用户名: 密码: 验证码:
基于Visual C++开发的并联六自由度平台测控系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了以计算机、数据采集卡、并联六自由度平台为硬件核心,以Windows98为软件开发平台,以Visual C++为软件开发工具的六自由度平台测控系统。对基于Windows多任务操作系统下的高速多通道数据采集的实时性进行了分析,提出了稳定可靠的实时数据采集方案。并对本系统中使用到的面向对象技术、Windows下的精确定时和实时响应及多线程技术进行具体的分析。
     论文第一章简介了并联六自由度平台的结构特点,国内外发展概况,以及面相对象和Microsoft Visual C++的应用状况,提出了本论文研究的目的和主要内容。
     第二章介绍了本测控系统的技术背景,重点介绍了平台位姿正解和逆解以及平台的工作空间,这是进行平台控制的理论依据。本章还介绍了本系统用到的硬件设备。
     第三章对面 对象的程序设计与传统的结构化程序设计进行了比较,阐明面向对象的程序设计是程序设计的发展趋势。在此基础上全面分析了采用面 对象的方法设计平台测控系统的全过程。
     第四章针对Windows下难以实现精确定时和实时响应,提出了采用多媒体时钟和外接时钟实现精确定时以及采用事件和vxd实现实时响应的方案;对本系统用到的多线程技术进行了阐述;另外,还对本系统的实时性和可靠性进行了分析。
     第五章介绍了本系统的人机界面及由界面反映的部分程序运行结果。
     第六章对本文进行了总结,并在本课题研究工作的基础上对系统的进一步完善提出了一些意见和想法。
In this thesis the Parallel 6 DOF Platform Testing and Control System is introduced, which includes hardware and software. The hardware subsystem is based on computer, data acquisition card, and the parallel 6 DOF platform. The software is based on Windows 98 and the develop tool is Visual C++6.0. The real-time problem of high-speed multi-channel data acquisition under multitask operating system is also analyzed in detail, and the solution to this problem is given then. The OOP (Object Oriented Programming), precise timing and real-time response under windows, and multithreads techniques applied in this system are also analyzed in detail.
    In chapter one, the structure character and development survey in the world of the parallel 6 DOF platform, the recent applied status of OOP and Microsoft Visual C++ are introduced in brief. The goal and content of this research project are also presented.
    In chapter two, the platform's positional solutions, including direct solution and reverse solution, and the working space are analyzed in detail, which give the theory foundation of the platform's control. Besides, the hardware utilized in this system is also presented.
    In chapter three, firstly, on the basis of the compare of OOP and SP (Structure Programming), a conclusion is reached that OOP is the future trend of programming. Then, a comprehensive analysis to the design process of the Parallel 6 DOF Platform Testing and Control System, which based on OOP, is given
    In chapter four, firstly, the difficulty of precise timing and real-time response under Windows is analyzed, and then two solutions to the problem are advanced. One of the solutions is to utilize multimedia timer to time and event to respond. The other is to utilize exterior timer to time and vxd to respond. Secondly, the thesis expounds multithreads applied in the system. At last, the real-time property and reliability of the system are analyzed.
    In chapter five, the interface of the system and part of the testing results are introduced.
    In chapter six, the conclusion of the thesis is given, and based on the current research, some suggestions for the system's improvement are also given.
引文
[1]吴江宁 并联式六自由度平台及其控制研究 浙江大学博士毕业论文 1996.
    [2]D. Stewart. A Platform with Six Degrees of Freedom. Proc. Inst. Mech. Eng., 1965/1966,180(5): 371-386.
    [3]左爱秋 基于双目体视的六自由度平台位姿视觉闭环控制基础研究 浙江大学博士毕业论文 1999.11
    [4]黄真 孔令福 方跃法 并联机器人机构学理论及控制 北京:机械工业出版社 1997.
    [5]Todd M Criel, Fred V Wyatt. Sandia National Laboratories Flight Simulation Facilities. Sandia Report, SAND87-2034, May 1988.
    [6]Elizabeth L Martin, Wayne L Waag. Contributions of Platform Motion to Simulator Training Effectiveness: Study I-Basic Contact. ADA058416, June 1978.
    [7]M E Bitner. Investigation of Motion Base Drive Techniques. ADA053830, 3 March 1978.
    [8]G J P Wingate. The Development and Use of Simulators for Helicopter Flight Training in the Royal Navy. Paper Presented at the Royal Aeronautical Society Symposium on "Extending the Scope of Flight Simulation", 19 April 1978.
    [9]C A Belsterling. Electrohydraulics Drives Flight Simulators—Time-Tested Hydraulic Systems Combine with Modern Electronics in Sophisticated Training Vehicles. Hydraulics & Pneumatics, Feb. 1984: 37-40.
    [10]Rolling Meadows, Ⅲ. Northrop Evaluating Missile Seekers. Aviation Week & Space Technology, July 5,1993.
    [11]B L Harris. Electrohydraulic Servo Simulate Motion of Genuine Ozark Submarine. Hydraulics & Pneumatic, July 1979.
    [12]Eugene B Hartnett. A Simulation Study of a Twelve Degree of Freedom System. ADA044756,March 1977.
    [13]S Luthander. A Simulator Study of Aircraft Ground-Run Handling in the Fosin Research Simulator: Some Results and Experiences. Paper Presented at the Royal Aeronautical Society Symposium on "Extending the Scope of Flight Simulation" held on 19 April 1978.
    [14]Takashi Nakada, Emeritus. Servo-Elastic Actuators Applied to Attitude Control of a Heavy Floating Platform. Proceeding of the 7th World Congress, 7-22 Sept. 1987, Sevilla,Spain.
    [15]James E Dieudonne, Russell V Parrish, Richard E Bardusch. An Actuator Extension Transformation for a Motion Simulator and an Inverse Transformation Applying Newton-Raphson's Method. NASA TN D-7067, Nov. 1972.
    
    
    [16]G M Mckinnon. Hydraulic Servomechanisms in Flight Simulation. Hydraulics & Pneumatics, Oct. 1981: 148-151.
    [17]W R Sturgeon. Controllers for Aircraft Motion Simulators. AIAA 18th Aerospace Sciences Meeting, Pasadena, California, Jan. 14-16, 1980.
    [18]E.F.Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. Int. J. Robot. Res., 1986, 5(2): 157-182.
    [19]M. Jamshidi, C. C. Nguyen, Eds. Special Issue on "Parallel Closed-Kinematic Chain Manipulators". J. Robot.Syst.,10(5),1993.
    [20]Amirat Y, Artigue F, Pontnau J. Six Degree of Freedom Parallel Robots with C5 Links. Robotica, 1992,10:35-44.
    [21]陈慧琴 六自由度的机器人手臂 机器人技术与应用 1995(4):14-18.
    [22]林来兴 空间交会对接的仿真技术 航天控制 1990(4):66-71.
    [23]林来兴 工程仿真技术在航天器控制系统中应用 信息与控制 1985(3):38-44.
    [24]林来兴 空间交会对接技术 北京:国防工业出版社 1995.
    [25]Russel V Parrish, James E Dieudonne, Dennis J Martin. Motion Software for a Synergistic Six-Degree-of-Freedom. NASA TN D-7350.
    [26]Bjorn Conrad, J G Douvilier, S F Schrnidt. Washout Circuit Design for Multi-Degree-of Freedom Moving Base Simulators. AIAA Visual and Motion Simulation Conference, 1973.
    [27]Gregory R Hudas. Design and Implementation of the Hazard Control Box for the Ride Motion Simulator. AD-A203752, Dec. 1988.
    [28]Bernard Friedland, Cbong K Ling. Quasi- Optimum Design of Control Systems for Moving-Base Simulators. NASA CR-1613, Oct.1970.
    [29]Stanley F Schmidt, Bjorn Conrad. Motion Drive Signals for Piloted Flight Simulators. NASA CR-1601, MAY 1970.
    [30]Zhi-Qiang Liu. A Study of Washout Filters for a Simulator Motion Base. UTIAS-TN-246, Dec. 1983.
    [31]Susan A Riedal, L G Hofmann. Investigation of Nonlinear Motion Simulator Washout Schemes. N79-15624.
    [32]J.P.Merlet, Direct Kinematics and assembley modes of parallel manipulator. Internet. J. Robotics Research, 11, 150-162,1992
    [33]R. Nair and H. Maddocks, On the forward kinematics of parallel manipulators. Internet. J. Robotics Research, 13,171-188,1994
    [34]P. Nanua, K.J. Waldron, and V. Murthy, Direct kinematics solution of a Stewart platform, IEEE Trans. Robotics and Automation, 6,428-444,1990
    [35]P. Nanua, K.J. Waldron, and V. Murthy, Direct kinematics solution of a Stewart
    
    platform,IEEE Trans. Robotics and Automation,6,428-444,1990
    [36] Ji-Yoon Rang. Dong Hwan Kim and Kyo-II Lee ,Robust estimator design for forward kinematics solution of a Stewart platform,Jounal of Robotic Sysytems,15(1) ,29-42,1998
    [37] Han,Kilryong,Chung. Wankyun and Youm. Y,New resolution scheme of the forward kinematics of parallel manipulators using extra sensors,Journal of Mechanical Design .Transactions of the ASME ,vll8,n2,Jun 1996,p214-219
    [38] Min-Jie Liu,Cong-Xin Li and Chong-Ni Li,Dynamatics analysis of the Gough-Stewart platform manipulator,IEEE Transactions and Automation ,v!6,No. 1,February 2000/12/2
    [39] H.Zhuang and Z. S. Rose,Method for kinematic calibration of Stewart platform,J,Robot System,1993,391-405
    [40] 0. Masory,J. Wang,and H. Zhuang,On the accuracy of a Stewart platform-part II kinematic calibration and compensation,Proc 1993 IEEE Robotics and Automation Conf,Vol. 1,1993,p725~731
    [41] Hanqi Zhuang and Jiahua Yan .Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residuals,Journal of Robotic Systems 15(7) ,395-405,1998
    [42] Zhiming Ji and Zhenqun Li,Identification of placement parameters for modular platform manipulators,Journal of Robotic Systems 16(4) ,227-236,1999
    [43] P. Ji and H. T. Wu,A fast solution to identify placement parameters for modular platform manipulators,Journal of Robotic Systems 17(5) ,251-253,2000
    [44] Oliviers,Matthieu P,Mayer andJ. R. Rene,Global kinematic calibration of a Stewart platform,Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. Part 1(of 2) DSC v57-l,1995. p129-136
    [45] Wang and Masory,On the accuracy of a Stewart platform-Part 1,The effect of manufacturing tolerances,IEEE International Conference on Robotics and Automation,vol. 1, Atlanta,GA,1993,pp. 114-120.
    [46] T. Ropponen and T. Arai,Accuracy analysis of a modified Stewart platform manipualtor, IEEE International Conference on Robotics and Automation,vol. 1,Nagoya,Aichi,Japan,1995,pp. 521-525.
    [47] Han S. Kim and Yong J. Choi ,The kinematic error bound analysis of the Stewart platform.
    [48] John M. Fitzgerald,F. L Lewis. Evaluating the Stewart platform for manufacturing. Robotics Today,1993,6(1) : 1-3.
    [49] J P Merlet. Determination of the Orientation Workspace of Parallel Manipulators. Journal of Intelligent and Robotic Systems,1995,(13) : 143-160.
    [50] Zhiming Ji. Dynamics Decomposition for Stewart Platforms. Journal of Mechanical Design,
    
    1994, (3): 67-69.
    [51]Kai Liu, Frank Lewis, Guy Lebret, David Taylor. The Singularities and Dynamics of a Stewart Platform Manipulator. Journal of Intelligent and Robotic Systems, 1993, (8):287-308.
    [52]Clement Gosselin, Jorge Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 1990,6(3):281-290.
    [53]Byun, Y.K.,Cho and H.S, Analysis of a novel 6-DOF, 3-PPPS parallel manipulator, International Journal of Robotics Research v16, n6, Dec 1997. p859-872
    [54]Stocco L, Salcudean, S.E and Sassani F, Fast constrained global minimax optimization of robot parameters, Robotica v16 n pt6 Nov-Dec 1998. p595-605
    [55]曲义远 黄真 空间六自由度多回路机构位置的三维搜索方法 机器人 1989(5):25-28.
    [56]黄真 曲义远 空间并联机器人机构的特殊位形分析 东北重型机械学院学报 1989(2):1-6.
    [57]黄真 方跃法 六自由度并联机器人的随机位姿误差分析 东北重型机械学院学报1989(3)
    [58]吴生富 王洪波 黄真 并联机器人工作空间的研究 机器人 1991(3):33-38
    [59]澹凡忠 王洪波 黄真 并联6-SPS机器人的影响系数及其应用 机器人 1989(5):20-24.
    [60]黄真 王洪波 复杂多环路空间机构动力分析的影响系数法 机械工程学报 1988(3):13-17.
    [61]黄真 平行支路机械手动力模型 东北重型机械学院学报 1985(4):7-11.
    [62]孔令富 黄真 蔡鹤皋 一种带干扰力补偿的液压并联机器人MRACS 机器人 1995(7)
    [63]孔令富 寇志远 黄真 基于动力学的6-DOF液压并联机器人力补偿控制 机械工业自动化1995,6
    [64]王益群 张泽强 并联机器人电液伺服系统控制策略的研究 机床与液压 1992(3)
    [65]王洪瑞 侯增广 宋维公 并联机器人轨迹跟踪变结构控制的研究 机器人 1995(2)
    [66]黄玉珍 傅光伟 姜学谦 吴文达 一类并联机构的正解计算 中国机械工程 1999(10)
    [67]吴江宁 骆涵秀 李世伦 并联式六自由度电液平台的控制与应用 机床与液压 1996(6):13-16.
    [68]王旭永 骆涵秀 吴江宁 李世伦 刘宇 六自由度并联电液伺服平台的特点及应用 液压与气动 1995(2)
    [69]王旭永 李世伦 吴江宁 骆涵秀 一种新型的空间六自由度工作台 新技术新工艺 1995(6)
    [70]Liu Yu, Luo Hanxiu, Wu Jiangning, Li Shilun. Research on the Compensation of Asymmetrical Cylinder System for Six Degree of Freedom Floating Platform. ISFP'95.
    [71]马兵 面向对象的液压元件通用测试软件研制 浙江大学硕士学位论文 1997年2月
    [72]张乃镇 汤峰 刘建业 采用Visual C++开发的导弹伺服机构测试系统 计算机自动测量与控制 2000.8(3)
    [73]陈众 方璐 李楠 VC环境下小型工业监控软件的开发 计算机自动测量与控制 2000.8(5).
    [74]黄洪钟 姚新胜 陈小安 李润方 秦大同 塔式起重机安全评判专家系统的研制.中国安全科学学报 Vol.9,No.6,1999
    
    
    [75]杨国诗 吴刚 孙德敏 无氧铜杆炉微机控制系统 计算机自动测量与控制 No.1,1999
    [76]帅斌 青学江 基于面向对象的计算机编制列车运行图系统框架设计 西南交通大学学报(自然科学版)Vol.35,No.3,2000.P.259-263
    [77]杨李成 杨智 MATLAB与C/Visual C++混合编程的实现 机械研究与应用 Vol.12,No.2,1999
    [78]Lim Chen-I, Rodriguez Armando A. Interactive Modeling, Simulation, Animation and Real-time control (MoSART) helicopter environment. Proceedings of the IEEE Conference on Decision and Control V4 1998. P3659-3660
    [79]Lim Chen-I. Interactive modeling, simulation, animation and real-time control (MoSART) helicopter environment:a tool for enhancing education and research. Wescon Conference Record 1998. Wescon, Los Angeles, CA, USA, 98CB36265. P327-347
    [80]Lim Chen-I, Rodriguez-Armando-A. Modeling, simulation, animation, and real-time (MoSART) control of helicopter systems. 1998 American Control Conference, Philadelphia, PA, June 24-26, 1998, Proceedings. Vol. 2 (A99-14618 02-63), Piscataway, NJ, Institute of Electrical and Electronics Engineers, 1998, p. 1138-1142
    [81]Heckman James L, Hoffman John, Shaffer Thomas H, Wolfson Marla R. Software for a real-time control of a tidal liquid ventilator. Biomedical Instrumentation and Technology V33 No. 3.1999. p268-276
    [82]姜虹 贾嵘等 六自由度并联机器人位置正解的数值解法 上海交通大学学报 第34卷第3期2000年3月
    [83]黄田 Stewart并联机器人位置空间解析 中国科学E辑 1998.4
    [84]朱海滨 胡运发 面向对象方法学的研究 计算机科学 1990 No.5
    [85]何群 WINDOWS95平台涉及实时中断服务的一种编程方法 现代计算机 1999.8
    [86]姜勇 王莉娜 张泰山 利用未公开的WINDOWS核心技术实现控制程序的高精度定时微型机与应用 2000年第10期
    [87]裴景玉 基于WINDOWS95平台的实时控制技术 工业控制计算机 2000年13卷第3期
    [88]张正勇 熊清平 李作清WINDOWS系列平台下的实时控制研究 机电工程 1999年第3期
    [89]王文武 王诚 郝燕玲 周建新 多媒体定时器的定制和使用方法 计算机应用 2000.3
    [90]李中健 32位Windows下使用VC++进行多任务编程 微计算机信息 2000年第16卷第2期
    [91]李洁 计算机控制系统的可靠性分析 光学精密工程 第8卷 第6期 2000年12月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700