用户名: 密码: 验证码:
井巷围岩破断突水模型试验及其数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤矿水文地质条件复杂多样,矿井突水事故频繁,轻则冲毁器具、贻误工期,重则造成人员伤亡和重大经济损失,其抢救难度大、时间长、费用高,社会影响恶劣,一直是制约我国煤炭生产发展的重要因素之一。本文通过井巷围岩破断突水物理模型试验,深入研究了突水前井巷围岩的渗压、位移、应力、温度、声发射、电阻率等多场信息的变化规律,确定各种前兆现象的可测参数及其对突水预警的有效性;并对井巷围岩破断突水过程进行了数值模拟,分析了采动影响下煤层顶板的破断突水机理和破断形态,取得了一系列有意义的研究成果。
     进行井巷围岩破断突水模型试验,确定了渗压、位移、应力、温度、声发射、电阻率等多场信息中有效的突水前兆信息及其变化规律。基于三维流固耦合相似理论的分析,研制了非亲水性良好的新型流固耦合相似材料;为避免传统钢结构模型架对电阻率监测的影响,研制了可扩展的高强PVC试验台架;基于光纤传感技术(FBG)研制了体积小、防水性能好、抗干扰能力强的光纤光栅传感器,实现了渗压、位移、应力和温度的实时并行采集;采用所研制的三维流固耦合模型试验系统开展巷道涌水和采区突水的相似模型试验,研究了突水前井巷围岩的渗压、位移、应力、温度、声发射、电阻率等多场信息的变化特征,分析了开挖扰动下井巷围岩破断突水的灾变演化机理,揭示了突水前兆信息的变化特征。
     采用FLAC软件对井巷围岩顶板离层破断突水过程进行了数值模拟,利用Interface单元模拟顶板层理面,重现煤层开采后顶板岩层从沉降、离层直至垮塌突水的整个过程,研究了矿井突水前顶板围岩的应力分布以及渗流场运移规律,数值计算结果与试验结果具有很好的一致性。
Mine water inrush occurs frequently in China owing to complex and diverse hydrogeological conditions of coal mines, which not only destroyes equipment and adversely affects the duration but also causes heavy casualties and major economic losses. The rescue is difficult, long and costly. Consequently, water inrush will bring about negative social impact. And it has been restricting the development of China's coal production as one of the important factors. In this paper, by physical model test of water inrush due to mine rock breaking, variation of multi-field information before water inrush, such as seepage pressure, displacement, stress, temperature, acoustic emission and resistivity, has been studied in depth. Also the measurable parameters of precursory information which are effective to predict water inrush have been determined. The simulation of water inrush due to mine rock breaking has been carried out to analyze the mechanism of water inrush caused by roof breaking under the influence of the mining seam excavation. A series of meaningful research results have been obtained.
     Of the multi-field information such as seepage pressure, displacement, stress, temperature, acoustic emission and resistivity, the effective precursory information and its variation has been determined by the model test of water inrush due to mine rock breaking. Based on the similarity theory of three-dimensional fluid-solid coupling, a new type of non-hydrophilic similar material of fluid-solid coupling has been developed; In order to avoid the impact of the traditional steel frame model on resistivity monitoring, extensible test bench has been made by high-strength PVC material; On the basis of FBG technology, fiber grating sensors with small size, good waterproof performance, and strong anti-interference ability have been desigened to the realize the real-ti me parallel acquisition of seepage pressure, displacement, stress, and temperature; The 3-D model test system of fluid-solid coupling has been adopted to do the model test of water-inrush in roadway and mines. The variation of multi-field information before water inrush, such as seepage pressure, displacement, stress, temperature, acoustic emission and resistivity, has been researched. Catastrophic evolution mechanism of water inrush resulted from mine rock breaking under mining excavation has been interpreted. And the sudden changes of precursory information of water inrush have been revealed.
     Water inrush due to roof separation and collapse in the coal mine water inrush model test has been modeled by FLAC. Interfaces in FLAC are used to simulate bedding planes and fluid-solid coupling calculation has been carried out. The whole process after progressive mining, including roof subsidence, bed separation, the sudden collapse and water inrush, has been be captured. The stress distribution and migration law of flow field have been studied. The numerical results and experimental results agree very well.
引文
[1].赵铁锤.全国煤矿典型水害案例与防治技术[M].徐州:中国矿业大学出版社,2007.
    [2].国家煤矿安全监察局事故调查司.2007-2008年全国煤矿水害事故分析与对策建议[C]//2009年全国煤矿水害防治工作座谈暨技术研讨会论文集.青岛:[s.n.],2009:1-16.
    [3].宁齐元,杨用君.小煤矿安全生产现状分析及对策[J].西部探矿工程,2008,1:235-236.
    [4].(?) a(?)a iei A i. The physical model of bottom bulging process of mine laneway[J]. AOC. Aioi.(?).,1981,94(7):41-44.
    [5].张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157—3161.
    [6].胡耀青,赵阳升,杨栋.采场变形破坏的三维流固耦合模拟实验研究[J].辽宁工程技术大学学报,2007,26(4):520—523.
    [7].黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1996,25(1):33-36.
    [8].龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32—46.
    [9].王经明.承压水沿煤层底板递进导升突水机理的模拟与观测.岩土工程学报,1999.21(5):546~549.
    [10].朱第植,王成绪,许庭教,童宏树.突水预测的采动煤层底板相似模拟方法研究.煤田地质与勘探,1999,5:37~43.
    [11].武强,刘金韬,董东林,武雄,周瑞光.煤层底板断裂突水时间弱化效应机理的仿真模拟研究——以开滦赵各庄煤矿为例.地质学报,2001.4:554~561.
    [12].唐东旗,李运成.留设断层防水煤柱开采的模拟试验研究.建井技术,2005,6:21~23.
    [13].蒋金泉,宋振骐.同采工作面底板活动及其对突水影响的研究.山东矿业学院报,1987(4).
    [14].黎良杰,钱鸣高,李树刚.断层突水机理分析.煤炭学报,1996,21(2):119~123.
    [15].蒋曙光,王省身.综放采场流场及瓦斯运移三维模型试验.中国矿业大学学报.1995.24(4):85~91.
    [16].侯忠杰,张杰.陕北矿区开采潜水保护固液两相耦合实验及分析[M].湖南科技大学学报(自然科学版).2004,19(4):1—5.
    [17].唐东旗,李运成,姚秀芳.断层带留设防水煤柱开采的相似模拟试验研究[J].矿业安全与环保,2005,32(6):26—30.
    [18].王贻明,吴爱祥,张传信等.复杂条件下矿柱回采的相似材料模型试验[J].金属矿山,2006,(12):10—12.
    [19].周青春,李海波,杨春和等.南水北调西线一期工程砂岩温度、围岩和水压耦合试验研究[J].岩石力学与工程学报,2005,24(20):2639—3645.
    [20]. BRACE W F, WALSH J B, Frangeos W T. Permeability of granite under high pressure[J]. J.Geophys OfRes.1987,73(6):2225-2236.
    [21].杨成田.专门水文地质学[M].北京:地质出版社,1981.
    [22].杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [23].Christian Wolkersdorfer and Rob Bowell. Contemporary reviews of mine water studies in Europe, Part 1 [J]. Mine Water and the Environment,2004, (23):162-182.
    [241. Christian Wolkersdorfer and Rob Bowell. Contemporary reviews of mine water studies in europe, part 2[J]. Mine Water and the Environment,2005, (24):2-37.
    [251.Christian Wolkersdorfer and Rob Bowell. Contemporary reviews of mine water studies in europe, part 3[J]. Mine Water and the Environment,2005, (24):58-76.
    [26].SALIS M, DUCKSTEIN L. Mining under a limestone aquifer in southern Sardinia:a multiobjective approach[J]. Geotechnical and Geological Engineering,1983,1(4):357-374.
    [27].KUZNETSOV S V, TROFIMOV V A. Hydrodynamic effect of coal seam compression[J]. Journal of Mining Science,2002,39(3):205-212.
    [28].彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.
    [29].张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [30].仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [31].钱鸣高,缪协兴,徐家林,等.岩层控制的关键层理论[M].北京:中国矿业大学出版社,2000.
    [32].赵阳升,胡耀青.承压水上采煤理论与技术[M].北京:煤炭工业出版社,2004.
    [33].施龙青,韩进.底板突水机制及预测预报[M].北京:中国矿业大学出版社,2004.
    [34].郑少河,朱维申,王书法.承压水上采煤的流固耦合问题研究[J].岩石力学与工程学报,2000,19(7):421-424.
    [35].白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [36].王连国,宋扬.煤层底板突水突变模型[J].工程地质学报,2002,8(2):160-163.
    [37].李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,8(4):11-18.
    [38].李利平.高风险岩溶隧道突水灾变演化机理及其应川研究[博十学位论文][D].山东:山东大学,2009.
    [39].张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [40].刘斌,李术才,李树忱,李利平.电阻率层析成像法监测系统在矿井突水模型试验中的应用研究[J].岩石力学与工程学报,2010,29(2):297-307.
    [41].唐东旗,李运成,姚秀芳.断层带留设防水煤柱开采的相似模拟试验研究[J].矿业安全与环保,2005,32(6):26—30.
    [42].别小勇,周国庆,赵广思等.煤层开采覆岩变形与破坏试验研究[J].矿业安全与环保,2005,25(2):27—30.
    [43].王贻明,吴爱祥,张传信等.复杂条件下矿柱回采的相似材料模型试验[J].金属矿山,2006,(12):10—12.
    [44].胡耀青,赵阳升,杨栋.三维流固耦合相似模拟理论与方法.辽宁工程技术大学学报,2007,26(2):204-206.
    [45].蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [46].Kovari, Kalman, Tisa, et al.ISRM suggested methods for determining the strength of rock material in triaxial compression[J]. J. Rock Mech. Min. Sci. and Abstr.,1983,20(6): 285-290.
    [47].李勇.新型岩土工程相似材料的研制及其在分岔隧道模型试验中的应用[硕士学位论文][D].山尔:山东大学,2007.
    [48].叶明亮,续建科,牟宏.岩石抗拉强度试验方法的探讨[J].贵州工业大学学报,2001,6:19~25.
    [49].沈明荣.岩体力学[M].上海:同济大学出版社,2000.
    [50].徐芝纶编.弹性力学[M].北京:人民教育出版社,1980.
    [51].杜庆华等著.弹性理论[M].北京:科学出版社,1986.
    [52].袁文忠.相似理论与静力学模型试验[M].西安:西安交通大学出版社,1998.
    [53].潘一山,章梦涛,王来贵等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49~56.
    [54].李树忱,冯现大,李术才等.新型流固耦合相似材料的研制及应用,岩石力学与工程学报,2010,29(02):281-288.
    [55].赵星光,邱海涛.光纤Bragg传感技术在隧道监测中的应用[J].岩石力学与上程学报,2007,26(3):587-593.
    [56].LI Hong-Nan, LI Dong-Sheng. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures,2004,26(11):1647-1657.
    [57].孟宪玮,张青,史彦新等.光纤布拉格光栅波长解调系统的研制[J].吉林大学学报,2009,39(2):342—346.
    [58].隋海波,施斌,张丹等.地质和岩土工程光纤传感监测技术综述[J].工程地质学报,2008,16(01):135—143.
    [59].DUNNICLIFF J. Geotechnical instrumentation for monitoring field performance[M]. New York:John Wiley and Sons Inc.,1993.
    [60].朱鸿鹄,殷建华,张林等.大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008,27(6):1188-1194.
    [61].MOREY W W, MELTZ G, GLENN W H. Fiber optic Bragg grating sensors[C]//Proceedings of SPIE(vol.1169)[S.I.]:[s.n.],1989:98-107.
    [62].梁光明,唐玉鹏,孙即祥.基于概率分布均衡技术的归一化算法及在模式识别中的应用[J].信号处理,2009,25(4):636—638.
    [63].苏加德.采场顶板失稳机理的分析及控制[J].鸡西大学学报,2006,6(1):62—64.
    [64].李肖音,高峰,钟卫平.基于板模型的采场顶板破断机理分析[J].采矿安全与工程学报,2008,25(2):180-183.
    [65].彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.
    [66].HATZOR Y H, TALESNICK M, TSESARSKY M. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel[J]. International Journal of Rock Mechanics and Mining Science,2002,39(7):867-886.
    [67].尹尚先,王尚旭.陷落柱影响采场围岩破坏和底板突水的数值模拟分析[J].煤炭学报,2003,28(3):264—269.
    [68].陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [69].谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397—401.
    [70].刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [71].Users'manual of FLAC5.0[M]. Minneapolis:Itasca Consulting Group Inc.,2005.
    [72].LUO Jun-lu. A new rock bolt design criterion and knowledge-based expert system for stratified roof [Ph. D. Thesis][D]. Virginia:Virginia Polytechnic Institute and State University, 1999.
    [73]. PENG S., TANG D. Roof bolting in underground mining:State of the art view[J]. International Journal of Mining Engineering,1984,2:1-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700