed MAG high speed welding are stable welding process, high speed, and high quality welding seam in the appropriate matching of the welding parameters.
引文
[1]方臣富.船舶焊接设备的应用现状及发展[J].现代焊接,2006,46(10):7~10
    [2] Michie K, Blackman S, Ogunbiyi T E B. Twin-wire GMAW process characteristics and applications[J].WeldingJournal, 1999, (5):31~34
    [3] Volodin V S, Sluchanko N A. Automatic welding with two elec-trodes[J]. SvarProiz, 1955, 2(3): 23-26.
    [4]殷树言,徐鲁宁,丁京柱.熔化极气体保护焊的高效化研究[J].焊接技术,2000,29(S1): 4~7
    [5]杨春利,刚铁,林三宝,等.高强铝合金厚板双丝MIG焊工艺的初步研究.中国有色金属学报.2004,14(5):259~264
    [6]左连发.双丝MAG焊工艺[J].电焊机,2002,32(7):38~39
    [7]周漪清,黄石生,张红兵.大功率弧焊逆变器主电路的建模与仿真[J].华南理工大学学报,2004(8):30~33
    [8]胡特生.电弧焊[M].北京:机械工业出版社,1994
    [9]殷树言,刘嘉,陈树君.2005年埃森焊接展览会观感[J].焊接技术,2006,35(S1):4~6
    [10] Himmelbauer K.Time twin digital: top deposition rate thanks to two wireelectrodes [EB/OL]. http:∥www. fronius. com. 2003-05-02
    [11] Diplling L A, Michael S, Ludwing B, et al.High-quality and economically viablecoating by means of tandem gas-shielded metal-arc welding[J].Welding andCutting, 2002, 54(5):18~23
    [12] Tusek J. Narrow gap submerged arc welding with a multiple wire electrode[J]. Metalurgija, 2002, 41(2): 83-88
    [13] Tusek J. Mathematical modeling of melting rate in twin-wire weld-ing[ J]. Journal of Materials Processing Technology, 2000, 100(7): 250-256
    [14] Moconell L.Lifting productivity using TANDEM wire welding[J]. Welding &Metal Fabrication, 2000,68 (2):16~18
    [15] Hackl H.Faster with two wire electrodes, metal inert-gas welding of aluminummaterials proceedings: Exploiting advances in arc welding technology[M].TWI,Abington, Cambridge, UK, 1998: 201~208
    [16]魏占静.德国CLOOS TANDEM高速MIG/MAG双丝焊技术[J].现代焊接,2006,41(5):53
    [17]殷树言,刘嘉.全数字脉冲焊机的研究[J].焊接技术,2003,32(11):5~9
    [18]黄鹏飞,殷树言,罗建昆,等.新型单片机控制熔化极脉冲氩弧焊机[J].焊接学报,2004,25(3):39~42
    [19]卢刚,李声晋.DSP、FPGA在IGBT模块数字控制中的应用[J].电焊机,2001,31(1):26~28
    [20]周立功.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2006
    [21]李晋.基于ARM Cortex-M3的全数字化多功能管板焊接电源的研究[D].广州:华南理工大学硕士学位论文,2009
    [22]张雄伟.DSP芯片的原理与开发应用[M].北京:电子工业出版社,1997
    [23] Digital Revolution:Inverter power source management and process control.fronius Inc, 2000
    [24]吴开源,李阳,陆沛涛,等.基于DSP的弧焊逆变电源数字化控制系统[J].电子设计应用,2002,1(11):71~73
    [25]何滨华.基于双处理器的脉冲MIG焊电源数字化控制系统的研究[D].天津:天津大学硕士学位论文,2008
    [26]张健.基于DSP的大功率逆变焊接电源的研究[D].无锡:江南大学硕士学位论文,2009
    [27]张涛.数字化焊机控制系统优化设计[D].北京:北京工业大学硕士学位论文,2009
    [28]蔡宣三.开关电源的均流技术[C].十一届电源年会论文集,250~253
    [29]李敏.电源并联系统数字化均流的研究[J].通信电源技术,2007,24(2):13~15
    [30]李力,胡绳荪,姬轩.数字化弧焊电源人机交互系统的设计与实现[J].焊接技术,2007,36(4):52~54
    [31]朱志明,罗小锋,吴文楷.多功能逆变式弧焊机智能化人机界面设计[J].电焊机,2002,32(2):4~6
    [32]唐刚.数字化焊机控制系统的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006
    [33] LiXingcheng, LiHuan, LiangXiujuan,etal. Features of drop-let transfer with changing pulse frequency during double-wire pulse MIG welding[J]. Welding& Joining, 2006, 50 (11): 30-35
    [34] CaoMeiqing, Zou Zengda, Du Baoshua,iet al. Metal transfer oftwin-wire indirectarc argon welding[J]. Transactions of the China Welding Institution, 2006, 27(1): 45-48
    [35]姜伟雁,张九海,赵崇仪.MIG(MAG)脉冲焊溶滴的过渡行为[J].焊接学报,1994, 15 (1): 50~58
    [36]王其隆,殷熟言.脉冲电流熔化极气保焊电弧形态的控制及其实际意义[J].焊接学报,1980,1(1):34~41
    [37]孟庆国,方洪渊,徐文立,等.双丝焊热源模型[J].械工程学报.2005,41(4):110~113
    [38]李远波.软开关逆变式双丝高速脉冲MAG焊装备及其数字化协同控制计数研究[D].广州:华南理工大学博士学位论文,2004
    [39]史国涛.U一I方式脉冲MAG焊的研究(双丝MAG焊前期研究)[D].北京:北京工业大学硕士学位论文,2003
    [40]张光先.逆变焊机原理与设计[M].北京:机械工业出版社,2008
    [41]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社, 2007
    [42]陈坚.电力电子学[M].北京:高等教育出版社,2007
    [43]赵修科.开关电源中的磁性元件[M].南京:南京航空航天大学出版社,2004
    [44]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1998
    [45]吴奎东.模块化电源关键技术的研究[J].电源技术,2004,16(11):65~66
    [46]李星林.基于DSP协同控制的双丝脉冲MIG焊系统的研究[D].广州:华南理工大学硕士学位论文,2008
    [47]吴开源,黄石生,李星林,等.基于数字信号处理器的双丝高速焊数字化协同控制系统[J].机械工程学报,2008,44(9):134~139
    [48] DSP Selection Guide-2002 Edition. Analog Device Inc., 2002
    [49] Digital Signal Processors Selector Guide. Motorola Inc., 2003
    [50] DSP Selection Guide 2002(Rev.k). Texas Instruments Inc., 2002
    [51]张卫宁编译.TMS320C24X系列DSP的CPU与外设[M].北京:清华大学出版社,2004
    [52]刘和平,邓力,江渝,等.DSP原理及电机控制应用[M].北京:北京航空航天大学出版社,2006
    [53]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002
    [54]王晓明,王玲.电动机的DSP控制[M].北京:北京航空航天大学出版社,2004
    [55]刚铁,殷树言,王克鸿,等.微机控制脉冲MIG焊引弧及收弧的研究[J].焊接,1992,10:12~17
    [56] OCM320240-3图形点阵液晶显示模块使用说明书.金鹏实业有限公司.
    [57]张井刚,郑建幅.ADS7843在触摸屏系统中的应用.电子质量,2004,9:72~73
    [58]刘建华,亢海伟,吴瑰丽,等.基于时钟芯片PCF8583的DSP软硬件实现[J].仪表技术,2004,3:29~31
    [59] 1024K I2C CMOS Serial EEPROM. Microchip Technology Inc,2007
    [60]李维諟,郭强.液晶显示应用技术[M].北京:电子工业出版社,2000
    [61]文元美.双电弧共熔池脉冲MAG焊接熔滴过渡与熔池成形研究[D].广州:华南理工大学博士学位论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700