用户名: 密码: 验证码:
闽北不同类型毛竹林生态功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)是我国分布最广、面积最大、经济价值最高的竹种。毛竹林不仅具有较高的经济和社会价值,而且在涵养水源、保持水土等方面具有重要的生态功能。闽北山区是我国毛竹分布和种植的主要地区,也是南方典型的丘陵区。由于竹林集约经营强度大,该地区的山坡度大,降雨量及强度大且集中,水土流失和地力维护等方面的生态问题突出。因此,如何在大规模高效培育和利用毛竹林资源的同时,提高毛竹林生态系统服务功能成为目前亟待解决的重大科学问题。本文以闽北常绿阔叶林(CK_K)和南方速生丰产的杉木林(CK_S)为对照,以闽北山区主要毛竹林类型——毛竹纯林(T_(ZC))、8竹2阔林(T_(ZK1))、6竹4阔林(T_(ZK2))和杉竹混交林(T_(ZS))为研究对象,分析评价6种林分结构特征及主要生态功能—群落结构、生物多样性、土壤性质维持、水源涵养和土壤抗侵蚀性,旨在比较不同毛竹林综合生态功能差异,为南方丘陵区发展毛竹林培育、水土流失防治及竹林可持续经营提供理论依据和技术指导,同时,为竹林生态功能野外观测积累经验。主要研究结论如下:
     (1)对不同类型毛竹林群落结构研究表明:6种群落植物隶属86科166属231种,其中蕨类植物13科21属30种,裸子植物2科2属2种,被子植物71科143属199种;科以单种科和寡种科为主,占总科数的80.40%;属内种数变化范围为1~7,其中单种属最多,占总属数的78.31%。T_(ZC)、T_(ZK1)、T_(ZK2)、T_(ZS)、CK_S和CK_K的植物分别隶属55科90属118种、76科128属156种、68科120属148种、38科54属60种、42科57属64种和73科109属129种。β分布对于拟合试验林分胸径、树高和年龄分布较好。
     (2)不同类型林分物种多样性研究表明:群落物种数呈现随阔叶树比例增加而增加的态势,其中乔木层以CK_K物种最丰富,多样性指数最高,分布最均匀,均优多度最高;灌木层以T_(ZK1)物种丰富度、多样性和均优多度最高,CK_K均匀度最高,T_(ZS)和CK_S生态优势度最高;草本层T_(ZK2)物种丰富度和均优多度最高,多样性和均匀度以CK_K最高,生态优势度T_(ZS)最高。群落总体物种丰富度T_(ZK1)最高,多样性和均匀度CK_K最高,均优多度T_(ZK2)最高,生态优势度CK_S最高。生物多样性指数与生物量相关性不显著。
     (3)采用多指标、多种分析方法研究林地土壤性质,结果表明:土壤物理性质状况CK_K最佳,T_(ZK1)次之,CK_S最差;CK_K土壤养分状况最佳,其众多土壤养分含量最高,T_(ZS)最低;土壤酶活性以T_(ZK1)最佳,6种酶中4种酶活性最高,CK_S土壤酶活性最差,其所有酶活性均最低。土壤细菌占土壤微生物总量比例最大,达96.20%以上,放线菌数量次之,真菌数量最少。聚类分析和土壤性质综合评价得出各林分土壤性质综合指数依次为:CK_K>T_(ZK1)>T_(ZC)>T_(ZK2)>T_(ZS)>CK_S,说明T_(ZK1)在竹林中土壤性质最佳。土壤微团聚体与众多土壤理化性质、土壤生物活性因子间存在极显著或显著的负相关关系,说明土壤微团聚体分形维数在作为土壤质量诊断指标方面具有较好的应用潜力。整体上,各林分土壤分形维数大小状况如下:CK_K     (4)不同林分水源涵养功能研究表明:林冠截留量和截留率均以CK_K最高,分别为408mm和18.09%,CK_S次之,分别为391.19mm和17.33%,竹林以T_(ZS)最高,分别为366.95mm和16.26%,T_(ZK1)最低,分别为325mm和14.41%。林冠截留量和林冠截留率与降雨量和林内降雨的曲线关系显著;不同林地不同类型枯落物储量及总储量差异较大,其中未分解层、半分解层和已分解枯落物均以CK_S最高,T_(ZC)最低,林地枯落物总储量以CK_K次之,T_(ZC)最低。林地枯落物持水量和吸水速率不仅与枯落物状态相关,还与浸水时间相关,并建立了它们分别与浸水时间的曲线模型,土壤贮水量随土层增加而减小。土壤最大贮水量以CK_K最高,T_(ZK1)次之,CK_S最低,其三层平均贮水量分别为:1125.67 t·hm-2、1100.60 t·hm-2和1008 t·hm-2。水源涵养总量以CK_K最高,CK_S次之,T_(ZC)最低,分别为:747.20mm、696.53mm和641.17mm,毛竹林中以T_(ZS)最高,为683.26mm,T_(ZK1)次之,为656.73mm。
     (5)土壤抗侵蚀性指标研究表明:土壤有机质、水稳性指数、结构系数、入渗速率(初渗速率、稳渗速率、平均速率和渗透总量)、根重、根长和抗冲性指数随土层增加而降低,而结构体破坏率团聚度、分散率和分散系数等随土层增加而增加,表明林地土壤抗侵蚀性能随土层增加而减弱。因子分析和主分量分析表明,土壤水稳性指数、抗冲性指数、土壤有机质含量与众多土壤理化性质、生物活性、土壤抗侵蚀性指标之间存在极显著或显著的相关关系,在土壤抗侵蚀性第一主分中具有较大的负荷,可作为表征林地土壤抗侵蚀性的综合参数。各林分土壤抗侵蚀性综合指数大小次序依次为:T_(ZS)>T_(ZK2)>T_(ZK1)>CK_K>CK_S>T_(ZC),说明竹林尤其毛竹混交林林地土壤具有较强的抗侵蚀性能。
     (6)对各林分主要生态功能综合定量评价表明,各林分生态功能综合指数大小为:CK_K>T_(ZK1)>T_(ZK2)>T_(ZC)>T_(ZS)>CK_S。说明森林生态功能随阔叶树比例增加而呈现增强的态势。因此,在南方山区、丘陵区发展和经营毛竹林时,可适当增加阔叶树比例,提高竹林整体生态功能,达到发展竹林种植和治理水土流失相结合。
Moso bamboo (Phyllostachys edulis), which is most widely distributed in South China, has the largest amount and highest economic value among the bamboo species. It has not only high economic and social values, but also other important ecological functions, such as water and soil conservation. With large areas of hills and mountains, the Northern Fujian Province, is major region of P. edulis’s distribution and cultivation. Because of extensive management of P. edulis plantations, the soil erosion, soil productivity maintenance and others ecological problems are very serious. Therefore, it is a important scientific issues that how to enhance the ecosystem service function in cultivating and utilizing P. edulis resources in high-effect and on a large scale. In this paper, the community structure and major ecological functions (biodiversity, soil property, water and soil conservation) of six types of forests—Evergreen broadleaved forest (CK_K), Cunninghamia lanceolata forest (CK_S), P. edulis pure foresty (T_(ZC)), eight P. edulis and two broad-leave tree mixed stands (T_(ZK1)), six P. edulis and four broad-leave tree mixed stands (T_(ZK2)()typles T_(ZK1) and T_(ZK2), the proportion of broad-leaved tree is about 20% and 40% respectively)and Mixed forest of C. lanceolata and P. edulis (T_(ZS)) were studied. The aims were to compare the difference of different P. edulis forests’s compositive ecological functions, provide theoretical and technical guidances for P. edulis forest silvilcuture, controlling of water and soil loss and sustainable management in hilly area of Southern China, and also accumulate field experience for researching bamboo forestry’s ecological functions. The main conclusions are as follows:
     (1) Stand vegetable research were carried by using community survey, and the results were that the plant species in those six stands were belong to 86 families, 166 generas and 231 species which included 80.40 percent families and 78.31 percent generas that were composed one or one to four species. Among them, there are 30 species of pteridophyte from 13 families and 21 genera, 2 species of gyrmnosperms from 2 families and 2 genera, and 199 species angiosperms from 71 families and 173 genera. There are 55 families, 90 generas and 118 species, 76 families, 128 generas and 156 species, 68 families, 120 generas and 148 species, 38 families, 54 generas and 60 species, 42 families, 57 generas and 64 species, 73 families, 109 generas and 129 species respectively in T_(ZC), T_(ZK1), T_(ZK2), T_(ZS), CK_S and CK_K stands.βdistribution model was better in fitting tree height, DBH and age distribution pattern.
     (2) Through bio-diversity analyzing, the number of communities species increased with the rate of broad-leaved species of plantation, and CK_K had abundant species(S), the highest Margalef richness index(R), Simpson index(D), Shannanon-Weiner index(H′), Pielou evenness index(E) and evenness-dominance-abundance index(Z), the lowest ecological dominance(λ) in the tree layer. In the shrub layer, the biggest S, R, D, H′and Z were in T_(ZK1), the biggest E was in CK_K, and the biggestλwere in T_(ZS) and CK_S. In the herbaceous layer, T_(ZK2) had the biggest S, R and Z, CK_K had the biggest D, H′and E, and CK_S had the biggestλ. On the community level, S and R were biggest in T_(ZK1), the biggest D, H′and E were in CK_K, the biggest Z was in T_(ZK2), and T_(ZS) had the biggestλ. The nonlinear relationship between bio-diversity indices and community biomass was not significant.
     (3) Soil property status had been studied through multiple parameters and several quantitative methods in all test stands. The soil physical properties analyzing showed that CK_K had the best soil physical properties, T_(ZK1)′s secondly, while, CK_S′s was worst. According to soil chemical properties research, CK_K soil had the best soil chemical properties, which was highest among nutrients contents in all stands. On the contrary, T_(ZS)′s chemical properties was worst, many of its soil nutrients were lest. The soil enzyme activity of T_(ZK1) was the best, the max value of oil enzyme activity of six were in it stands, CK_S′s soil enzyme was worst because of soil enzyme activity value were worst. The percent of the Bacteria in microorganisms was more than 96.20%, so the rate of soil bacteria was higher than that of soil fungi and actinomycetes, and the number of soil fungi was lest. The magnitude of soil property comprehensive indexes of different test stands was CK_K>T_(ZK1)>T_(ZC)>T_(ZK2)>T_(ZS)>CK_S, this indicated that T_(ZK1)′s soil property was best in bamboo forestry. There existed highly significant or very significant negative relationship between the fractal dimension of soil micro-aggregates and many soil property indexes of soil physical and chemical properties, soil enzyme activity and soil microbiology quantity, and it is good for soil micro-aggregates fractal dimension in evaluating soil property, and the value of soil fractal dimension of different test stands was CK_K     (4) The water-holding capacity of canopy,litter layer,and soil were further studied in all test stands,and the results showed interception by canopy (391.19mm) and the average canopy interception rate (17.33) of CK_K were highest, While, in bamboo forestry, T_(ZS)’s interception by canopy(366.95mm) and its rate (16.26%) were much more than any other, the second in T_(ZC) foresty(335.71mm and 14.88%), the lest in T_(ZK1) foresty(325.25mm and 14.41%), the interception by canopy and its rate were in very significant nolinear relationship with rainfall and throughfall respectively. The storages of different decomposed state and total forest litter are differed with stand, and the biggest storage of undecomposed litter, half-decomposed litter and decomposed litter were all in CK_S, by contraries, all of them were lest in T_(ZC) stands, and the second biggest of total litter storage in CK_K. The water-holding capacity of litter and its absorption rate changed not only with litter decomposed state, also with immersion time, and the curve regression model of them had been established. Soil water content decreased with the soil depth, and the maximum in CK_K followed by T_(ZK1), and the minimum in CK_S, the their average soil water content of three layers (0~20cm, 20~40cm and 40~60cm) were 1125.67 t·hm-2, 1100.60 t·hm-2 and 1008.87 t·hm-2. In all, the water-holding capacity of forestry were highest (747.20mm) in CK_K, the second (696.53) in CK_S, the lest (641.17) in T_(ZC), and in bamboo forestry, the biggest was T_(ZS) (683.26mm) followed by T_(ZK1) (656.73mm).
     (5) Soil anti-erodibility of six stands showed that the content of organic matter, water stable index, soil structure coefficient, infiltration velocity, root weight, root length, and soil anti-scourability index decreased with the depth of soil, while, the damage rate of soil structure, aggregate degree, disperse rate and its coefficient increased with soil depth, indicating capability of soil anti-erosion decreased with the increase soil layer. The soil water stable index, anti-scourability index and the content of organic matter were in highly significant or very significant correlation with many soil physical and chemical properties indexes and soil biological activity indexes after Correlation Analysis and Principal component analysis, and they all had higher positive loading in the first principal component, so they can be used as a comprehensively quantitative index to evaluate the soil erosion resistance. The value of soil erosion resistance comprehensively quantitative index in different test stands was T_(ZS)>T_(ZK2)>T_(ZK1)>CK_K>CK_S>T_(ZC), it indicated that bamboo forestry especially T_(ZS), has better soil erosion resistance.
     (6) Comprehensive evaluation on six types of forests’main ecological functions showed that the decreasing order of it in different stands was CK_K>T_(ZK1)>T_(ZK2)>T_(ZC)>T_(ZS)>CK_S, this indicated that there is trend that forest ecosystem function enhanced with the increase of the rate of the broad-leaved tree, and P. edulis forestry especially T_(ZK1), had better forest ecosystem function. So, increasing percent of broadleaved species can be used to guide improving P. edulis forestry ecological function in cultivating and managing P. edulis forestry.
引文
[1]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社, 2002,
    [2]张齐生.竹类资源加工及其利用前景无限.中国林业产业, 2007, (3):22-24.
    [3]周宇.加快发展山区产业和花卉业—访全国政协人口资源环境委员会副主任、中国林学会理事长、中国花卉协会会长江泽慧.绿色中国:综合版, 2007, (3):26-29.
    [4]周芳纯.竹林培育学.竹类研究, 1993, 93 (1):1-95.
    [5]杨一松,王兆骞,陈欣,等.南方红壤坡地不同利用模式的水土保持及生态效益研究.水土保持学报, 2004, 18 (5):84-87.
    [6]杨艳生.我国南方红壤流失区水土保持技术措施.水土保持研究, 1999, 6 (2):117-120.
    [7]徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应.水土保持学报, 2001, 15 (1):77-80.
    [8]丁军,王兆骞,陈欣,等.南方红壤丘陵区人工林地水文效应研究.水土保持学报, 2003, 17 (1): 141-144.
    [9]雷加富.深刻理解相持阶段的基本内涵准确把握新时期林业发展的战略重点—对我国生态建设进入相持阶段的认识.绿色中国:理论版, 2005, (04M):4-8.
    [10]吴承祯,洪伟,杉木数量经营学引论. 2000.
    [11]李毅,孙雪新.甘肃胡杨林分结构的研究.干旱区资源与环境, 1994, 4 (3):88-95.
    [12]陈东来,秦淑英.山杨天然林林分结构的研究.河北农业大学学报, 1994, 4 (1):36-43.
    [13]孟宪宇,测树学.北京:中国林业出版社. 1996.
    [14]姚爱静,朱清科,张宇清,等.林分结构研究现状与展望.林业调查规划, 2005, 6 (2):70-76.
    [15]张飞萍,尤民生.不同林分类型毛竹林节肢动物群落的多样性与稳定性.昆虫学报, 2007, 12 (1): 31-37.
    [16]刘怀,赵志模,徐学勤,等.毛竹林竹冠节肢动物群落结构与多样性研究.林业科学研究, 2007, 6 (6):841-846.
    [17]王宗英,朱永恒,路有成,等.宁国县竹林大型土壤动物群落结构与竹笋夜蛾危害程度的关系.生态学杂志, 2000, 6 (1):32-35,31.
    [18]张蓬军,刘学聪,傅荣恕.济南市植物园竹林土壤动物群落的研究.山东师范大学学报:自然科学版, 2003, 4 (2):84-86.
    [19]张崇邦,金则新,施时迪.天台山不同林型土壤微生物区系及其商值(qMB,qCO2).生态学杂志, 2003, 22 (2):28-31,55.
    [20]肖慈英,阮宏华,屠六邦.宁镇山区不同森林土壤生物学特性的研究.应用生态学报, 2002, (9): 1077-1081.
    [21]谢应忠,植物生态学导论.宁夏人民出版社. 1999.
    [22]蒋有绪,王伯荪,臧润国,等.海南岛热带林生物多样性及其形成机制,北京:科学出版社. 2002.
    [23]黄清麟,郑群瑞,阮学瑞.福建青冈萌林分结构及生产力的研究.福建林学院学报, 1995, 15 (2):107-111.
    [24]陈昌雄,陈平留,刘健,等.闽北天然异龄林林分结构规律的研究.福建林业科技, 1997, 24 (4):1-4.
    [25]刘春华,吴奇镇.马尾松木荷混交林林分结构和土壤肥力研究.防护林科技, 2002, 53 (4):19-21.
    [26]马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱβ多样性的测度方法.生物多样性, 1995, 3 (1):38-43.
    [27]马克平,刘玉明.生物群落多样性的测度方法:Ⅰα多样性的测度方法(下).生物多样性, 1994, 2 (4):231-239.
    [28]李慧蓉.生物多样性和生态系统功能研究综述.生态学杂志, 2004,23(3):109-114.
    [29]吴甘霖.生态系统多样性的测度方法及其应用分析.安庆师范学院学报:自然科学版, 2004, 10 (3):18-21.
    [30]刘灿然,马克平,周文能.生物群落多样性的测度方法:Ⅲ与物种—多度分布模型有关的统计问题.生物多样性, 1995, 3 (3):157-159.
    [31]林开敏,俞新妥,黄宝龙,何智英.杉木人工林林下植物物种多样性的动态特征.应用与环境生物学报, 2001, 7 (1):13-19.
    [32]林开敏,范少辉.杉木人工林林下植物的消长规律.福建林学院学报, 2000, 20 (3):231-234.
    [33]陶福禄,李树人.豫西山区日本落叶松林下植物物种多样性的研究.生态学杂志, 1998, 17 (4):1-6.
    [34]林德根.不同整地方式对火炬松幼林生长及林下植物多样性的影响.东北林业大学学报, 2000, 28 (6):1-3.
    [35] Dolezal, J. and Srutek, M. Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Vegetatio,2002, 158(2):201-221.
    [36] Poulsen B O. Avian richness and abundance in temperate Danish forests: tree variables important to birds and their conservation. Biodiversity and Conservation, 2002, 11(9):1551-1566.
    [37] Sari Pitk?nen. Correlation between stand structure and ground vegetation: an analytical approach. Plant Ecology, 1997, 131(1):109-126.
    [38]尚占环,姚爱兴,龙瑞军,郭瑞英,郭旭生.中卫山羊核心产地植物群落的数量分类与排序.西北植物学报, 2005, 25 (5):985-990.
    [39] Wenk G, Antaitis J and Smelko S. Waldertragslehre. Berlin : Deutscher Landwritschaftverlag Berlin, 1990, 189~203.
    [40]孟宪宇.削度方程和林分直径结构在编制材种表中的重要意义.北京林业大学学报, 1991, 13 (2):14-20.
    [41] Hyink D.M.and Moser J.W. A generalized framework for projecting forest yield and stand structure using diameter distributions. For. Sci.,1983,29(1):85-95.
    [42]惠刚盈,盛炜彤.林分直径结构模型的研究.林业科学研究, 1995, 8 (2):127-131.
    [43]吴承祯,洪伟.用遗传算法改进约束条件下造林规划设计的研究.林业科学, 1997, 33 (2):133-141.
    [44]吴承祯,洪伟.杉木人工林直径结构模型的研究.福建林学院学报, 1998, 18 (2):110-113.
    [45]孟宪宇,使用Weibull分布对人工油松林直径分布的研究. 1985. (1):30-39.
    [46] Nanang, M.D. Suitabihty of the Normal,Log-nomml and WeibuU distributiom for fitting diameter distributions of neem plantations in Northern Ghana. Forest Ecology and Management, 1998, (103):1-7.
    [47] Pretzsch H. Konzeption,Konstruktion von wuchsmodellen fuer Rein-und Mischbestaende. Forstliche Forechungsberichte Muenchen. 1992,(Nr. 115):1-85.
    [48]孟宪宇,邱水文,长白落叶松直径分布收获模型的研究. 1991,北京林业大学学报,13(4):9-16.
    [49]李法胜,于政中.检查法林分生长预测及择伐模拟研究.林业科学, 1994, 30 (6):531-539.
    [50]惠刚盈,盛炜彤.林分直径结构模型的研究.林业科学研究, 1995, (2):127-131.
    [51]吴承祯,洪伟.林分直径结构新模型研究.西南林学院学报, 1999, 19 (2):90-95.
    [52]吴承祯,洪伟.杉木人工林直径结构模型的研究.福建林学院学报, 1998, (2):110-113.
    [53]洪利兴,杜国坚.天然常绿阔叶异龄幼林胸径的Weibull分布及动态预测.植物生态学报, 1995, 19 (1):29-42.
    [54]孟宪宇.使用Weibull函数对树高分布和直径分布的研究.北京林业大学学报, 1988, 10 (1):40-48.
    [55] Sloboda, B., Zur darstelluming von wachstumsprozessen mit hiff von differentialgleichungen erster ordnung. Mideilungen der Baden-wuerttemberischen Fomtlichen Versuche-und Forschungsanstal, 1971(32):1-109.
    [56]陈光彩,郝士成,李怡,张宏达,骈铁虎.麻池背油松天然林林分生长结构的研究.山西林业科技, 2004, 4 (4):10-13.
    [57]刘翠玲,潘存德,梁瀛,刘政新.鳞毛蕨(Dryopteris filix-mas)天山云杉林种群结构分析.干旱区研究, 2006, 23 (1):60-65.
    [58]王鹏程,丁贵杰.湖北省马尾松人工林结构模型的研究.华中农业大学学报, 1998, 17 (1):77-80.
    [59]李芳东,李宗然.兰考泡桐林分结构规律研究.林业科学研究, 1996, 9 (2):114-120.
    [60]惠刚盈,盛炜彤. Sloboda树高生长模型及其在杉木人工林中的应用.林业科学研究, 1996, 9 (1): 37-40.
    [61]段爱国,张建国.杉木人工林优势高生长模拟及多形地位指数方程.林业科学, 2004, 40 (6):13-19.
    [62]吕勇,李际平.会同杉木人工林的树高分布模型.中南林学院学报, 1999, 19 (1):68-70.
    [63]尚玉昌,普通生态学. 2002,北京:北京大学出版社.258.
    [64] Dietz, H., Plant Invasion Patches–Reconstructing Pattern and Process by Means of Herb-chronology. Biological Invasions, 2002,4(3):211-222.
    [65]卢寅六.用材毛竹林最佳年龄结构与年度新竹高产稳产的关系.江苏林业科技, 1998, 25 (3): 29-32.
    [66]郑郁善,洪伟.毛竹林丰产年龄结构模型与应用研究.林业科学, 1998, 34 (3):32-39.
    [67]代力民,孙伟中,邓红兵,等.长白山北坡椴树阔叶红松林群落主要树种的年龄结构研究.林业科学, 2002, 38 (3):73-77.
    [68]王得祥,刘建军.秦岭林区华山松种群结构与动态研究.西北林学院学报, 1999, 14 (1):48-53.
    [69]沈国舫,现代高效持续林业—中国林业发展道路的抉择.林业经济1998,(4):38-45.
    [70]孙冰,杨国亭.白桦种群的年龄结构及其群落演替.东北林业大学学报, 1994, 22 (3):43-48.
    [71]何东进,洪伟,范圣锋,王英姿,蓝斌.武夷山毛竹天然林与人工林种群结构比较研究.中国生态农业学报, 2005, 13 (2):34-36.
    [72]孟宪宇.天然兴安落叶松林年龄结构的分析.北京林业大学学报, 1989, 11 (3):17-23.
    [73] MacArthur R.H, MacArthur J.W.On Bird Species Diversity. Ecology, 1961, 42(3):595-599.
    [74] Buongiorno J., Dahir S., Lu H.C. et al, Tree size diversity and economic returns in uneven-aged forest stands. Forest science,40(1):1994. 83-103.
    [75] Lahde E.L., O,Norokorpi Y. Diversity-oriented silviculture in the Boreal Zone of Europe. Forest Ecology and Management ,1999,118(1-3):. 223-243.
    [76]雷相东,唐守正.林分结构多样性指标研究综述.林业科学, 2002,38 (3):140-146.
    [77]惠刚盈,克劳斯?冯佳多.森林空间结构量化分析方法.北京:中国科学技术出版社, 2003, 1-182.
    [78] Kuuluvainen T, Penttinen A, Leinonen K, et al. Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silva Fennica, 1996, 30 (2-3):315-328.
    [79] Clark P.J.,Evans F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology, 1954, 35 (4):445-453.
    [80] Pielou E.C. Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships. The Journal of Ecology,1961, 49(2):255-269.
    [81]韩玉萍,李雪梅,刘玉成.缙云山森林群落次生演替序列的垂直结构与物种多样性的关系.西南农业大学学报, 1999, 21 (4):391-396.
    [82]张思玉,郑世群.笔架山常绿阔叶林群落结构特征.林业科学, 2000, 37 (1):l10-l16.
    [83]杨一川,庄平,黎系荣.峨眉山峨眉栲、华木荷群落研究.植物生态学报, 1994, 18 (2):105~120..
    [84]郑德璋,廖宝文,郑松发,等.海南岛清澜港红树林垂直结构与演变动态规律.林业科学研究, 1995, 8 (2):152~158.
    [85]马丹炜.青城山天然常绿阔叶林群落特征的初步研究.四川师范大学学报(自然科学皈), 1998, 21 (2):196~199.
    [86] Zenner E K,Hibbs D E. A new method for modeling the heterogeneity of forest structure. For. Eco. Mange., 2000, 129(1-3):75-87.
    [87] Anne-Marie Kurka, Michael Starr, Marjut Karsisto et al. Relationship between decomposition of cellulose strips and chemical properties of humus layer in natural boreal forests.Plant and Soil, 2001, 229(1):137-146.
    [88]朱教君.透光分层疏透度测定及其在次生林结构研究中的应用.应用生态学报, 2003, 14 (8): 1229~1233.
    [89]郑景明,罗菊春.长白山阔叶红松林结构多样性的初步研究.生物多样性, 2003, 11 (4):295-302.
    [90] Huber A. and IrouméA. Variability of annual rainfall partitioning for different sites and forest covers in Chile. Journal of hydrology,2001, 248(1-4):78~92.
    [91] Koichi Takahashi,Shigeru Uemura,Jun-Ichirou Suzuki,et al. Effects of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecological Research, 2003, 18(6): 767–774.
    [92]吴炳生,谭淑.毛竹林群落类型水源涵养功能的初步研究.竹子研究汇刊, 1992, 11 (4):18-25.
    [93]曹群根.毛竹林水文效应的初步研究.竹类研究, 1989, 8 (2):24-45.
    [94]谢锦忠,傅懋毅,马占兴,等.丛生竹林生态系统的水文效应研究—Ⅱ.麻竹林林冠对降水的截持作用.竹子研究汇刊, 2003, 22 (1):13-22.
    [95]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析.林业科学, 1995, 31 (4): 289-298.
    [96]郑郁善,管大耀.杉木(19年生)毛竹混交林水源涵养能力研究.浙江林学院学报, 1998, 15 (1): 63-68.
    [97]谢锦忠,傅懋毅,马占兴,肖贤坦,黄品华.麻竹人工林水文生态效应.林业科学研究, 2005, 18 (6): 682-687.
    [98]廖军,薛建辉,施建敏.竹阔混交林的水文效应.南京林业大学学报:自然科学版, 2002, 26 (4): 6-10.
    [99] Fioretto A., Papa S. and Fuggi A. Litter-fall and litter decomposition in a low Mediterranean shrubland. Biology and Fertility of Soils,2003,39(1):37-44.
    [100] Arunachalam A.,Runachalam K. Evaluation of bamboos in eco-restoration of‘jhum’fallows in Arunachal Pradesh: ground vegetation,soil and microbial biomass. Forest Ecology and Management. 2002,159(3):231~239.
    [101] Christanty L.,Kimmins J.P. and Mailly D. "Without bamboo, the land dies": A conceptual model of the biogeochemical role of bamboo in an Indonesian agroforestry system. Forest Ecology and Management,, 1997, 91(1):83-91.
    [102] Anand Narain,Singh J. and Singh S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecology and Management 1999, 119(1-3):195-207.
    [103] Tripathi S. K,Sumida A,Shibata H. et al. Growth and substrate quality of fine root and soil nitrogen availability in a young Betula ermanii forest of northern Japan: Effects of the removal of understory dwarf bamboo (Sasa kurilensis). For. Ecol. Manage. 2005, 212(1-3):278-290.
    [104] Singh J.S.,Raghubanshi A. S.,Singh R. S. et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature.1989, (338)499 - 500.
    [105]李昌荣,吴继林.关于调整竹林生态系统食物链的研究.生态学杂志, 1995, 14 (6):21-24.
    [106] Takamatsu T. Kohno T,Ishida K. et al. Role of the dwarf bamboo (Sasa) community in retaining basic cations in soil and preventing soil acidification in mountainous areas of Japan., Plant and Soil 1997, 192(2):167-179.
    [107] Lavrie AT, Marty A.A., Ruth D.Y., et al. Forest floor microbiol biomass across a northern hardwaed successional sequence. Soil Biology and Biochemistry, 1998, (31):431-439.
    [108] Voroney R.P., Paul E.A. and Anderson D.W. Decomposition of wheat straw and stabilization of microbial products. CAN. J. SOIL SCI., 1989. 69(1):63-77.
    [109] Singh, K.A.,Kochhar, S.K., Effect of clump density/spacing on the productivity and nutrient uptake in Bambusa pallida and the changes in soil properties. Journal of Bamboo and Rattan, 2005, 323-334.
    [110] Wang F.E. Chen Y. X.,Tian G. M. et al. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China. Nutr.Cycl.Agroecosyst. 2004, (68)181-189.
    [111]李正才,傅懋毅,谢锦忠,历日光,肖基浒.毛竹竹阔混交林群落地力保持研究.竹子研究汇刊, 2003, 22 (1):32-37.
    [112]何东进,洪伟,吴承祯,郑郁善.毛竹杉木混交林土壤团粒结构的分形特征研究.热带亚热带植物学报, 2002, 10 (3):215-221.
    [113]郑郁善,陈礼光,洪伟.毛竹杉木混交林生产力和土壤性状研究.林业科学,1998,34 (专刊1):l6~25.
    [114]游秀花.杉木毛竹混交林土壤团聚体对有机质含量的影响分析.江西农业大学学报, 2004, 26 (4): 536-539.
    [115]楼一平,吴良如.毛竹纯林长期经营对林地土壤肥力的影响.林业科学研究, 1997, 10 (2): 125-129.
    [116] Embaye K., Weih M.,Ledin S., et al. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: implications for management. Forest Ecology and Management.2005, 204(2-3): 159-169.
    [117] Kleinhenz V. and Midmore D. J. Aspects of bamboo agronomy. Advances in Agronomy.2001, (75): 99-149.
    [118] Shanmughavel P. and Francis K. Balance and turnover of nutrients in a bamboo plantation (Bambusa bambos) of different ages. Biol Fertil Soils, 1997, 25(1):69-74.
    [119]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究.水土保持学报, 2003, 17 (3):34-37,117.
    [120]高维森,王佑民.土壤抗蚀抗冲性研究综述.水土保持通报, 1992, 12 (5):59-63.
    [121]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀抗冲性及其指标的研究.中国水土保持, 1992, (4): 27-30,43.
    [122]阮伏水,吴雄海.关于土壤可蚀性指标的讨论.水土保持通报, 1996, 16 (6):68-72.
    [123]沈慧,姜凤岐,杜晓军.水土保持林土壤抗蚀性能评价研究.应用生态学报, 2000, 11 (3):345-348.
    [124]张金池,陈三雄,刘道平,等.浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建.亚热带水土保持, 2006, (2):1-5.
    [125]张建辉,刘刚才,倪师军,等.紫色土不同土地利用条件下的土壤抗冲性研究.中国科学:E辑, 2003, (B12):61-68.
    [126]杨文元,张奇,张建华,等.紫色丘陵区土壤抗冲性研究.土壤侵蚀与水土保持学报, 1997, 3(2): 22-28.
    [127]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究:Ⅱ.草本植物根系提高表层.水土保持学报, 1990, 4(1):11-16.
    [128]丁军,王兆骞,陈欣,张如良.红壤丘陵区林地根系对土壤抗冲增强效应的研究.水土保持学报, 2002, 16 (4):9-12.
    [129]毛瑢,孟广涛,周跃.植物根系对土壤侵蚀控制机理的研究.水土保持研究, 2006, 13 (2):241-243.
    [130]李勇,朱显谟.黄土高原植物根系提高土壤抗冲性的有效性.科学通报, 1991, (12):935-938.
    [131]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性.生态学报, 2006, (10):3270-3275.
    [132]张建军, et al.黄土区不同植被条件下的土壤抗冲性.北京林业大学学报, 2004, (6):25-29.
    [133]张金池,臧廷亮,曾锋.岩质海岩防护林树木根系对土壤抗冲性的强化效应.南京林业大学学报:自然科学版, 2001, 25 (1):9-12.
    [134]侯喜禄,白岗栓,曹清玉.刺槐,柠条,沙棘林土壤入渗及抗冲性对比试验.水土保持学报, 1995, 9 (3):90-95.
    [135]蒋定生,李新华.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置.水土保持学报, 1995,9 (1):1-7.
    [136] McClure, F.A. Genera of bamboos native to the New World (Gramineae: Bambusoideae). Smithsonian Contri. Bot. 1973, (9):1-148.
    [137] Yadav J.S.P. Site and soil characteristics of bamboo forests. Indian Forester,1963. (89):177-193.
    [138] Tripathi S.K. Sumida A,Shibata, H. et al.Growth and substrate quality of fine root and soil nitrogen availability in a young Betula ermanii forest of Northern Japan: Effects of the removal of understory dwarf bamboo (Sasa kurilensis). For. Ecol. Manage., 2005, 212(1-3):278-290.
    [139]高志勤,傅懋毅.不同结构毛竹林下植被物种多样性比较.浙江林业科技, 2005, 25 (4):1-5.
    [140]廖植樨,赵作善.果树根系水土保持效能的植物学机理.北京农业工程大学学报, 1995, 15 (3):32-37.
    [141]杨玉盛,何宗明,李振向,李荫森.不同植物类型下紫色土抗蚀性研究.福建水土保持, 1992, 4 (3):34-40.
    [142]徐秋芳,姜培坤,俞益武,孙建敏.不同林用地土壤抗蚀性能研究.浙江林学院学报, 2001, 18 (4):362-365.
    [143]萧江华.分类经营定向培育提高竹林经营效益.竹子研究汇刊, 2001, 20 (3):1-7.
    [144] Conover A. A new world comes to life, discovered in a stalk of bamboo. Smithsonian Magazine (October), Smithsonian ,1994, 25:120-129.
    [145] Warner M. D. Assessing habitat utilization by neotropical primates: A new approach. Primates, Primates, 2002, 43(1): 59-71.
    [146] Caro T.M., Brock R. and Kelly M. Diversity of mammals in the Bladen Nature Reserve, Belize, and factors affecting their trapping success. Mammalian Biology, 2001, 66:90-201.
    [147]郑成洋,何建源,罗春茂,方燕鸿.不同经营强度条件下毛竹林植物物种多样性的变化.生态学杂志, 2003, 22 (6):1-6.
    [148]张飞萍,侯有明,尤民生.不同管理措施对毛竹林节肢动物群落结构和组成的影响.昆虫学报, 2005, 48 (6):928-934.
    [149]张飞萍,施友文,陈清林,侯有明,尤民生.不同海拔毛竹林节肢动物群落的组成与结构.福建林学院学报, 2005, 25 (1):14-17.
    [150] Isagi Y,Kawahara T,Kamo K,et al, Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology, 1997, 130(1):41-52.
    [151]徐秋芳.森林土壤活性有机碳库的研究.浙江大学博士学位论文, 2003, 1-117.
    [152]周国模,姜培坤.毛竹林的碳密度、碳贮量及其空间分布.林业工作研究, 2004, 12 (1):47-54.
    [153]姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响.应用生态学报, 2005, 16 (2):253-256.
    [154] Takahashi K.,Uemura S. and Hara T. Effect of Understory Dwarf Bamboo on Seasonal Changes in Soil Temperature in a Betula ermanii Forest, Northern Japan. Eurasian J. For. Res.,2002.5:49-53.
    [155]张建国,段爱国,理论生长方程与直径结构模型的研究. 2004,北京:科学出版社.
    [156]吴承祯,洪伟,杉木数量经营学引论. 2000:北京:中国林业出版社.
    [157]沈国舫.现代高效持续林业—中国林业发展道路的抉择.林业经济, 1998, (4):38-45.
    [158]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社, 1999,
    [159]叶镜中,姜志林,周本琳,韩福庆,陈世林.福建省洋口林场杉木林生物量的年变化动态.南京林业院学报, 1984, (4):1-9.
    [160]雷相东,唐守正.林分结构多样性指标研究综述.林业科学, 2002, 38 (3):140-146.
    [161]岑庆雅,暨淑仪,广东肇庆石灰岩植物区系的基本特征.广西植物,1999, 19(2):124-130.
    [162]董琼,李乡旺,樊国盛.大中山自然保护区种子植物区系研究.广西植物,2006,26(5):541-545.
    [163]吴征镒,中国种子植物属的分布区类型.,云南植物研究,1991(增刊):1-139.
    [164]中国科学院中国植物志编辑委员会.中国植物志(第一卷).科学出版社, 2004, 80-84.
    [165]马克平.试论生物多样性的概念.生物多样性, 1993, 1 (1):20-22.
    [166]蒋志刚.保护生物学.抗州科学技术出版杜, 1997:20-33
    [167] Pielou E.C.Ecological Diversity.1975,
    [168] Whittaker R. H.,and Niering W.A. Vegetation of the Santa Catalina Mountains, Arizona,(Ⅱ). A gradient analysis of the south slope. Ecology, 1965, 46(4): 429-452.
    [169]贺金生,江明喜.长江三峡地区退化生态系统植物群落物种多样性特征.生态学报, 1998, 18 (4):399-407.
    [170]李慧蓉.生物多样性和生态系统功能研究综述.生态学杂志, 2004, 23 (3):109-114.
    [171]杨利民,韩.,李建东.生物多样性研究的历史沿革及现代概念.吉林大学学报, 1997, 19 (2): 109-114.
    [172]张金屯.数量生态学.北京:科学出版社, 2003, 79.
    [173]杨利民,周广胜,李建东.松嫩平原草地群落物种多样性与生产力关系的研究.植物生态学报, 2002, (5):589-593.
    [174]乌云娜,张云飞.草原植物群落物种多样性与生产力的关系.内蒙古大学学报:自然科学版, 1997, 28 (5):667-673.
    [175]马克平,钱迎倩.生物多样性保护及其研究进展(综述).应用与环境生物学报, 1998, 4 (1):95-99.
    [176]陈灵芝,马克平,生物多样性科学:原理与实践, in上海:上海科学技术出版社. 2001.
    [177]王春玲,郭泉水,谭德远,等.准噶尔盆地东南缘不同生境条件下梭梭群落结构特征研究.应用生态学报, 2005, 16 (7):1224-1229.
    [178] Gianfreda L., Sannino F., and Violante A. Pesticide effects on the activity of free,immobilized and invertase. Soil Biology and Biochemistry, 1995, 27 (9):1201-1208.
    [179]杨晓霞,周启星,王铁良.土壤性质的内涵及生态指示与研究展望.生态科学, 2007, 26 (4): 374-380.
    [180]曹慧,孙辉,杨浩,孙波.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报, 2003, 9 (1):105-109.
    [181]李勇.试论土壤酶活性与土壤肥力.土壤通报, 1989, (4):190-192.
    [182]李文革,刘志坚,谭周进,等.土壤酶功能的研究进展.湖南农业科学, 2006, (6):34-36.
    [183]周礼恺.土壤酶学.北京:科学出版社, 1987, 263-281.
    [184]关松荫,张德生,张志明.土壤酶及其研究法.北京:农业出版社, 1986,
    [185] Heribert Insam. Developments in soil microbiology since the mid 1960s. Geoderma, 2001, 100 (3-4):389-402.
    [186]张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报, 2004, 12 (1):83-90.
    [187] Greco G.T. Maria Letizia Colarieti and Guido Greco. Oxidative polymefisation of phenols by a phenol oxidase from green olives. Enzyme and Microbial Technology 2003, 33:47-54.
    [188]郝建朝,吴沿友孙,连宾,等.土壤多酚氧化酶性质研究及意义.土壤通报, 2006, 37 (3): 470-474.
    [189]周丽霞,丁明懋.土壤微生物学特性对土壤性质的指示作用.生物多样性, 2007, 15 (2):162-171.
    [190]沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标.水土保持学报, 2000, 14 (2):60-65.
    [191]陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价.土壤学报, 2001, 38 (1):49-53.
    [192]陈恩凤,周礼恺,武冠云,等.土壤的自动调节性能与抗逆性能.土壤学报, 1991, 28 (2):168-176.
    [193]陈恩凤,周礼恺,武冠云.微团聚体的保肥性能及其组成比例在评断土壤肥力水平中的意义.土壤学报, 1994., 31 (1):18-28.
    [194]刘金福,洪伟.不同起源格式栲林地的土壤分形特征.山地学报, 2001, 19 (6):565-570.
    [195]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征.生态学报, 2004, 24 (1):71-74.
    [196]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征.科学通报, 1993, 38 (20):1896-1899.
    [197]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究.土壤学报, 1999, 36 (2):163-167.
    [198]刘凯昌,曾天勋.杉木、火力楠混交幼林养分位移和循环的研究.林业科学研究, 1990, 6 (3):618-613.
    [199]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究.土壤学报, 2007, 44 (3):571-575.
    [200]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律.北京:中国林业出版社, 1996, 3-710.
    [201]温远光.我国主要生态系统类型降雨截留规律的数量分析.林业科学, 1995, 31 (4):289-298.
    [202]王馨,张一平,.西双版纳热带季节雨林与橡胶林林冠的持水能力.应用生态学报, 2006, 17 (10):1782-1788.
    [203]尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究.热带亚热带植物学报,, 2004, 12 (3):195-201.
    [204]张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述.福建林学院学报, 2004, 24 (3):274-282.
    [205]黄承标,文受春.里骆林区常绿阔叶林和人工杉木林气候水文效应.生态学杂志, 1993, 12 (3):1-7.
    [206] Bruijnzeel L.A. and Wiersum K.F. Rainfall interception by a young Acacia Auriculiformis(A.Cunn)plantation forest in west Java,Indonesia:Application of Gashg analytical model. Hydrogeology Processes, 1987, 1:309-319.
    [207] Calder I.R. Dependence of rainfall interception on drop size:I. Development of the two-layer stochastic model. Journal of Hydrology 1996, 185 (1-4):363-378.
    [208] Hall R. L,Calder I. R,Nimal Gunawardena, E.R.R., P. T. W. Dependence of rainfall interception on drop size:3.Implementation and comparative performance of the stochastic model using data from a tropical site in Sri Lanka. Journal of Hydrology, 1996, 185 (1-4):389-407.
    [209] Hall R.L. Interception loss as a function of rainfall and forest types:stochastic modelling for tropical canopies revisited. Journal of ltydrology, 2003, 280 (1-4):1-12.
    [210]王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究.水土保持学报, 2004, 18 (3):41-44.
    [211]程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用.京林业大学学报, 2003, 25 (2):8-13.
    [212]张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性.林业科学, 2003, 39 (5):147-151.
    [213]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后枯落物层持水特性研究.水土保持学报, 2006, 20 (3):51-55
    [214]高维森,王佑民.土壤抗蚀抗冲性研究综述.水土保持通报, 1992, 12(5):59-63.
    [215]方学敏,万兆惠.土壤抗蚀性研究现状综述.泥沙研究, 1997, (2):87-91.
    [216]阮伏水,吴雄海.关于土壤可蚀性指标的讨论.水土保持通报, 1996, (6):68-72.
    [217] Cihacek L. J. and Swan J. B. Effects of erosion on soil chemical properties in the north central region of the Uinted States. J. Soil Water Conserv, 1994, 40 (3):259-265.
    [218]高维森.土壤抗蚀性指标及其适用性初步研究.水土保持学报, 1991, (2):60-65.
    [219]沈慧,鹿天阁.水土保持林土壤抗蚀性能评价研究.应用生态学报, 2000, (3):345-348.
    [220]杨玉盛.不同利用试上紫色土可蚀性的研究.水土保持学报, 1992, (3):52-58.
    [221] Hiller D. Introduction to soil physics. Academic press, 1982,
    [222]中华人民共和国水利电力部部标准.水土保持试验规范.水利电力部农村水利水土保持司, 1988.
    [223]熊毅.土壤胶体的物质基础(第一舨).北京:科学技术出舨社, 1983,
    [224]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究.水土保持通报, 1998, 18 (6): 8-11.
    [225]萧江华.材用毛竹林的地下系统结构.竹类研究, 1983, 2 (1):114-119.
    [226]张建国,李贻铨,纪建书,等.施肥对杉木幼林根系生长的影响.林业科学研究, 1996, 9 (专刊): 48-57.
    [227]刘孝义,依艳丽.土壤物理学基础及其研究方法.沈阳:东北大学出版社, 1998,
    [228]胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究.沙棘, 1999, 12 (1):14-20.
    [229]卢喜平,史东梅,蒋光毅,等.两种果草模式根系提高土壤抗蚀性的研究.水土保持学报, 2004, 18 (5):64-67,124.
    [230]田育新,吴建平.林地土壤抗冲性研究.湖南林业科技, 2002, 29 (3):21-23.
    [231]张华.影响大同地区土壤入渗能力的因素分析.人民黄河, 2007, 29 (4):49-53.
    [232]李雪转,樊贵盛.土壤有机质含量对土壤入渗能力及参数影响的试验研究.农业工程学报, 2006, 22 (3):188-190.
    [233]解文艳,樊贵盛.土壤质地对土壤入渗能力的影响.太原理工大学学报, 2004, 35 (5):537-540.
    [234]周维,张建辉.金沙江支流冲沟侵蚀区四种土地利用方式下土壤入渗特性研究.土壤, 2006, (3): 333-337.
    [235]刘霞,刘霞,张光灿,等.鲁中石质山地不同林分类型土壤结构特征.水土保持学报, 2005,19 (6):49-52.
    [236]漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性.林业科学, 2007, 43 (3):1-7.
    [237]刘道平,陈三雄,张金池,等.浙江安吉主要林地类型土壤渗透性.应用生态学报, 2007, 18 (3): 493-498.
    [238]韩冰,吴钦孝,李秧秧,等.黄土丘陵区人工油松林地土壤入渗特征的研究.防护林科技, 2004, 62 (5):1-3,49.
    [239]王库.植物根系对土壤抗侵蚀能力的影响.土壤与环境, 2001, 10 (3):250-252.
    [240]刘秉正.人工刺槐林改良土壤的初步研究.西北林学院学报, 1987, 2 (1):83-93.
    [241]孙立达、朱金兆主编.水土保持林体系综合效益研究与评价.中国科技出版社, 1995.
    [242]张金池,康立新.苏北海堤林带树木根系固土功能研究.水土保持学报, 1994, 2 (2):43-47,55.
    [243]王国宏.再论生物多样性与生态系统的稳定性.生物多样性, 2002, 10 (1):126-134.
    [244]吴承祯,洪伟.杉木人工林胸径的Weibull分布及其最优拟合研究.江西农业大学学报, 1998, 20 (1):86-90.
    [245]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征.生态学报, 2002,22 (2):197-205..
    [246] Zhu J Z, Liu J J, Zhu Q.K, et al. Hydro-ecological functions of forest litter layers. Journal of Beijing Forestry University, 2002, 24 (5/6):30-34.
    [247]刘月廉,吕庆芳,潘颂民,等.桉树林分枯落物分解微生物的种类和数量.南京林业大学学报:自然科学版, 2006, 30 (1):75-78.
    [248]武海涛,吕宪国,杨青,等.土壤动物主要生态特征与生态功能研究进展.土壤学报, 2006, 43 (2):314-323.
    [249]林波,刘庆,吴彦,等.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能.应用与环境生物学报, 2002, 8 (3):234-238.
    [250]肖复明,范少辉,汪思龙,等.毛竹(Phyllostachys pubescens)、杉木(Cunazinghanzia lanceolate)人工林生态系统碳贮量及其分配特征.生态学报, 2007, 27 (7):2794-2801.
    [251]肖慈英,阮宏华,屠六邦.宁镇山区不同森林土壤生物学特性的研究.应用生态学报, 2002, 13 (2):1077-1081.
    [252]李新平,陈欣,王兆骞,等.高植物篱笆条件下红壤坡耕地水土流失的发生特征.浙江大学学报, 2003, 29 (4):368-374.
    [253]毛德华,夏军,黄友波.西北地区生态修复的若干基本问题探讨.水土保持学报, 2003, 17 (1):15-18,28.
    [254]胡建忠.西部地区植被建设的主要途径探讨.水土保持学报, 2003, 17 (3):121-123.
    [255]漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性.林业科学, 2007, 43 (3):1-7.
    [256]丁文峰,李占斌.土壤抗蚀性的研究动态.水土保持科技情报, 2001, (1):36-39.
    [257]熊燕梅,夏汉平,李志安,等.植物根系固坡抗蚀的效应与机理研究进展.应用生态学报, 2007, 18 (4):895-904.
    [258]李勇,朱显谟.植物根系与土壤抗冲性.水土保持学报, 1993, 7 (3):11-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700