用户名: 密码: 验证码:
脉冲MIG焊接外加磁场控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋的世纪,水下焊接是海洋工程建设、维护重要的支持技术之一,水下焊接面临深水油气田开发带来的巨大挑战。TIG焊接能够适应的最大水深大约是500m,MIG焊接能够用于水深超过1000m的场合。国外研究虽然实现了250bar压力即相当于2500m水深条件之下的MIG焊接的重大突破,但是没有彻底解决高压之下MIG焊接熔滴过渡受阻问题,而只是被动地将弧长控制在非常之短,不可避免的短路过渡导致焊接过程不够稳定和接头质量欠佳。因为外加磁场能够显著增加弧柱电场强度、能量密度和电弧挺度,所以有望从根本上解决制约高压MIG焊接研究的首要问题,即高压之下反向等离子流阻碍等离子流、导致熔滴过渡困难的问题,并借助于外加纵向磁场的电磁搅拌作用改善接头焊接质量。
     本论文的依托项目是国家自然科学基金课题“海洋结构修复用空气加压高压MIG焊接的外加磁场控制”(40776054)。本论文主要研究常压环境下,磁场对MIG焊接电弧特性、熔滴过渡行为等的影响,其成果将为依托项目拟定的高压环境之下磁场控制MIG焊接研究打下坚实基础。
     本论文以高速摄像和数据采集系统等为手段,研究了常压环境下脉冲MIG焊接外加磁场控制的影响因素。本文采用纵向磁场,在相同的保护气体下,以焊接电流、励磁电流为控制参数进行MIG焊接,全面、深入地分析了纵向磁场对脉冲MIG焊电弧形态、熔滴过渡行为、焊丝熔化特性的影响特点,提出了磁场控制脉冲MIG焊接工艺。
     在综合考虑工程实用性和磁控稳定性等因素的基础上,本文设计了纵向磁场装置,将外加磁场技术用于脉冲MIG焊接,期望通过磁场能量平衡高压环境介质压力的影响,从根本上突破熔滴过渡问题,改善接头质量。本论文利用有限元方法对影响焊接区域外加磁场分布的相关因素进行仿真研究,分析了励磁线圈的形状、位置、励磁电流的大小、焊接材料的变化等诸多因素对磁场分布的影响,为在不同形式下焊接时选择科学、合理的外加磁场控制提供了理论上的支持。研究结果表明,合理设置纵向磁场的参数可以有效地控制焊接质量,适应不同场合的焊接要求,从而为进一步实现高压环境焊接奠定了基础。
     本论文提出,采用外加纵向磁场控制电弧形态,进而控制熔滴过渡过程,以纯氩气保护气体获得稳定的射滴过渡形式。为此,本论文建立了一套磁场控制的脉冲MIG焊接系统,主要包括性能优良的焊接电源、稳定可靠的送丝系统、简单实用的励磁装置和操作简单的焊接平台,以及数据采集系统。该数据采集系统对焊接过程中的焊接电压、焊接电流、电弧图像等重要参数进行同步采集,实际工作过程为:高速摄像机实时拍摄磁控焊电弧及熔滴过渡过程,同时数据采集卡采集焊接电弧电压、电流信号以及高速摄像机Strobe输出信号,从而准确确定每一帧高速图像的拍摄时刻,并与电压、电流信号相对应,实现焊接过程的多信息同步采集。
     本论文利用磁场控制脉冲MIG焊接系统进行了焊接实验,证实了外加纵向磁场对射滴过渡过程的控制作用。实验验证,采用外加磁场控制脉冲MIG焊接电弧,以纯氩气气体保护,获得了稳定的射滴过渡形式,解决了熔滴过渡稳定性问题,为以后高压环境MIG焊接提供了良好的实验依据。
The 21st century is the century of marine.As one of the important supporting technologies,underwater welding is used in ocean engineering construction,which faces up to the great challenge of development of oil & gas fields in deep water.TIG welding can adapt to the greatest depth of 500m, and MIG welding can be used in the situation at depth greater than about 1000m.Although study abroad has made important breakthrough in the MIG welding under the conditions of 250bar pressure,which is equal to the condition of the water depth of 2500m,it hasn't resolved MIG welding drip melting translation bottlenecks under high-pressure conditions completely. Study abroad only controls the arc length very short passively.Unavoidable dip transfer results in the unsteadiness during the welding process and quality defect of welded splice.Because the external magnetic field can significantly increase the arc column electric field strength,energy density and arc stiffness, the primary problem of restricting MIG welding of high pressure,namely, reverse flow of plasma impedes the flow of plasma and leads to the difficulties of drip melting translation,is expected to be solved fundamentally.Meantime, the quality of junction seal can be improved by the aid of the role of electromagnetic stirring of additional longitudinal magnetic field.
     This essay relies on the project of National Natural Science Foundation: Using MIG welding of high pressure air pressure coupled with magnetic field control in the repair of marine structures 40776054).This paper is concerned with the impacts of magnetic field on the arc characteristics of MIG welding, metal transfer behavior etc.in atmospheric environment.The achievement will lay a solid foundation for the research of magnetic field control MIG welding under the hyperbaric environment drafted by the project.
     This essay studies the influencing factors of the external magnetic field pulse MIG welding control in atmospheric environment by means of high-speed camera and data acquisition system.Adopting longitudinal magnetic field and making the welding current and field current as controls parameter under the same protection gas during MIG welding,this essay makes an assay of the impact characteristics of longitudinal magnetic field on pulsed MIG welding arc shape,drop transfer activity and wire melting.Pulse MIG welding process controlled by magnetic field is raised in this paper.
     On the basis of considering the project practicability and magnetic control stability,a new type of longitudinal magnetic field generating device is designed,and the technique of additional magnetic field is used in pulsed MIG welding.This paper is expected to balance the impact of high-pressure environment medium pressure by magnetic field energy.The problem of drip melting translation can be solved and the quality of junction seal can be improved fundamentally.This paper makes a simulation study on the correlative factors of influencing the welding regional distribution of the additional magnetic field using finite element method,and makes an assay of the impacts of the shape and position of magnet exciting coil,the magnitude of field current and changes in welding materials,etc.,on the magnetic field distribution.This paper provides a theoretical foundation for choosing scientific and reasonable additional magnetic field control in different welding forms.The results show that the setting the parameters of longitudinal magnetic field reasonably can control welding quality effectively and adapt welding requirements in different occasions,which lay a good foundation for further achievement of high pressure welding.
     On the basis of simplifying the structure of magnetic head and reinforcing the stability of magnetic strength,a new type of longitudinal magnetic field generating device id designed,and the techniques of external magnetic field in the pulsed MIG welding.
     Base on the finite element software of ANSYS,the distribution of the magnetic field is simulated.The factors which affect the distribution of the magnetic field are discussed,such as the shape of the excitation coil,the location of the excitation coil,the location of the excitation coil,the materials to be welded,and the shape of the groove,etc.Based on the simulation,we can select the scientific and suitable additional magnetic field.
     Based on the theoretic analyses and simulation,the high performance MIG welding system is established,including the good performance power source, the stable and reliable wire feed system,the less cost common shielding gas and the simply.Based on the high performance welding system,the interaction of the projected transfer and additional longitudinal magnetic field is testified by the experimental results.
     By the experimental verification,the stable projected transfer mode by using additional magnetic field control instead of the pure Ar in shielding-gas, and solving the problem of projected transfer.At the same time,the result will provide a good experiment basis.
引文
[1]秦萍.中国海洋石油将走向深水——访海洋石油工程专家曾恒一[J].中国船检,2004(6):p.64-67
    [2]刘春厚.海底管道维修方法综述[J].中国海上油气(工程),2004,16(1):p.59-62
    [3]R.Scott.Lyons.Underwater orbital TIG welding[J].Metal Construction,1985,v17(8):p.504-507
    [4]J.F.Dos Santos.Diverless pipeline welding beyond 600msw.Proceedings of 11~(th)International Conference on Offshore Mechanics and Arctic Engineering(OMAE92),p.153-163,Calgary,June 1992
    [5]Michael.Davis.Trolling the depths with a new system[J].Welding & Metal Fabrication,1996,v64(8):p.20-22
    [6]John Nixon.Underwater repair technology[M].Cambridge:Woodhead Publishing Ltd.,2000
    [7]P.Hart.Underwater Joining to 8,200ft-An Alternative to Mechanical Connectors.Proceedings of Deepwater Pipeline & Riser Technology Conference & Exhibition,p.23.1-23.32,Houston,Mar 2000
    [8]I M Richardson.Hyperbaric gma welding to 2500m water depth[J].Proceedings of ETCE/OMAE 2000 Joint Conference:Energy for the New Millennium,p.927-936,New Orleans,Louisiana,USA,2000
    [9]P.Hart.The effects of pressure on electrical performance and weld bead geometry inhigh pressure GMA welding[J].Welding Research Abroad,V49(3):p.29-37
    [10]I.M.Richardson.Arc and weld pool viewing:an assessment of requirements for deep waterwelding operations.Proceedings of Eighth International Conference on Computer Technology in Welding,p.10-27,Liverpool,UK,June 1998
    [11]N J Woodward.Diverless underwater GMA welding for pipeline repair using a fillet weldsleeve,Proceedings of Biennial International Pipeline Conference vol.2,p.1475-1484,Calgary,October,2004
    [12]British Standards Institution,'British Standards Specification for Welding Steel Pipelines on Land and Offshore',BS4515,1984
    [13]Nixon J H.'Open arc pulsed current GMAW-application to hyperbaric operations'The American Society for Metals International Welding Congress.Toronto,Canada,October 1985
    [14]罗健.外加纵向磁场GTAW焊接机理Ⅰ Ⅱ—电弧特性[J].金属学报,2001,37(2):p212-216
    [15]罗健.外加纵向磁场GTAW焊接机理Ⅱ—电弧模型[J].金属学报,2001,37(2):p217-220
    [16]罗健.外加纵向磁场GTAW焊缝成形机理[J].焊接学报,2001,22(3):p17-20
    [17]殷咸青.纵向磁场参数对LDIOCS铝合金TIG焊焊缝组织的影响[J].西安交通大学学报,1999,33(7):p71-74
    [18]罗健.GTAW外加间歇交变纵向磁场的数值计算及其对焊接行为的影响[J].金属学报,1999,35(3):p330-333
    [19]江淑圆.外加磁场对CO_2焊飞溅的控制机理[J].焊接学报,2004,25(3):p65-67
    [20]陈埒涛.外加纵向磁场对CO_2焊短路过渡飞溅影响的研究[J].电焊机,2005,35(4):p32-35
    [21]徐鲁宁.磁控高效NAG焊机理的研究[D].北京工业大学博士论文.北京:2001
    [22]陈树君.纵向磁场作用下的旋转射流过渡的机理[J].焊接学报,2005,26(3):p.45-49
    [23]王军.磁场控制高效NAG焊接旋转射流过渡稳定性的研究[D].北京工业大学博士论文.北京:2003
    [24]祁贵云.旋转磁场作用下电弧特性和电弧行为的研究[D].北京工业大学硕士论文.北京:2004
    [25]邢丽.MAG焊旋转喷射过渡熔滴运动形态的相关分析[J].南昌航空工业学院学报,1999,13(3):p5-11
    [26]赵彭生.双尖角磁场再压缩等离子的物理特性及焊接工艺性能[J].焊接学报,1986,7(1):p.7-14
    [27]赵彭生.双尖角磁场再压缩等离子弧中板焊接[J].焊接学报,1989,10(3):p.148-155
    [28]姜伟雁.MIG(MAG)脉冲焊熔滴的过渡行为[J].焊接学报,1994,15(1):p50-57
    [29]Kristinn Andersen.Synchronous Weld Pool Oscillation for Monitoring and Control[J].IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,1997,33(2):p464-471
    [30]安藤弘平,长谷川光雄.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985.341-348
    [31]唐慕尧.焊接测试技术[M].北京:机械工业出版社,1988.321-331
    [32]北京华能太阳科技公司.CPL-MS25k高速数字摄像机简明操作手册.[Z]
    [33]李桓,李国华,李俊岳等.熔化极电弧焊熔滴过渡过程的高速摄影[J].中国机械工程,2002,13(9):796-797
    [34]杨运强,张晓琪,李俊岳等.焊接电弧高速摄影技术及其同步装置[J].电焊机,2003,33(1):11-12
    [35]刘占民,李明利,薛龙.熔化极电弧焊熔滴过渡过程的高速摄像[J].激光与红外,2006,36(2):131-134
    [36]贾昌申,殷咸青,贾涛等.纵向磁场中的焊接电弧行为.西安交通 大学学报.1994,28(4):7-13
    [37]阿勃拉洛夫M.A..电磁作用焊接技术[M].韦福水,路等平译.北京:机械工业出版社,1988
    [38]孙明礼.电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [39]王军.磁场控制高效MAG焊接旋转射流过渡稳定性的分析.北京工业大学博士学位论文.2003:27-88
    [40]徐鲁宁.磁控高熔敷率MAG焊机理研究.北京工业大学博士学论文.2000:2-77
    [41]周振丰,张文钺.焊接冶金与金属焊接性[M].北京:机械工业出版社,1988
    [42]韩喆.虚拟仪器在焊接质量分析中的应用[J].电焊机,2007,(12):65-68
    [43]徐科军.传感器与检测技术[M].第一版.北京:电子工业出版社,2006
    [44]张勇.惯性摩擦焊参数检测系统的设计[D].重庆:重庆大学机械工程学院,2004
    [45]杨运强.应用LabVIEW检测与分析焊接过程[J].电焊机,2003,(6):56-58
    [46]白岩.基于LabVIEW的熔化极等离子弧焊接电弧电信号分析[J].焊接学报,2006,(8):12-14
    [47]汪敏生.LabVIEW基础教程[M].北京:电子工业出版社,2002
    [48]National Instruments LabWindows/CV I user manual[M].Austin:National Instruments Corporation,2001.156-172
    [49]What's new in welding,1990.Welding & Cutting,1945.5,pp1111-24
    [50]New developments in welding technology 1996.Welding & Cutting,1997.5
    [51]周灿丰,焦向东,房晓明.高压TIG焊接技术及其应用研究[J].焊接技术,2004,33(5):34-35
    [52]王中辉,蒋力培,焦向东.水下高压干式焊接电孤的研究现状[J].焊接技术,2004,33(4):30-32
    [53]焦向东,陈家庆,周灿丰,蒋力培,房晓明,章怡圣,潘东民.干式高压焊接实验系统及其关键问题[C].中国机械工程学会焊接学会,第十一次全国焊接会议论文集,2.265-2.267
    [54]姜焕中.焊接方法及设备[M].北京:机械工业出版社,1981:52-53
    [55]I.M.Kovalev,A.I.Akulov.Stability of the Welding Arc in a Transverse Magnetic Field Welding Production.1965(10):4-6
    [56]A.I.Akulov.Calculation of the Deflection of a Welding Arc in a Constant Transverse Magnetic Field Welding Proction.1963(7):8-10
    [57]T.N.Jayarajan,C.E.Jacoson.Magnetic Control of Gas Tungsten-Arc Welding Process.Welding Journal.1972(8):377s-385s
    [58]Hicken,Jackson.The Effects of Applied Magnetic Fields on Welding Arcs.Welding Journal,1966(11):515s-525s
    [59]Ando,Nishikawa,Yamanouchi.Effects of Magnetic Field on Bead Formation in TIG Arc Welding.Journal of Japan Welding Society.1968(3):43-48
    [60]Kobayashi,Hideo.Effects of Electrode Shapes on Phenomena of TIG Arc and Bead Formation-Arc Welding Controlled with Magnetic Field Journal of Mechanical Engineering Laboratory.1985,39(3):127-135
    [61]Marco A.Gigosos,Manuel A.Gonzalez,Valentin Cardensos.Computer simulated Balmer-alpha,-beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics[J].Spectrochimica Acta Part B.2003.58:1489-1504
    [62]Kobayashi,Hideo.High Speed DCEN TIG Welding of Very Thin Aluminium Sheet with Magnetic Controlled.Prep.Nat.JWS.2002,20(4):484-492
    [63]Hideo,Nakahara.Control of the Shape of Beads in TIG Welding of Welding Wire Feed System.Prep.Nat.JWS.1986,40(4):101-110
    [64]杨运强,宋永伦,李俊岳.铝焊接电弧物理特性的研究[J].湘潭大学自然科学学报,1995,17(2):107-110
    [65]张鹏云等,轴向磁场中辐射对电弧的螺旋不稳定性的影响,物理学报,vol.46.No.2,1999.4,pp172-174
    [66]龙海源,纵向磁场约束等离子弧加工实验研究,辽宁工学院学报,vol.13,No.4,1993.12,pp1-4
    [67]陈集等,纵向磁场约束等离子弧的实验研究,齐齐哈尔轻工学院学报,vol.13,No.1,1997.3,婆·婆1-44
    [68]贾昌申等,纵向磁场中的焊接电弧行为,西安交通大学学报,vol.28,No.4,1994.7,pp7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700