用户名: 密码: 验证码:
激光+GMAW-P复合热源焊焊缝成形的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光+脉冲GMAW(pulsed gas metal arc welding,GMAW-P)复合热源焊作为一种新型的优质、高效焊接技术,综合了激光焊与GMAW-P工艺的双重优点,并具有“1+1>2”的协同效应,工业应用潜力巨大。但目前对该项新技术的研究主要集中于工艺方面,即通过试验的方法优化工艺参数,而对其过程物理机制方面的研究极少。由于相对于单种焊接工艺,复合焊工艺参数较多,其物理过程也更加复杂,仅依靠试验优化工艺将需要花费较高的人力物力,不利于复合焊的推广应用。本文利用数值模拟技术,通过建立适用的热源模型对激光+GMAW-P复合热源焊的焊缝成形和热场特征进行研究,从而为复合焊物理机制研究及工艺参数的优化提供理论依据和参考数据,具有重要的学术理论意义和工程实用价值。
     根据激光深熔焊焊缝形状特征,分析了激光深熔焊热源作用的特点,将小孔效应体现在热流密度沿焊件厚度方向的分布上,建立了四种适用的、恰当的激光焊旋转体积热源模型,即热流峰值指数递增-锥体热源模型、热流峰值线性递增-对数曲线旋转体热源模型、热流峰值线性递增-抛物线旋转体热源模型和热流峰值双曲线递增-双曲线旋转体热源模型。在此基础上,从宏观的传热过程出发,对复合焊中来自电弧、过热熔滴和激光束的热输入分别进行描述,提出了四种复合焊组合式体积热源模型。组合式热源模型分别将电弧热输入、熔滴热焓和激光热能描述为双椭圆热源、热流平均分布的双椭球体热源和上述四种热流峰值递增-旋转体热源,并将三部分热能集成,构成适用的复合焊组合式体积热源模型。
     利用建立的组合式体积热源,对不同工艺条件下复合焊接准稳态温度场进行了数值分析,并计算出复合焊焊缝形状和尺寸。计算过程中,通过适当调节热源分布参数以间接反映激光-电弧相互作用对热流分布的影响。结果表明,焊缝形状尺寸的计算结果与实验结果总体吻合较好,但熔合线的局部走向仍有一定误差。针对此问题,对建立的四种复合焊组合式体积热源进行了如下改进:根据脉冲电弧的热作用特点,将复合焊中的脉冲电弧热能视为两个分别对应于峰值与基值电流电弧的分布参数不同的双椭圆热源,并通过适当减小焊件上表面电弧作用区域沿厚度方向的导热系数以间接反映电弧间歇性作用的特点。同时,对熔滴热源和激光热源的作用区域也进行了适当的调整。利用改进后的组合式体积热源模型,对复合焊的焊缝形状尺寸重新进行数值分析,计算精度大为提高,焊缝形状尺寸与熔合线走向都与实验结果吻合良好。
     应用已建立的复合热源焊的组合式体积热源模型,对激光+GMAW-P复合热源焊的热场进行数值分析,定量研究不同电弧功率对激光+GMAW-P复合热源焊热影响区宽度和热循环参数等热场特征基础数据的影响规律,并与纯激光焊、单GMAW-P的情况进行了比较,为从冶金上揭示复合热源焊的特点奠定了基础。
     为更合理地选定热源分布参数,将光线追踪法与线热源小孔模型相结合,较详细和准确地描述了激光束在非对称小孔内的多次反射过程以及孔壁对光能的Fresnel吸收,研发出新的小孔形状尺寸算法。将小孔尺寸与激光焊体积热源分布区域相联系,提出了基于小孔模型的激光焊体积热源模式。将此热源模式应用于激光焊和复合焊焊缝成形的数值模拟。结果表明,计算结果与实验结果吻合良好。
As a new-style high-quality and high-efficiency joining technique,laser+pulsed GMAW(GMAW-P) hybrid welding combines the benefits of both laser beam welding (LBW) and GMAW-P and has the synergistic effect of "1+1>2".Thus,it is of significant potential in industrial applications.Up to now,however,most of studies on hybrid welding have just focused on the parameter optimization by experiments,and there is a lack of fundamental investigations involving its physical mechanism.Since hybrid welding involves more welding parameters compared with single welding process,its physical process is more complicated.So,determining the process parameters only by experiments requires vast amounts of manpower and material resources,thereby hindering its further spreading.In this study,using the numerical simulation technique,the weld formation and thermal field characteristics in laser+GMAW-P hybrid welding are investigated through developing the adaptive heat source model,thus providing the theoretical basis and reference data for study of heat transfer mechanism and welding parameter optimization,which is of great theoretical significance and practical value.
     After considering the geometry characteristics of weld cross section and analyzing the thermal action features in deep-penetration laser welding,four adaptive and suitable rotary volumetric heat sources for deep-penetration laser welding are developed,i.e.power peak density exponentially increasing-conic heat source,power peak density linearly increasing-logarithmic curve rotated body heat source,power peak density linearly increasing-parabolic curve rotated body heat source and power peak density hyperbolically increasing-hyperbolic curve rotated body heat source, which describe the keyhole effect though considering the heat flux distribution along the workpiece thickness direction.Based on this,from the point of view in macro heat transfer,the heat inputs from arc,overheated droplets and laser are described, respectively,and then four kinds of novel combined heat source models are built for laser+GMAW-P hybrid welding,which treat arc heat,droplet heat content and laser energy as a double-elliptic planar heat source,a double ellipsoid volumetric heat source with uniform power density and the four rotary volumetric heat sources mentioned above,respectively.The three parts of heat inputs are combined together to establish the combined volumetric heat source,which is suitable for hybrid welding.
     The quasi-steady temperature fields in hybrid welding for various welding conditions are analyzed numerically with the developed combined volumetric heat sources,and the weld shapes and dimensions are also calculated.In the calculations, the effect of the interaction between laser and arc on the heat flux distribution is considered indirectly though adjusting the distribution parameters of heat sources.The results show that the calculated weld geometries and dimensions agree well with the experimental data in the mass,but the predicted results of local fusion line loci have a discrepancy with the measured ones.Considering this problem,the following improvement of the developed four heat source models is made.Based on the thermal action characteristic of pulsed arc in laser+GMAW-P hybrid welding,the heat input of pulsed arc is regarded as two double elliptic planar heat sources with different distribution parameters corresponding to the peak and background arcs,respectively, and the intermittence of pulsed arc action is taken into account indirectly by using an appropriately lowered thermal conductivity along the workpiece thickness direction in the active domain of arc on the weldment top surface.Meanwhile,the action zones of heat sources for droplet heat content and laser heat are adjusted appropriately.Then, the weld shapes and sizes in hybrid welding are simulated again with the improved combined heat source models,both having a fair agreement with the experimental results,which indicates that the calculation accuracy of the combined volumetric heat source models are enhanced largely after their improvement.
     The developed combined heat source model is also employed to conduct the numerical analysis of thermal field in laser+GMAW-P hybrid welding.The influence of arc power on the characteristic parameters of thermal field,including width of heat affected zone(HAZ) and thermal cycle parameters,is quantitatively studied,and is compared with the calculated results of LBW and GMAW-P,which lays the foundation for revealing the characteristics of laser+GMAW-P hybrid welding in terms of metallurgy.
     In order to select the heat source distribution parameters more reasonably, through combining the ray tracing method with the keyhole model based on the line heat source to describe the multiple reflections of laser beam in the unsymmetrical keyhole and Fresnel absorption of laser energy by keyhole wall detailedly and correctly,a new method for calculating the keyhole shape and size is developed. Correlating the keyhole dimensions to the distribution domain of the volumetric heat source for laser welding,the volumetric heat source mode for laser welding based on the keyhole model is put forward.The weld formations in LBW and hybrid welding are simulated using the mode,and the calculated results are in good agreement with the experimentally determined data.
引文
[1]Banas C M.High power laser welding-1978[J].Optical Engineering,1978,17(3):210-216.
    [2]Duley W W.Laser Welding[M].New York:John Wiley&Sons,Inc.,1999.
    [3]Schuocker D.Handbook of the EuroLaser Academy[M].Vol.2,New York:CHAPMAN&HALL,1999.
    [4]李力钧等.现代激光加工及设备[M]。北京:北京理工大学出版社,1992.11.
    [5]王家金.激光加工技术[M].北京:中国计量出版社,1992.7.
    [6]Fuerschbath P W.Measurement and Prediction of Energy Transfer Efficiency in Laser Beam Welding[J].Welding Journal,1996,75(1):23-34
    [7]殷树言.气体保护焊基础[M].北京:机械工业出版社,2007.4
    [8]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,1998.
    [9]Steen W M.Arc Augmented Laser Welding[J].Metal Construction,1979,11(7):332-333.
    [10]Lahti K E.One+one is more than two!![J].Svetsaren(English Edition),2003,58(2):22-24.
    [11]Staufer H.Laser Hybrid Welding in the Automotive Industry[J].Welding Journal,2007,86(10):36-40.
    [12]J.Defalco.Practical Applications for Hybrid Laser Welding.Welding Journal,2007,86(10):47-50.
    [13]Mahrle A,Beyer E.Hybrid laser beam welding-classification,characteristics and application[J].Journal of Laser Applications,2006,18(3):169-180.
    [14]Bagger C,Olsen F O.Review of laser hybrid welding[J].Journal of Laser Applications,2005,17(1):2-14.
    [15]Lin M L,Eagar T W.Influence of surface depression and convection on arc weld pool geometry[J].Transport Phenomena in Material Processing,1983,100):63-69.
    [16]Lin M L,Eagar T W.Influence of arc pressure on weld pool geometry[J],Welding Journal,1985,64(6):163s-169s.
    [17]Tsai N S,Eagar T W.Distribution of the heat and current fluxes in gas tungsten arcs[J].Metallurgical Transaction B,1985,16(4):841-846.
    [18]Lin M L,Eagar T W.Pressure produced by gas tungsten arcs[J].Metallurgical Transaction B,1986,17(9):601-607.
    [19]Kou S,Sun D K.Fluid flow and weld penetration in stationary arc welds[J].Metallurgical Transaction A,1985,16(2):203-213.
    [20]Zacharia T,David S A,Vitek J M.Computational modeling of stationary gas-tungsten-arc weld pool and comparison to stainless steel 304 experimental result[J].Metallurgical transaction B,1991,22(4):243-257.
    [21]Kou S,Wang Y H.Computer simulation of convection in moving arc weld pools[J].Metallurgical Transaction A,1986,17(12):2271-2277.
    [22]Cao Z N,Zhang Y M,Kovacevic R.Numerical dynamic analysis of moving GTA weld pool[J].Journal of Manufacture science and Engineering,1998,120(2):173-178.
    [23]Chan C.A two-dimensional transient model for convection in laser melted pools[J].Metallurgical Transaction A,1984,15(12):2175-2184.
    [24]Kou S,Wang Y H.Weld pool convection and its effect[J].Welding Journal,1986,65(3):63s-70s.
    [25]Goodarzi M.Mathematical modeling of gas tungsten arc welding and gas metal arc welding processes[D].Toronto:Department of Metallurgy and Materials Science,University of Toronto,1997.
    [26]Lee S Y,Na S J.A numerical analysis of molten pool convection considering geometric parameters of cathode and anode[J].Welding Journal,1997,76(11):484s-497s.
    [27]Kou S,Wang Y H.Three-dimensional convection in laser melted pools[J].Metallurgical Transaction A,1986,17(12):2265-2270.
    [28]Wu C S,Tsao K C.Modelling the Three-Dimensional Fluid Flow and Heat Transfer in a Moving Weld Pool.Engineering Computations[J].1990,7(3):241-248.
    [29]闫凤洁.基于PHOENICS的三维瞬态TIG焊接熔池数值模拟[D].济南:山东大学硕士论文,2003.
    [30]Zhao P C,Wu C S,Zhang Y M.Modelling the transient behaviors of a fully penetrated gas-tungsten arc weld pool with surface deformation[J].Journal of Engineering manufacture,2005,219(1):99-110.
    [31]孙俊生.电弧热流与熔滴热焓量分布模式对熔池行为的影响[D].济南:山东工业大学博士论文,1998.
    [32]Choo R T C,Szekely J,Westhoff R C.Modeling of high-current arcs with emphasis on free surface phenomena in the weld pool[J].Welding Journal,1990,69(9):346s-361s.
    [33]曹振宁.TIG/MIG焊接熔透熔池流场与热场的数值模拟[D].哈尔滨:哈尔滨工业大学博士论文,1993.
    [34]赵朋成.全熔透TIG焊接熔池形态瞬时行为的数值模拟[D].济南:山东大学博士论文,2003.
    [35]Zacharia T,Eraslan A H,Aidun D K.Modeling of non-autogenous welding[J].Welding Journal,1988,67(1):18s-27s.
    [36]Zacharia T,Eraslan A H,Aidun D K.Modeling of autogenous welding[J].Welding Journal,1988,67(3):53s-62s.
    [37]Zacharia T,David S A,Vitek J M,Ddbroy T.Weld pool development during GTA and laser beam welding of type 304 stainless steel,part Ⅰ—theoretical analysis[J].Welding Journal,1989,68(12):499s-509s.
    [38]Zacharia T,David S A,Vitek J M,Debroy T.Weld pool development during GTA and laser beam welding of Type 304 stainless steel,Part Ⅱ—experimental correlation[J].Welding Journal,1989,68(12):510s-519s.
    [39]Thompson M E,Szekely J.The transient behavior of weld pool with a deformed free surface[J].International Journal of Heat and Mass Transfer,1989,32(6):1007-1019.
    [40]赵明.全熔透GTAW焊接熔池形态数值模拟精度的改进[D].济南:山东大学博士论文,2006.
    [41]Chen Y,Cremers C J.Heat transfer and fluid flow in arc welding with full penetration[C].Proceeding of the 4~(th) International conference on Trends in Welding Research,13-18,1995,Gatlinburg,Tennessee.
    [42]Wu C S,Dom L.Prediction of surface depression of a tungsten inert gas weld pool in the full-penetration condition[J].Journal of Engineering manufacture,1995,209(2):221-226.
    [43]Fan H G,Tsai H L,Na S J.Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding[J].International Journal of heat and Mass Transfer,2001,44(2):417-428.
    [44]Seidel T U,Reynold A P.Visualization of the material flow in AA2195friction-stir welds using a marker insert technique[J].Metallurgical and Materials Transaction A:Physics Metallurgical and Materials Science,2001,32(11):2879-2884.
    [45]Wu C S,Sun J S.Numerical analysis of temperature field during double-sided arc welding of thick materials[J].Computational Materials Science,2002,25(3),457-468.
    [46]Kim C H,Zhang W,DebRoy T.Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding[J].Journal of Applied Physics,2003,94(4):2667-2679.
    [47]Zhang W,Kim C H,DebRoy T.Heat and fluid flow in complex joint during gas metal arc welding-Part Ⅱ:Application to fillet welding of mild steel[J].Journal of Applied Physics,2004,95(9):5220-5229.
    [48]Kumar A,DebRoy.Heat transfer and fluid flow during gas metal arc fillet welding for various joint configurations and welding positions[J].Metallurgical and Materials Transactions A,2007,38(3):506-519.
    [49]Paul A,Debroy T.Free surface flow and heat transfer in conduction mode laser welding[J].Metallurgical Transaction B,1988,19(4):851-858.
    [50]Zacharia T,Eraslan A H,Aidun D K,David S A.Heat transfer during Nd:Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels[J].Metallurgical Transaction A,1989,20(5):957-967.
    [51]Zhao H,Debroy T.Weld metal composition change during conduction mode laser welding of Aluminum alloy 5182[J].Metallurgical and Materials Transactions B,2001,32(1):163-172.
    [52]Robert A,Debroy T.Geometry of laser spot welds from dimensionless numbers[J].Metallurgical and Materials Transactions B,2001,32(5):941-947.
    [53]Heiple C R,Roper J R,Stanger T,Aden R J.Surface-active element effect on the shape of GTA,Laser and Electron Beam Welds[J].Welding Journal,1983,62(3):72s-77s.
    [54]Yibas B S,Sami M,Nickel J,et al.Introduction into the electron beam welding of austenitic 321-type stainless steel[J].Journal of Materials Processing Technology,1998,82(1):13-20.
    [55]Colligan K.Material flow behavior during friction stir welding of aluminum[J].Welding Journal,1999,78(7):229s-237s.
    [56]胡庆贤.穿孔等离子弧焊接温度场的有限元分析[D].济南:山东大学博士论文.2007.
    [57]Seyffarth P,Krivtsun I V.Laser-arc processes and their applications in welding and materials treatment[M].London:Taylor&Francis,2002.
    [58]Dilthy U,Wieschemann A.Prospects by Combing and Coupling Laser Beam and Are Welding Process[J].Welding in the Word,2000,44(3):37-46.
    [59]Albright C E,Eastman J,Lempert W.Low-Power Laser Assist Arc Welding[J].Welding Journal,2002,79(4):55-58.
    [60] Karthikeyan C, Anbazhagan V, Mitra T K.. Laser Arc Augmented Welding of Stainless Steel Sheets[J]. Lasers in Engineering, 1993,3(2): 93-109.
    [61] Beyer E, Brenner B, Proprawe R. Hybrid laser welding techniques for enhanced welding efficiency[C]. Proceedings of the 15th International Congress on Applications of Lasers and Electro-Optics (ICALEO'96), Section D: 157-166,1996, Detroit, Michigan.
    [62] Nagata S, Katsummura M, Matsuda J, Hamasaki M. Laser welding combined with TIG or MIG. IIW-Doc.IV, 1985, 390-385.
    [63] Dilthey U, Lueder F, Wieschemann. Process-technical investigations on hybrid technology laser beam-arc-welding[C]. Proceeding of the 6th International Conference on Welding and Melting by Election and Laser Beams, 420-424, June 15-19, 1998, Toulon.
    [64] Sudnik W, Radaj D, Erofeew W. Computerized simulation of laser beam welding, modeling and verification[J]. Journal of Physics D: Applied Physics, 1996, 29(5): 2811-2817.
    [65] Beyer E, Dithey U, Immhoff R, Maier C. New Aspects in laser welding with an increased efficiency[C]. Proceeding of the 13th International Congress on Applications of Lasers and Electro-Optics (ICALEO'94), 417-424, 1994, Orlando, Florida.
    [66] Matsuda J, Utsumi A, Katsumura M. TIG or MIG arc augmented laser welding of thick mild steel plate[J]. Joining&Materials, 1988,1(1): 31-34.
    [67] Walz, Seefeld T, Sepold G Seam geometry and process stability during laser-MIG welding[J]. LaserOpto, 2002, 33(2): 42-67.
    [68] Kaierle S, Bongard K, Dahmen M. Innovative hybrid welding process in an industrial application[C]. Proceeding of the 19th International Congress on Applications of Lasers and Electro-Optics (ICALEO'00), 91-98, 2000, Detroit, Michigan.
    [69] Magee K, Merchan V E, Hyatt. Laser-assisted gas metal arc weld characteristics. Proceeding of the 9th International Congress on Applications of Lasers and Electro-Optics (ICALEO' 90), Boston, 1990:382-399.
    [70] Katayama S, Uchiumi S and Mizutani M, et al. Penetration and porosity prevention methcnism in YAG laser-MIG hybrid welding[J]. Welding International, 2007, 21(1): 25-31.
    [71] Moriaki O, Yukio S, Akihide Y, et al. Development of laser-arc hybrid welding[J]. NKK Technical Review, 2002, (86): 8-12.
    [72]董春林,陈俐,吕高尚,史春元.不锈钢YAG-MAG激光电弧复合焊接工艺[J].航空制造技术,2005,48(3):69-71.
    [73]秦国梁,雷振,王旭友,王威,林尚扬.Nd:YAG激光+脉冲MAG电弧复合热源焊接规范参数对焊缝表面成形的影响[J].应用激光,2006,26(2):97-100.
    [74]H(u|¨)gel H,Schinel C.Handbook of laser technology and applications[M].Bristol:Institute of Physics,2004.
    [75]Steen W M.Laser material processing(3~(rd) edition)[M].London:Springer,2003.
    [76]辜磊,刘建华,汪兴均.激光-电弧复合焊接技术在船舶制造中的应用研究[J].造船技术,2005,33(5):38-40.
    [77]Eguchi.Application of laser-arc hybrid welding to aluminum alloys[J].Welding Technology,2003,51(7):79-83.
    [78]Ueyama.Application of the laser/AC pulsed MIG arc hybrid welding process to aluminum alloy sheet[J].Journal of Japan Laser Processing Society,2003,10(2):151-157.
    [79]Wang J,Takenaka Y,Hongu T,Fujii K,Katayama S.Laser-MIG arc hybrid welding of aluminum alloy-Comparison of melting characteristic between YAG laser and diode laser[J].Welding International,2007,21(1):32-38.
    [80]Capmpana G,Ascari A,Fortunato A,Tani G.Hybrid welding of aluminum alloys:The influence of shielding gases[J]Applied Surface Science,2009,255(10):5588-5590.
    [81]雷振,秦国梁,林尚扬.激光与MIG/MAG复合热源焊工艺发展概况[J].焊接,2005,49(9):9-12.
    [82]EL Rayes M,Walz C and Sepold G.The influence of various hybrid welding parameters on bead geometry[J].Welding Journal,2004,83(5):147-153.
    [83]Ishide T,Nayama M.Cosixial TIG-YAG&MIG-YAG welding methods[J].Welding International,2001,15(12):940-945.
    [84]Abe N,Agamo Y,Tsukamoto M,Makino T,Hayashi M,and Kurosawa T.High speed welding of thick plates on laser-arc combination system[J].Transactions of JWRI,1997,26(1):69-75.
    [85]王威,王旭友,赵子良,冷凯波,卜大川.激光—MAG电弧复合热源焊接过程的影响因素[J].焊接学报,2006,27(2):6-10.
    [86]樊丁,中田一博,牛尾诚夫.激光与脉冲MIG复合焊接试验研究[J].应用激光,2002,22(2):169-171.
    [87]陈俐,董春林,吕高尚,胡伦骥.YAG/MAG激光电弧复合焊工艺研究[J].焊接技术,2004,33(4):21-23.
    [88]Diebold T P,Albright C E.Laser-GTA welding of aluminum alloy5052[J].Welding Journal,1984,63(6):18-24.
    [89]许良红,彭云,田志凌,张晓牧.激光-MIG复合焊接工艺参数对焊缝的影响.应用激光,2006,26(1):5-9.
    [90]Marc Wouters.Hybrid Laser-MIG welding:An investigation of geometrical considerations[D].Master thesis.Lulea:Lulea University of Technology,2005.
    [91]王治宇,王春明,胡伦骥,胡席远.激光-电弧复合焊接的应用[J].电焊机,2006,36(2):38-41.
    [92]陈彦宾,徐庆红,苏彦东.激光-同轴电弧热源复合焊接[J].焊接学报,1995,16(4):239-243.
    [93]樊丁.YAG激光与脉冲MIG复合焊接[J].焊接学报,2002,23(5):160-166.
    [94]张旭东,陈武柱.激光-电弧同轴复合焊炬[Z].中国:CN1446661A,2003.
    [95]滕文华.激光-电弧复合焊接在汽车制造中的应用[J].电焊机,2004,34(6):9-11.
    [96]杨淑芬.铝合金焊接技术[J].造船技术,2003,46(5):25-28.
    [97]Wieschemann A,Kelle H,Dilthey D.Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding[J].Welding International,2003,17(10):761-766.
    [98]Malmuth N D.Hybrid laser welding developed for ship building[J].Advanced Materials&Processes:Materials Selection,2001,159(9):20-30.
    [99]Staufer H.Laser-hybrid welding of ships[J].Welding Journal,2004,83(3):39-43.
    [100]Hyatt C V,Magee K H,Porter J F.Laser-assisted gas metal arc welding of 25mm-thick HY-80 plate[J].Welding Journal,2001,80(7):163-172.
    [101]Steen W M.Arc Augmented Laser Processing of Materials[J].Journal of application physics,1980,51(11):5636-5641.
    [102]Avilov V V,Decker I,Pursch H,Wendelstorf.Study of a laser-enhanced welding arc using advanced split anode technique[J].Welding Journal,1994,11(2):112-123.
    [103]陈彦宾.激光-TIG复合热源焊接物理特性研究[D].哈尔滨:哈尔滨工业大学博士论文,2003.
    [104]Tix C,Gratzke U,Simon G.Absorption of the laser beam by the plasma in deep laser welding of metals[J].Journal of Applied Physics,1995,75(11):6448-6453.
    [105]Lu Dengping,Zhang Xiaobin.Study on mechanism of mutual effect between laser and arc &its effect on weld penetration[J].China Welding,1993,2(2):104-108.
    [106]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量[J].焊接学报,2003,24(3):56-58.
    [107]Bibik O B,Brodyaqin V N,Rokladov Y P.Special features of interaction of laser radiation with the electric welding are in the combined laser-are welding[J].Physics and Chemistry of Materials Treatment,1990,24(2):176-178.
    [108]肖荣诗,吴世凯.激光-电弧复合焊接的研究进展[J].中国激光,2008,35(11):1680-1685.
    [109]Hu B,Ouden G D.Laser induced stabilization of the welding arc[J].Science and Technology of Welding and Joining,2005,10(1):76-80.
    [110]Phillip W,Fuerschbach.Laser assisted plasma arc welding[C].Proceedings of the 18~(th) International Congress on Applications of Lasers and Electro-Optics (ICALEO'99),Section D:102-109,Nov15-18,1999,San Diego,California..
    [111]Kutsuna M,Chen L.Interaction of both plasma in CO_2 laser-MAG hybrid welding of carbon steel[C].SPIE,2003,4831:341-346.
    [112]雷正龙,陈彦宾,李俐群.CO_2激光-MIG复合焊接射滴过渡的熔滴特性[J].应用激光,2004,24(6):361-364.
    [113]Naito Y,Mizutani M,Katayama S.Penetration characteristic in YAG laser and TIG arc hybrid welding,and arc and plasma/plume behavior during welding.Welding phenomena in hybrid welding using YAG laser and TIG arc[J].Welding International,2006,20(10):777-784.
    [114]Claus Bagger,Flemming O Olsen.Review of laser hybrid welding[J].Journal of Laser Application,2005,17(1):2-14.
    [115]Zhang Y M,Zhang S B.Double-sided arc welding increases weld joint penetration[J].Welding Journal,1998,77(6):57s-61s.
    [116]Zhang Y M,Zhang S B.Observation of the keyhole plasma arc welding[J].Welding Journal,1999,78(2):53s-58s.
    [117]Hsu Y F and Rubinsky B.Transient melting of a metal plate by a penetrating plasma arc[J].ASME J Heat Transfer,1987,109(5):463-469.
    [118]Ducharme R,Kapadia P,Dowden J M.The collapse of the keyhole in the laser welding of materials.In:Proc.ICALEO'93(Denny P,Miyamoto I,and Mordike B L,eds.) Orlando:LIA,1994,177-183.
    [119]Dowden J M,Kapadia P,Postacioglu N.An analysis of the laser-plasma interaction in laser keyhole welding.Journal of Physics D:Applied Physics, 1989,22():741-749.
    [120] Lee J Y, Ko S H, Farson D F, Yoo C D. Mechanism of keyhole formation and stability in stationary laser welding. Journal of Physics D: Applied Physics, 2002, 35(13): 1570-1576.
    [121] Jin Xiangzhong, Li Lijun, Zhang Yi. A study on Fresnel aborption and reflections in the keyhole in deep penetration laser welding. Journal of Physics D: Applied Physics, 2002, 35(18): 2304-2310.
    [122] Dithey U. Kinetic description of keyhole plasma in laser welding. Journal of Physics D: Applied Physics, 2000, 33(21): 2747-2753.
    [123] Solana P, Negro G A study of the effect of multiple reflections on the shape of the keyhole in the laser processing of materials. Journal of Physics D: Applied Physics, 1997, 30(23): 3216-3222.
    [124] Dowden J, Postacioglu N, Davis M and Kapadia P D. A keyhole model in penetration welding with a laser [J] Journal of Physics D: Applied Physics, 1987, 20(1): 36-44.
    [125] Kroos J, Gratzke U and Simon G. Towards a self-consistent model of the keyhole in penetration laser beam welding[J]. Journal of Physics D: Applied Physics, 1993, 26(3): 474-480.
    [126] Lankalapalli K N, Tu J F and Gartner M. A model for estimating penetration depth of laser welding processes[J]. Journal of Physics D: Applied Physics, 1996, 29(7): 1831-1841.
    [127] Kaplan A. A model of deep Penetration laser welding based on calculation of the keyhole profile[J]. Journal of Physics D: Applied Physics, 1994, 27(9): 1805-1814.
    [128] Pecharapa W and Kar A. Effects of phase changes on weld pool shape in laser welding[J]. Journal of Physics D: Applied Physics, 1997, 30(24): 3322-3329.
    [129] Andrews J G and Atthey D R. Hydrodynamic limit to penetration of a material by a high-power beam[J]. Journal of Physics D: Applied Physics, 1976, 9(12):2181-2194.
    [130] Dowden J, Postacioglu N, Davis M and Kapadia P D. A keyhole model in penetration welding with a laser[J]. Journal of Physics D: Applied Physics, 1987, 20(1): 36-44.
    [131] Lampa C, Kaplan A, Powell J and Magnusson C. An analytical thermodynamic model of laser welding[J]. Journal of Physics D: Applied Physics, 1997, 30(9): 1293-1299.
    [132]Colla T J,Vicanek M and Simon G.Heat transfer in melt flowing past the keyhole in deep penetrating welding[J].Journal of Physics D:Applied Physics,1994,26(10):2035-2040.
    [133]Ducharme R,Willians K,Kapadia P,Dowden J,Steen B and Glowacki M.The laser welding of thin metal sheets:a integrated keyhole and weld pool model with supporting experiments[J].Journal of Physics D:Applied Physics,1994,27(8):1619-1627.
    [134]Solana P and Ocana J L.A mathematical model for penetration laser welding as a free-boundary problem.Journal of Physics D:Applied Physics,1997,30(6):1300-1313.
    [135]Sudnik W,Radaj D and Erofeew W.Computerized simulation of laser beam welding,modeling and verification[J].Journal of Physics D:Applied Physics,1996,29(11):2811-2817.
    [136]Sudnik W,Radaj D,Breitschwerd S and Erofeew W.Numerical simulation of weld pool geometry in laser welding[J].Journal of Physics D:Applied Physics,2000,33(6):662-671.
    [137]Pecharapa W and Kar A.Effects of phase changes on weld pool shape in laser welding[J].Journal of Physics D:Applied Physics,1997,30(24):3322-3329.
    [138]Ki Hyungson,Pravansu S,Mohanty,Jyoti Mazumder.Modeling of laser keyhole welding:Part Ⅰ.Mathermatical Modeling,Numercial Methodology,Role of Recoil Pressure,Multiple Rflections,and Free Surface Evolution.Metallurgical and Materials Transactions A,2002,33(6):1817-1830.
    [139]Zhou Jun,Tsai Hai Lung,Wang Pei Chung.Transport phenomena and keyhole dynamics during pulsed laser welding.Journal of Heat Transfer,2006,128(7):680-690.
    [140]Cho Jung Ho,Na Suck Joo.Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole.Journal of Physics D:Applied Physics,2006,39(24):5372-5378.
    [141]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
    [142]李存洲.激光深熔焊接热场的数值模拟研究[D].北京:北京航空航天大学硕士论文,2004.
    [143]Goldak J,Chakravarti A,Bibby M.A new finite element model for welding heat sources.Metallurgical Transaction A,1984,15B(2):299-305.
    [144]吴甦,赵海燕,王煜,等.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2004,26(7):49-53.
    [145]王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元模拟[J].焊接学报,2005,26(7):47-53.
    [146]Wu C S,Wang H G,Zhang Y M.A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile[J].Welding Journal,2006,85(12):284-291.
    [147]Wang Y,Tsai H L.Impingement of filler droplet and weld pool dynamics during gas metal arc welding[J].International Journal of Heat and Mass Transfer,2001,44(11):2067-2080.
    [148]Hu J,Tsai H L.Heat and mass transfer in gas metal arc welding.Part Ⅰ:The arc[J].International Journal of Heat and Mass Transfer,2007,50(5):833-846.
    [149]Hu J,Tsai H L.Heat and mass transfer in gas metal arc welding.Part Ⅰ:The metal[J].International Journal of Heat and Mass Transfer,2007,50(6):808-820.
    [150]Hu J,Tsai H L.Weld pool dynamics and the formation of ripples in 3D gas metal arc welding[J].International Journal of Heat and Mass Transfer,2008,51(9-10):2537-2552.
    [151]Kumar S,Bhaduri S C.Three-dimensional finite element modeling of gas metal arc welding[J].Metallurgical and Materials Transactions B,1994,25(3):435-441.
    [152]Tsao K C,Wu C S.Fluid flow and heat transfer in GMA weld pool[J].Welding Journal,1988,67(3):70-75.
    [153]Cho M H,Farson D F.Simulation study of a hybrid process for the prevention of weld bead hump formation[J].Welding Journal,2007,86(9):253-262.
    [154]Zhou J,Tsai H L.Modeling of transport phenomena in hybrid laser-MIG keyhole welding[J].International Journal of Heat and Mass Transfer,2008,51(17-18):4353-4366.
    [155]Cho J H,Na S J.Three dimensional analysis of molten pool in GMA-laser hybrid welding[J].Welding Journal,2009,88(2):35-43.
    [156]Le Guen E,Fabbro R,Coste F,Carin M,Le Masson P.Modeling 2D and 3D of hybrid laser Nd:YAG-MIG welding processes[C].Proceedings of the COMSOL Conference,2008,Hannover.
    [157]吴圣川,刘建华.铝合金激光-电弧复合焊的有限元数值模拟[J].航空制造技术,2005,48(12):74-76.
    [158]姜幼卿,辜磊,刘建华.厚板铝合金YAG-MIG复合热源焊接温度场数值模拟[J].焊接学报,2006,27(6):104-107.
    [159]刘黎明,迟鸣声,宋刚,王继峰.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):82-86.
    [160]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [161]武传松,L.Dorn.熔滴冲击力对MIG焊接熔池表面形状的影响,金属学报,1997,33(7),774-780.
    [162]C.S.Wu and J.S.Sun.Modelling the arc heat flux distribution in GMA welding.Computational Materials Science,1998,9,397-402.
    [163]C.H.Kim,W.Zhang and T.Debroy.Modeling 0f temperature field and solidified surface profile during gas metal arc fillet welding.Journal of Applied Physics,2003,94(4),2667-2679.
    [164]Y.Arata,Plasma,Electron and Laser Beam Technology American Society for Metals,Metals Park,OH,1986.
    [165]H.Zhou and T.DebRoy Macroporosity free aluminum alloy weldment through numerical simulation of keyhole mode laser welding.Journal of Applied Physics,2003,93(12):10089-10096
    [166]金相中,鄢锉.激光深熔焊接小孔孔壁上的反射吸收研究.天津工业大学学报,2003,22(5):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700