用户名: 密码: 验证码:
复杂铝合金结构焊接应力与变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金焊接结构广泛应用于船舶、航空航天等工程领域。由于其热膨胀系数大、弹性模量小,在焊接过程中不可避免地产生较大的残余应力与变形。因此,对铝合金焊接结构的焊后残余应力与变形进行研究,具有重要的理论意义和现实价值。本文采用部分与整体的方法,分别采用热弹塑性有限元法和固有应变法对5A06铝合金加筋圈体和筒形结构的焊接残余应力与变形进行了数值分析。
     在红外实时测温的基础上,对熔化极惰性气体保护电弧焊(MIG)角焊缝间断焊的温度场进行了研究。此外,间断焊过程中存在已焊焊缝的预热作用和后续焊缝的再加热作用。根据MIG焊熔池热流密度的分布及间断焊热循环的特点,提出了结合电弧热流双高斯分布和过热熔滴双椭球形分布的复合型热源分布模式,并采用优化设计的方法确定了间断焊过程中瞬态的热源形状参数。经实验验证,该热源模型可有效地对角焊缝间断焊温度场进行数值模拟。
     采用间接耦合法深入研究了间断焊过程中的动态焊接应力场的演变及分布规律,对铝合金加筋圈体结构的焊接过程进行了数值分析。加筋结构的角变形是由焊件厚度方向的温度梯度和焊缝的横向收缩两方面决定的,且焊接顺序和焊缝长度对焊接残余应力与变形也有很大的影响。
     基于角焊缝间断焊热弹塑性分析,并综合考虑了焊接工艺及焊件尺寸对多层多道V型坡口对接焊缝的影响,采用固有应变法对5A06铝合金筒形结构的焊接变形进行了数值计算。结果表明,筒体结构出现了波浪变形,无筋板支撑部分下塌较严重,并对可能发生的失稳变形进行了预先估计和分析。通过加强板焊接前后结构压下载荷的测定实验验证,表明了固有应变法在复杂焊接结构的数值模拟中具有很高的效率并能保证一定的精度。最后,为保证铝合金加筋筒形结构的尺寸精度,对既定加工工序作了一定改进,在间断角焊后对其进行整体退火消应处理,利用有限元方法定量分析了退火温度、保温时间和冷却速度等因素对消应效果的影响,制定了相应的退火规范。研究结果对此类筋板加强结构的焊接生产及热处理工艺的制定具有重要的工艺技术指导作用。
The aluminum alloy welding structure has been widely applied in many fields, such as ship engineering, aerospace engineering and so on. Since its large thermal expansion coefficient and small elastic modulus, great welding residual stress and deformation are difficult to avoid in the engineering. Thus, it is important to investigate the welding deformation and residual stress of aluminum alloy welding structure, which would has significant theory meaning and engineering value. The welding residual stress and deformation of 5A06 aluminum alloy reinforced circle and cylinder structure were analyzed by the thermal-elastic-plastic finite element method and inherent strain method respectively in this paper.
     Based on the infrared thermal imaging results, the temperature distribution of fillet welds during MIG discontinuous welding was researched. There are preheating effect from the welded seam and reheating effect from the sequent weld in the discontinuous welding. According to the distribution of heat flux density in the MIG welding pool and the character of discontinuous welding thermal cycle, a combined heat source model was developed which combining the double Gaussian heat distribution of arc and the double ellipsoidal distribution of over thermal droplet.
     Subsequently the transient parameters of double ellipsoidal heat source were confirmed with optimization design method. It is found that the combined heat source model produce more accurate numerical simulation result during the discontinuous welding.
     The transient distribution of welding stress was analyzed by indirect coupling method on the basis of the temperature field in the discontinuous welding, and the welding process of 5A06 aluminum alloy reinforced circle structure was simulated numerically. The angle deformation of the reinforced structure is decided by the temperature gradient of the structure thickness and the weld transverse contraction. The welding sequence and the weld length also have great effects on the welding residual stress and deformation.
     Based upon the thermal-elastic-plastic analysis of the discontinuous welding, the welding residual stress and deformation of 5A06 aluminum alloy reinforced cylinder structure was researched by inherent strain method, which also considering the effects of welding technology and weldment's size on the multi-passes V-type butt weld. The cylinder structure represented wave propagation, great stay was appeared where without reinforce plate, and it predicted the possible buckling deformation. Compared to the experimental results of the welding depression load and strain, the inherent strain method has high efficiency and can ensure definite precision in the numerical simulation of the complex welding structure. In the final, in order to ensure the structure's machining accuracy, the whole structure was annealinged after the discontinuous welding. The effects of annealing temperature, holding time, and cooling rate on the stress elimination were analyzed by finite element method, which constituting the corresponding annealing criterion and improving the manufacturing procedure. The research result could direct the welding production of the reinforced welding structure.
引文
[1]陈祝年等编.焊接工程师手册[M].北京:机械工业出版社,2002.
    [2]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [3]陈楚等.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [4] K. Masubuchi, J J. Bryan, T. Muraki. Analysis of thermal stresses and metal movement during welding [J]. Trans. ASME Journal of Engineering Materials and Technology, 1975, 97:81~91.
    [6]蔡志鹏.大型结构焊接变形数值的研究与应用[D].北京:清华大学,2001
    [7] D. Rosenthal. Mathematical theory of heat distribution during welding and cutting [J]. Welding Journal, 1941, 5:220~234.
    [8] Z. Paley, P.D. Hibbert. Computation of temperatures in actual weld design [J]. Welding Research Supplement, 1975, 11:385~396.
    [9] Kou S, Le Y. Three-dimensional heat flow and solidification during the autogenous GTA welding of aluminum plates [J]. Metallurgical Trans. A, 1983, 14A:2245~2253.
    [10] G.W. Krutz, L.J. Segerlind. Finite element analysis of welded structures [J]. Welding Research Supplement, 1978, 7:211~216.
    [11] Goldak J., Chakravarti A., Bibby M. A new finite element model for welding heat sources [J]. Metallurgical Trans.B, 1984, 15B:229~305.
    [12]陈楚,汪建华,杨洪庆.水下焊接冷却特性的有限元分析[J].海洋工程,1983,4:34~38.
    [13]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,3:139~148.
    [14]董湘怀.材料加工理论与树脂模拟[M].北京:高等教育出版社,2005
    [15]蔡洪能,唐慕尧. TIG焊接温度场的有限元分析[J].机械工程学报,1996,2:34~39.
    [16]蔡志鹏,赵海燕,鹿安理等.焊接数值模拟中分段移动热源模型的建立及其应用[J].中国机械工程,2002,13(9):208~210.
    [17]巴普苏也夫.船体焊接变形防止法[M].北京:机械工业出版社,1957.
    [18]上田幸雄等.焊接变形和残余应力的数值计算方法与程序[M].成都:四川大学出版社,2008.
    [19] Y. Ueda, H. Murakawa, S. Gu. Simulation of welding deformation for accurateship assembling (1st report) In-plane deformation of butt welded plate [J]. Journal of The society of Naval Architects of Japan, 1992,171:395~404.
    [20] Y. Ueda, H. Murakawa, Y. Okumoto. Simulation of welding deformation for accurate ship assembling (2st report) Influence of initial imperfection to butt welded plate [J]. Journal of The society of Naval Architects of Japan, 1992, 172:559~566.
    [21] Y. Ueda, H. Murakawa, Y. Okumoto. Simulation of welding deformation for accurate ship assembling (3st report) Out-of plate deformation of butt welded plate [J]. Journal of The society of Naval Architects of Japan, 1992, 176:341~350.
    [22] K.Masubuchi. Prediction and control of residual stresses and distortion in welded structures[J]. Proc. Theoretical Prediction in Joining and Welding, Osaka, Japan, 1996, 11:71~88.
    [23] J. Goldak. Thermal stress analysis of welds: from melting point to room temperature[J]. Proc. Theoretical Prediction in Joining and Welding, Osaka, Japan, 1996, 11:225~230.
    [24] D.拉达伊,熊第京等译.焊接热效应、温度场、残余应力变形[M].北京:机械工业出版社,1997.
    [25]武传松.焊接过程计算机模拟的新进展[C].第三届计算机在焊接中的应用技术交流会论文集,上海,2000:20~29.
    [26]陈楚,汪建华,罗宇.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8(4):196~203.
    [27]汪建华等.焊接结构三维热变形的有限元数值模拟[J].上海交通大学学报,1994,28(6):59~65.
    [28]汪建华等.压缩机焊接变形的三维数值模拟[J].机械工程学报,1996,21(1):85~91.
    [29] Wang J, Lu H, Murakawa H. Mechanical behavior in local post weld heat treatment (report i), visco-elastic-plastic FEM analysis of local PWHT[J].Trans. JWRI, 1998,27(1):83~88.
    [30] Murakawa H, Lu H, Wang J, H. Mechanical behavior in local post weld heat treatment (report ii), determination of critical heated band during local PWHT[J]. Trans. JWRI, 1998, 27(1):89~95.
    [31]汤小牛.壳体热弹塑性有限元分析[D].西安:西安交通大学,1989
    [32]鹿安理,史清宇,赵海燕等.焊接过程仿真领域若干关键技术问题及其初步研究[J].中国机械工程,2000,11(1~2): 201~205.
    [33]赵海燕,鹿安理,史清宇等.焊接CAE中数值模拟技术的实现[J].中国机械工程,2000,11(7):732~734.
    [34]蔡志鹏,赵海燕,鹿安理.焊接温度场、应力场和应变场相似准则的推导和验证[J].中国机械工程,2001,12(10):1165~1168.
    [35] Y. Ueda, H. Murakawa, R.A. Monhamed. Development of computer aided process planning system for plate blending by line-heating (2st Report) Practice for plate bending in shipyard viewed from aspect of inherent strain [J]. Journal of The society of Naval Architects of Japan, 1992, 171:405~415.
    [36] Y. Ueda, H. Murakawa, R.A. Monhamed. Development of computer aided process planning system for plate blending by line-heating (1st Report) Relation between the final form of the plate and the inherent strain [J]. Journal of The society of Naval Architects of Japan, 1991, 170:577~586.
    [37] H. Murakawa, Y.Luo, Y. Ueda. Prediction of welding deformation and residual stresses by elastic FEM based on inherent strain (1st Report) Mechanism of inherent strain production [J]. Journal of The society of Naval Architects of Japan, 1996, 180:739~751.
    [38] H. Murakawa, Y.Luo, Y. Ueda. Prediction of welding deformation and residual stresses by elastic FEM based on inherent strain (2st Report) Deformation and residual stress under multiple thermal cycle [J]. Journal of The society of Naval Architects of Japan, 1997, 182:783~793.
    [39] C.D. Jang, C.H. Lee, D.E. Ko. Prediction of welding deformations of stiffened panels [C]. Proc Instn Mech Engrs Vol 216 Part M: Engineering for the martime environment.
    [40] Y. Takeda. Prediction of but welding deformation of curved shell plates by inherent strain method [J]. Journal of ship production, 2002, 18(2):99~104.
    [41] Jonsson, M. Kalsson, L. Lindgren. Deformation and stress in butt-welding of large plates [J]. Numerical methods of heat transfer, 1995, 3:1235~1242.
    [42] H.C. Kuo, L.J. Wu. Prediction of deformation to thin ship panels for different heat sources [J]. Journal of ship production, 2001, 17(2):52~61.
    [43] Chang Doo Jang, Seung II Seo, Dae Eun Ko. A study on prediction of deformation of plates due to line heating using a simplified thermal elasto-plastic analysis [J]. Journal of ship production, 1997, 13(1):22~27.
    [44] Seung II Seo, Chang Doo Jang. A study on the prediction of deformation ofWelded Ship Structures [J]. Journal of Ship Production, 1999, 15(2):73~81.
    [45]魏良武,汪建华.液力变矩器焊接的数值模拟和质量控制[J].汽车技术,2000,1:25~27.
    [46]陈俊梅,陆皓,汪建华等.网格尺寸对别克轿车副车架总成焊接变形预测精度的影响[J].焊接学报,2002,23(2):33~35,39.
    [47]林建,蔡志鹏,赵海燕.桥式起重机T结构装焊过程变形的研究[J].焊接技术,2004,1:51~54.
    [48]徐军,吴苏,赵海燕.基于简化模型采用有限元方法计算特大型梁结构的焊接变形[J].焊接技术,2001,30(4):47~48.
    [49]田锡唐,顾福明,高进强.圆柱壳体上环形焊缝焊接变形的数值分析[J].航空材料学报,1996,16(2):50~56.
    [50] Anuj Chaudhri, Masood Parang, B.E. Nelson. Computer simulation and experimental verification of welding in thin steel sheet containment [J]. International Journal of Heat and Mass Transfer, 2007, 50:4439~4445.
    [51]师克宽.计量测试技术书册(第3卷)-温度[M].北京:中国计量出版社,1997.
    [52]赵玉刚,杨帆,周维芳.基于比色测温的温度场测量技术研究[J].微计算机信息,2008,24(22):298~299.
    [53]吴林,徐庆鸿.焊接过程的微计算机测试和控制[M].北京:新时代出版社,1986.
    [54]梅林,沈风刚,王裕文等.立向下焊焊接熔池表面温度场分布的红外热想法测定[J].焊接学报,1992,2:22~24.
    [55] Bicknell A, Simith J S, Lucas J. Infrared sensor for top face monitoring of weld pools [J]. Meas. Sci. Technol, 1994, 5:371~378.
    [56] Farson D, Richardon R, Li X. Infrared measurement of base metal temperature in gas tungsten arc welding [J].Weld. Res. Suppl, 1998, 77(9):396.
    [57] W.E. Lukens. Infrared temperature sensing of cooling rates for arc welding control [J].Welding Journal. Jan., 1982, 27~33.
    [58] P.W. Ramsey. Infrared temperature sensing system for automatic fusion welding [J]. Welding research supplement, 2000, 5:89~96.
    [59] P. Henrikson, M. Ericsso. Non-contact temperature measurements using an infrared camera in aerospace welding applications [D]. University Trollbattan Sweden, 2003.
    [60]张建奇,方小平,红外物理[M].西安:西安电子科技大学出版社,2004.
    [61]李吉林.光电、红外、比色温度计原理与检定[M].北京:中国计量出版社,1990.
    [62] FLIR Systems Inc, ThermalCAM Reaearcher User’s manual [M]. 2003,117.
    [63]柳钢,李俊岳.焊接电弧光谱的分布特征[J].机械工程学报,2000, 36(5),:58~61.
    [64]张敬贤,李玉丹,金伟其.微光与红外成像技术[M].北京:北京理工大学出版社,1995.
    [65]杨立,寇蔚,刘慧开等.热像仪测量物体表面辐射率及误差分析[J].激光与红外, 2002,32(1):43~45.
    [66]杜晓增.计算机图形学基础[M].北京:机械工业出版社,2004.
    [67] H?雷卡林.焊接热过程计算(徐碧宇,庄鸿寿译)[M].北京:机械工业出版社,1958,1~294.
    [68] D.Gery, H.Long, P.Maropoulos. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding [J]. Journal of Materials Processing Technology, 2005, 167:393~401.
    [69]孙俊生,武传松.电弧压力对MIG焊接熔池几何形状的影响[J].金属学报, 2001,37(4):434~438.
    [70]孙俊生,武传松.焊接热输入对MIG焊接熔池行为的影响[J].中国科学(E辑), 2002,32(4):465~471.
    [71]孙俊生,武传松.电磁力及其对MIG焊接熔池流场的影响[J].物理学报, 2001,50(2): 209~216.
    [72]孙俊生,武传松,高进强.熔滴热焓量分布模式对熔池流场的影响[J].金属学报, 1999, 35(9):964~970.
    [73]张成. GMAW焊接熔池传热传质特征建模及智能化处理系统的研究[D].镇江:江苏大学,2004.
    [74]郑振太.大型厚壁结构焊接过程的数值模拟研究与应用[D].天津:天津大学,2007.
    [75]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003,9~24.
    [76]张九海,王其隆.焊枪倾角对熔池振荡的影响[J].金属科学与工艺,1999,9(1):127~132.
    [77]张文钺.焊接传热学[M].北京:机械工业出版社,1989.
    [78]梁伟,石纡,张晓雯.焊接熔池的数字图象处理[J].计算机工程与设计,2006,27(19):3598~3600.
    [79] R. Siegel, J. R. Howell. Thermal Radiation Heat Transfer [M]. third ed. London: Taylor & Francis Publishers; 1992.
    [80]王煜,赵海燕,吴煜等.高能束焊接双椭球热源模型参数的确定[J].焊接学报,2003,24(2):67~70.
    [81] J. Goldak, M. Bibby, J. Moore, et al. Computer modeling of heat flow in welds [J]. Metallurgical Transactions B, 1986, 17B(9):587~600.
    [82] W.F. Savage, E.F. Nippes, F.J. Zanner. Determination of GTA weld-puddle configurations by impulse decanting [J]. Welding Journal, 1978,56(7):201~210.
    [83] M.A. Wahab, M.J. Painter. Numerical models of gas metal arc welds using experimentally determined weld pool shapes as the representation of the welding heat source [J]. International Journal of Pressure Vessels and Piping, 1997,73:153~159.
    [84] C.L. Tsai, M.S. Han, G.H. Jung. Investigating the bifurcation phenomenon in plate welding [J]. Welding Journal, 2006, 85(7):151~162.
    [85] ANSYS Advanced Analysis Techniques, 3 rd Edition, SAS, IP, Inc. @.
    [86]谭险峰. TIG对接热力耦合数值模拟及其应用研究[D].南昌:南昌大学,2005.
    [87]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993.
    [88]顾泽同等.工程热应力[M].北京:国防工业出版社,1987.
    [89]毕敏霞. T型接头焊接温度场与应力场的数值模拟[D].杭州:浙江大学,2007.
    [90]程书立.基于温度和应力场的焊接残余应力数值模拟[D].南昌:南昌大学,2007.
    [91]龙志飞等.新型有限元论[M].北京:清华大学出版社,2005.
    [92]王威信,邓达华.三维实体仿真建模的网格自动生成方法[J].计算机学报,2002,25(1):44~48.
    [93] Shi Qingyu, Lu Anli, Zhao Haiyan. Development and application of the adaptive mesh technique in three~dimensional numerical simulation of the welding process [J]. Journal of Materials Processing Technology, 2002, 121:167~172.
    [94] L E. Lindgren, H.A. Haggblad, J.N.J. McDill. Automatic remeshing for three~dimensional finite element simulation of welding [J]. Computer methods in applied mechanics and engineering, 1997, 147:401~409.
    [95] Zeng Z, Wang L J, Zhang H. Efficient estimation of thermophysical parameters for LF6 aluminium alloy [J]. Materials Science and Technology,2008,24(3):309~313.
    [96] X.K. Zhu, Y.J. Chao. Effects of temperature-dependent material properties on welding simulation [J]. Computer and Structures, 2002,80:967~976.
    [97]胡成华,周平.利用激光杠杆测定杨氏弹性模量[J].大学物理, 2006,25(3):44~45.
    [98]陈昭栋,舒维芬,陈芬.双曝光全息法静态测定材料的弹性模量[J].西南工学院学报, 2002,17(2):35~38.
    [99]王青,戴剑锋,李维学.测定金属热膨胀系数的新方法[J].物理通报,2003,10,32~34.
    [100]武恭.铝及铝合金材料手册[M].北京:科学出版社,1994.
    [101]焦馥杰.焊接结构分析基础[M].上海:上海科学技术文献出版社,1991.
    [102]袁发荣,伍尚礼.残余应力测试与计算[M].长沙:湖南大学出版社,1987.
    [103] C.L. Tsai, W.T. Cheng, T. Lee. Modeling strategy for control of welding induced distortion, Modeling of Casting [J]. Welding and Advanced Solidification Processes VII, The Minerals, Metals and Materials Society, 1995:335~345.
    [104]徐军.大型起重机主梁焊接变形的模拟与控制[D].北京:清华大学,2001.
    [105] A. Bachorski, M.J. Painter, A.J. Smailes. Finite element prediction of distortion during gas metal arc welding using the shrinkage volume approach [J]. Journal of Materials Processing Technology, 1999, 92~93:405~409.
    [106]顾福明,田锡唐,高进强.圆柱壳体与法兰对接环形焊缝的焊接变形规律研究[J].材料科学与工艺,1996,4(3):76~80.
    [107] Brown S., Song H. Finite element simulation of welding of large structures [J]. Journal of Engineering for Industry, Transactions of The ASME, 1992, 114(4):441~451.
    [108] J.A. Goldak. Error due to two dimensional approximation in heat transfer analysis of welding [J]. Welding Journal, 1993, 72(9):440~446.
    [109] P.S. Wei, W.H. Giedt. Surface tension gradient-driven flow around an electron beam welding cavity [J]. Welding Journal, 1985,64(9):251~259.
    [110]库兹米诺夫C A .船体结构的焊接变形[M].北京,国防工业出版社,1978.
    [111] Satoh K, Terasaki T. Effect of welding conditions on residual stress distributions and welding deformation in welded structures materials [J]. Journal of Japan Welding Society, 1976,45(1):42~53.
    [112]魏良武.固有应变法预测焊接变形的研究及其工程应用[D].上海:上海交通大学,2004.
    [113]罗宇,鲁华益,谢雷. Tendon Force的概念及计算方法[J].造船技术,2004,4:35~37.
    [114]徐琳,严仁军,龚静.角焊缝角变形的产生机制与固有剪切应变分量的双抛物面分布模型[J].华中科技大学学报,2007,24(4):88~91.
    [115]陈铁云,沈慧申.结构的屈曲[M].上海:上海科学技术文献出版社,1993.
    [116]阎俊霞.焊接薄板结构变形数值模拟研究[D].天津:天津大学,1999.
    [117] M. Asle Zaeem, M.R. Nami, M.H. Kadivar. Prediction of welding buckling distortion in a thin wall aluminum T joint [J]. Computational Materials Science, 2007, 38:588~59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700