用户名: 密码: 验证码:
带压开采岩体力水学理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤田地质条件复杂,许多煤矿不同程度地受奥陶纪灰岩含水层的威胁,突水事故时有发生,因而对煤层顶底板的工程地质、水文地质、顶底板的变形破坏规律、构造特征、各含水层的水力学特性及其联系、突水监测预报理论及其工程实施的研究都是防治奥灰岩含水层突水的关键性问题。本文基于固流耦合作用的学术思想,通过理论研究、相似模拟实验、数值分析及现场实际应用,系统研究了带压开采的块裂介质岩体水力学数学模型,数值模拟方法,相似模拟理论与方法,深入细致地分析了带压开采中顶底板、煤柱、断层的应力位移分布、含水层水位变化等一系列相互作用规律,并建立了基于多含水层水力联系的底板突水监测预报理论模型及其监测预报方法与系统,并将研究成果应用于现场实际,得到了现场工作人员的一致认可。
     通过在太原东山煤矿井下底板水文钻孔的各岩层原位水力学特性的测试,从精细水文地质的角度,发现了煤层以下,奥灰岩含水层之上的底板中,存在一层或多层小的含水层,而且这是石炭二迭纪煤系地层的普遍现象,该含水层分布均匀、范围广,在一般情况下是各自独立的水系。在原生导水构造,或采动活化的构造,或采动破坏形成新的裂隙带,就可能使这几个独立的含水层沟通,发生水力联系,进而引发突水事故。基于上述地质现象的发现,提出了奥灰岩含水层突水的监测预报理论与实施技术,包括监测层判别、监测孔间距确定的解析式、监测网的布置原则与布置方法,奥灰突水监测预报的多含水层耦合数学模型,奥灰突水监测预报系统软件。并通过两个矿的现场实施情况,说明其工程实施步骤及使用效果。
     提出了围岩应力场及渗流场耦合作用的相似理论,研制了部分典型材料的固流耦合相似配比。研制了三维固流耦合相似模拟实验台,完善配套了加载系统、
    
    测试系统、开采系统和流场的模拟与测试系统。属国内外首创。
     提出了带压开采的块裂介质三维固流祸合数学模型与数值模拟方法及单元
    开挖处理的新思路与新方法。
     通过带压开采的三维固流祸合相似模拟与数值模拟,给出了顶底板应力分布
    规律,包括应力集中区、应力集中系数的变化、底板含水层的水压对围岩应力的
    影响、煤柱及断层的应力分布及其变化规律等。
     本文的工作对带压开采的安全具有较深的理论价值与应用价值。
Many colliery in our country suffers from the Ordovician period Karst containing water outburst frequently due to the complex geology condition, so the engineering geology, hydrology, the deformation and breakage law of upper and down floor of coal layer, the character of formation, the character of hydraulics and the relation of each containing water layers, the inspecting and predicting theory of water out burst are the key problem for prevention the water outburst. Based on the science idea of coupling, this paper studied systematically the theory, mathematical model and technology of rock mass hydraulics in coal mining above aquifer, the numerical simulation method, the resemble simulation theory and method. A series of reciprocity law on the stress and displacement of upper and down floor of coal layer, coal pole, fault and the law of water pressure variety was analyzed thoroughly and particularly. Based on the relation of hydraulics character of multi-aquifer, the inspecting and predicting theory model
    , method and system of water outburst was founded. By used in the colliery, The results were ratified by colliery missionary.
    In situ test for the hydraulics character of the floor on hydrology observation hole was done. The test was carried out at the floor of Dongshan colliery. Form the point of view of fine hydrology, we discovered in the under of coal layer and above the Ordovician period Karst containing water layer, one or multi-aquifer exists in the Coal Measures of Carboniferous & Permian at large, and these aquifer distribute equality and ranged in a large area. In the condition of normally, these aquifers are unattached. And in the condition of mining, the original permeable conformation or the activating conformation and the new destroy zone by mining, these aquifer may attached and than solicits water outburst. Based on the above phenomenal, the inspecting and predicting theory and using technique were put forward, including the distinguish of inspecting layer, the resolution of distance of inspecting hole, the disposal principle and method of inspecting hole, the coupling mathematic model of water outburst based on the
     multi-aquifer and the system software of inspecting and predicting water outburst. The process of put in practice and using effect were made out by used on two collieres.
    The resemble theory on coupling of solid and liquid was put forward, a part of type material coupling prepare proportion was made. The resemble simulation experiment equipment of 3-D coupling on solid & liquid had been made, and the loading system, testing system, mining system, flow area simulation and its testing system had been
    
    
    
    perfected. The experiment system is origination in nation or outside nation.
    The mathematical model and numerical simulation method of 3-D coupling on rock mass Hydraulics in coal mining above aquifer was put forward, and the new idea and new method was put forward too.
    By using the 3-D coupling resemble and numerical simulation, this paper obtained the stress distribution law including the area of stress focus, the variety of stress focus coefficient, the water pressure influence on the wall rock, the variety law of stress of coal pole and fault.
    The work of this paper is very important to the theory and engineering application on coal mining above aquifer.
引文
[1] Tiwary, R. K. & Dhar, B. B. Environmental Pollution from Coal Mining Activities in Damodar River Basin, India. -Mine Water and the Environment, 1994,13: 1-9, Wollongong
    [2] Cathy M. Lenter, Louis M. McDonald, Jr., Jeffrey G. Skousen, Paul F. Ziemkiewicz: The Effects of Sulfate on the Physical and Chemical Properties of Actively Treated Acid Mine Drainage Floc, Mine Water and the Environment 2002, 21: 114-120
    [3] J. G. Annandale, N. Z. Jovanovic, P. D. Tanner, N. Benadé, H. M. Du Plessis: The Sustainability of Irrigation with Gypsiferous Mine Water and Implications for the Mining Industry in South Africa, Mine Water and the Environment 2002,21(2); 81-90
    [4] Wisotzky, F. Prevention of Acidic Groundwater in Lignite Overburden Dumps by the Addition of Alkaline Substances: Pilot-scale Field Experiments. -Mine Water and the Environment, 2001, 20(3): 122-128, Berlin.
    [5] Wang, J.-A.; Park, H. D. Coal mining above a confined aquifer International Journal of Rock Mechanics and Mining Sciences. 2003.5, 40(4): 537-551
    [6] Shi, L. & Singh, R. N. Study of Mine Water Inrush from Floor Strata through Faults. Mine Water and the Environment. 2001, 20(3): 140-147, Berlin.
    [7] 黎良杰、钱鸣高、李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119-123.
    [8] 邱秀梅,王连国,断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2003.3,21(1):59-61
    [9] 周瑞光,成彬芳,叶贵钧,武强,断层破碎带突水的时效特性研究[J].工程地质学报,2000.8,(04):412-415
    [10] 韩爱民,白玉华,孙家齐,断层透水性工程地质评价[J].南京建筑工程学院学报 2002,No.1 21-25,
    [11] 谭志祥.断层突水机制的力学浅析[J].江苏煤炭,1998(3):16-18.
    [12] Yang, Shanan Prevention and control of water inrush from faults in floor rocks in the workings, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts [J]. 1995.32(4): 193A
    [13] 杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):620-625.
    [14] 许学汗,王杰著.煤矿突水预报研究[M].地质出版社,1991.11,北京,211-215.
    [15] 裔传标,葛均刚,张集煤矿2.18特大水害水源快速判别和认识[J].江苏煤炭,1998(1):44-45.
    [16] 开滦矿务局、煤炭科学院地质勘探分院、煤炭科学院建井研究所.奥灰岩溶陷落柱特大水害治理(上)[J].煤炭科学技术,1986(1):6-14.
    [17] 开滦矿务局、煤炭科学院地质勘探分院、煤炭科学院建井研究所[J].奥灰岩溶陷落柱特大水害治理(下)[J].煤炭科学技术,1986(2):7-11.
    [18] B.H.G.布雷迪.E.T.布郎,地下采矿岩石力学[M],冯树仁等译,北京,煤炭工业出版社,1900.6
    [19] 李白英,采动矿压与底板突水的研究[J],煤田地质与勘探,1986
    [20] 靳德武、王福延、马培智.煤层底板突水的力学分析[J].西安矿业学院学报,1997,17(4):354-356.
    [21] 白晨光、黎良杰、于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):151-154.
    [22] 王连国、宋杨.煤层底板突水突变模型[J].工程地质学报,2000,8(02):160-163.
    [23] 唐德玉,张善田,白秀伟.巷道滞后突水形成机理及预防措施的分析研究[J].煤炭科学技术,1997,25(12):28-33.
    
    
    [24] 胡耀青,杨栋,赵阳升等,巷道滞后突水机理及其模拟[J].新世纪岩石力学与工程的开拓和发展,中国岩石力学与工程学会第六次学术大会论文集,2000:360-363.
    [25] Kipko, B. J., Polozov, J. A. & Spichak, J. N. (1984): Hydrosealing and Consolidation of geological Faults during Tunnel Driving. -Int. J. Mine Water, 3(3): 35-41, Madrid
    [26] 王作宇,刘鸿泉,葛亮淘.采场底板岩体移动[J].煤炭学报,1989(3):62-69.
    [27] 华安增.煤层底板采场的影响[J].煤炭学报,1983(3):36-45.
    [28] 王作宇,张建华,刘鸿泉等.承压水上近距煤层重复采动的底板岩体移动规律[J].煤炭科学技术,1995,15(2):24-27.
    [29] 张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(1):46-54.
    [30] 高延法,李白英.受奥灰承压水威胁煤层底板变形破坏规律研究[J].煤炭学报,1992,17(2):33-38.
    [31] 刘天泉,审宝宏,张金才.长壁工作面顶底板应力和位移的实验研究[J].煤炭科学技术,1990(12):28-32.
    [32] 李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,8(4):11-18.
    [33] Li Beiying. The"down-three-zone"Theory of preventing Floor water Inrush Disasters and Application.第30届国际地质大会,中国,北京,1998,339-345.
    [34] 王成绪.研究底板突水的结构力学方法[J].煤田地质与勘探,1997(增刊):48-50.
    [35] 冯启言,陈启辉.煤层开采底板破坏深度的动态模拟[J].矿山压力与顶板管理,1998(3):71-73.
    [36] 杨栋,赵阳升.裂隙底板采场固流耦合作用的数值模拟[J].煤炭学报,1998,23(1):37-41.
    [37] 张红日,张文泉等.矿井底板突水过程中岩溶承压水的作用[J].中国地质灾害与防治学报,1999,10(1):88-95.
    [38] 毕贤顺,王晋平.矿井底板突水的数值模拟[J].淮南矿业学院学报,1997,17(1):12-16.
    [39] 张西民,王秀辉,顶板周期来压和底板突水的关系研究[J].煤田地质与勘探,1997增刊,25,51-53.
    [40] 左人宇,龚晓南,桂和荣.多因素影响下煤层底板破坏规律的研究[J].东北煤炭技术,1999(5):3-7.
    [41] 施龙青,宋振骐.采场底板“四带”划分理论研究[J].焦作工学院学报,2000,19(4):241-245.
    [42] Singh, R. N. & Atkins, A. S. (1984): Application of Analytical Solution to Simulate some Mine Inflow Problems in Underground Coal Mining. -Int. J. Mine Water, 3(4): 1-27, Madrid.
    [43] Hancock, S. (1985): Discussion on Aquifer Restoration at Uranium in situ leach Sites by F. S. Anastasi and R. E. Williams. -Int. J. Mine Water, 4(4): 55-56; Madrid.
    [44] Singh, T. N. & Singh, B. (1985): Model Simulation Study of Coal Mining Under River Beds in India. -Int. J. Mine Water, 4(3): 1-9, Madrid.
    [45] Kuscer, D. (1991): Hydrological Regime of the Water Inrush into the Kotredez Coal Mine (Slovenia, Yugoslavia). -Mine Water and the Environment, 10 (1-4): 93-101, Wollongong.
    [46] Whitbread, J. J., Williams, R. E. & Miller, S. M. (1992): A Statistical Method to evaluate potentially similar Zones of Groundwater Discharge at the Bunker Hill Mine near Kellog, Idaho. -Mine Water and the Environment, 11(3): 17-25, Wollongong.
    [47] 陈泰生,蔡元龙.用模式识别方法预测煤矿突水[J].煤炭学报,1990,15(4):63-67.
    [48] Singh, R. N. & Jakeman, M. (2001): Strata Monitoring Investigations Around Longwall Panels Beneath the Cataract Reservoir. -Mine Water and the Environment, 20 (2): 55-64, Berlin u.a.
    [49] Zhong, W. H. (1982): A new Method of Mine Drainage Prediction using Unit Static Resource Method. -Int. J. Mine Water, 1(3): 23-31, Granada
    [50] Bekendam, R. F.; Pottgens, J. J, Ground movements over the coal mines of southern Limburg, the Netherlands, and their relation to rising mine waters, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Volume: 33, Issue 8, December, 1996, pp.377A
    [51] Nisbet G. Y. Low risk seen in dewatering plan for West Rand. S. A. Mining, Coal and Base Minerals. 1986(2): 15
    
    
    [52] Larson, K.J.; Basagaoglu, H.; Mari(?)o, M.A. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model, Journal of Hydrology Volume: 242, Issue: 1-2, February 15, 2001, pp. 79-102
    [53] Sheorey, P. R.; Loui, J. P.; Singh, K. B.; Singh, S. K. Ground subsidence observations and a modified influence function method for complete subsidence prediction International Journal of Rock Mechanics and Mining Sciences Volume: 37, Issue: 5, July 1, 2000, pp. 801-818
    [54] 王作宇,刘鸿泉等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40-46.
    [55] 王梦玉.煤层底板突水机理及预测方法探讨[J].煤炭科学技术,1997(9):23-28.
    [56] 张璟,王延福,曾燕京.神经网络专家系统在煤矿突水预测中的应用[J].微电子学与计算机,1995(5):16-19.
    [57] 王延福,靳德武,曾艳京等.岩溶矿井煤层底板突水系统的非线性特征初步分析[J].中国岩溶,1998,17(4):331-341.
    [58] 靳德武,王延福.华北型煤田矿坑突水因素的信息分析[J].煤田地质与勘探,1998增刊26:30-31.
    [59] 王延福,靳德武,曾艳京.矿井煤层底板突水预测新方法研究[J].水文地质与工程地质,99(4):33-37.
    [60] 王延福,庞西歧,靳德武等.岩溶煤矿矿井煤层底板突水预测的相空间重构[J].中国岩溶,1999,18(3):219-227.
    [61] 王延福,庞西岐,靳德武等.岩溶矿井煤层底板突水的非线性动力学模型[J].中国岩溶,2000,19(1):81-89.
    [62] 靳德武,陈健鹏,王延福等.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214-217.
    [63] 靳德武,马培智,王延福.华北煤层底板突水的随机—信息模拟及预测[J].煤田地质与勘探,1998,26(6):36-39.
    [64] 黄国民,苏文智.利用神经网络预测煤层底板突水[J].华北地质学院学报,1996,19(2):170-182
    [65] 江东,王建华.基于神经网络的煤矿底板突水预测[J].灾害学,1999,14(1):28-32.
    [66] 施龙青,韩进,宋杨.用突水概率指数法预测采场底板突水[J].中国矿业大学学报,1999,28(5):442-446.
    [67] 韩进.利用VB开发煤层底板突水预测应用软件[J].焦作工学院学报,2000,19(2):106-108
    [68] 高卫东,张培基,杨建政等.矿井煤层底板突水预测[J].江苏煤炭,1999(3):15-16.
    [69] 王茂连,李定龙.GIS在刘桥二矿煤层底板突水预测中的应用[J].煤田地质与勘探,1998,25(5):63-66.
    [70] A Ham iltim et al.Integrated Pule Stream Networks.Result,Issues,and pointers, IEEE T rans. On Neural Networks, 1992,3(3):385~893
    [71] E.Sacking,et al.Application of the A rtificial Neural Network Chip to Hight-speed Character Recognition, IEEE T rans. On Neural Networks, 1992,3(3):489~505
    [72] 孙苏南,曹中初,郑世书等.用地理信息系统预测煤层底板突水[J].煤田地质与勘探,1996,24(6):40-43.
    [73] 江东,王建华,基于GIS的煤矿底板突水预测模型的构造与应用[J].中国地质灾害与防治学报,1999,10(1):68-72.
    [74] 陈学星,刘伟韬,张文泉.预测底板突水的专家系统研究[J].煤矿自动化,2000(1):5-8.
    [75] 张永双,刘伟韬,卜昌森.煤层底板突水因素的综合评价[J].煤田地质与勘探,1996,24(3):32-36.
    [76] 刘伟韬,张文泉,李家祥.用层次分析—模糊评判进行底板突水安全性评价[J].煤炭学报,2000,25(3):278-282.
    [77] 王经明,孙本奎,李泉等.煤层底板突水的智能化监测[J].微型机与应用,1998(1):46-47.
    [78] 懂书宁,王经明,高智连等,煤层底板突水监测系统的开发及应用[J].煤炭工程师,1998(6):12-14。
    
    
    [79] 武强,董东林,石占华,金玉洁等,可视化地下水模拟评价新型软件系统(visual mod flow)与矿井防治水,煤炭科学技术 第28卷第2期 2000年2月,p18-20
    [80] 张少春,张伟,突水预报数值模拟研究中的相关问题探讨,陕西煤炭,2001年 第2期p4-6
    [81] 胡耀青,赵阳升,杨栋等.承压水上采煤突水的区域监控理论与方法[J].煤炭学报,2000,25(3):252-255.
    [82] 胡耀青,赵阳升,杨栋等.矿区突水监控理论及模型[J].,煤炭学报,2000增刊:130-133.
    [83] Hoek E T. Empirical strength citerion fro rock masses[J]. ASCE Journal of Geotechnical Engineering Division, 190, 106(GT9): 1013~1035
    [84] Hoek E, Wood D, Shah S A. Modified Hoek-Brown Crterion for Jointed rock masses[A]. In: Hodson J A ed. Eurock'92[C]. London: Thomas Telfrd, 1992, 209~213
    [85] Yu M H, He L N. A new model and theory on yield and failre of materials under complexstress state[A]. In: Mechanical Behaviour of Materials-Ⅵ[C]. Oxford: Pergamon Press, 1991,3:851~856
    [86] 咎月稳,余茂宏,王思敬,岩石的非线性统一强度准则[J],岩石力学与工程学报。21(10):2002.10,1435~1441,
    [87] 赵阳升著.矿山岩石流体力学[M].北京:煤炭工业出版社,1994,12
    [88] 罗焕炎,陈雨孙著,地下水运动的数值模拟[M].中国建筑工业出版社,北京,1988
    [89] 赵阳升主编,有限元法及其在采矿工程中的应用[M].煤炭工业出版社,北京,1993
    [90] 王永红,沈文,中国煤矿水害预防及治理[M].煤炭工业出版社,北京1996,252~253
    [91] 黎良杰、钱鸣高、殷有泉,采场底板突水相似材料模拟研究,煤田地质与勘探,1996,25(1):33-36
    [92] 朱第植,王成绪,许庭教,童宏树,突水预测的采动煤层底板相似模拟方法研究,煤田地质与勘探,1999,27(5):37-43
    [93] 王福刚,耿冬青,梅学彬,相似模拟试验在地下水运移及参数求解中的应用,世界地质,2000,19(4):355-360
    [92] 靳钟铭,宋选民等,坚硬煤层综放开采试验研究,煤炭科学技术,V01.26,No.2,1998.2,p19~23
    [93] 钱鸣高,缪协兴,黎良杰,采场底板破坏规律的理论研究[J].岩土工程学报,1995,17(6):55~62
    [94] 钱鸣高,缪协兴,采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97~106
    [95] 钱鸣高,何富连,缪协兴,采场围岩控制的回顾与展望,煤炭科学技术,Vol.24,No.1,1996.1,p1~3
    [96] 宋振骐,蒋金泉,煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2):128—134
    [97] 威尔逊AH.对确定煤柱尺寸的研究,矿山测量,Vol.1.No.1,1973
    [98] 百矛,刘天泉,条带法开采中条带尺寸的研究[J].煤炭学报,1983,8(3);
    [99] 张耀荣,高慧,高进等,影响护巷煤柱宽度的因素分析,煤,Vol.10,No.1,2001
    [100] 赵阳升,靳钟铭,杨栋,胡耀青,段康廉,带压分段后退式开采布局的研究[J].煤炭学报,1999,24(4):
    [101] 耿传成,纪海亮,宋加宏,孙化常,邵长现,有突水威胁采区区段开采顺序的认识,煤炭科学技术.2002,30(8):22-23
    [102] 张金才,采动岩体破坏与渗流特征研究,煤炭科学研究总院,博士学位论文,1998.6
    [103] 张金才,岩体渗流与煤层底板突水[M] 北京:地质出版社,1997
    [104] 尹万财,工作面底板突水因素分析及防治对策研究,中国煤田地质,Vol.9,No.3,1997
    [105] Eisenlohr, Laurent; Király, László; Bouzelboudjen, Mahmoud; Rossier, Yvan, Numerical simulation as a tool for checking the interpretation of karst spring hydrographs, Journal of Hydrology Volume: 193, Issue: 1-4, June, 1997, pp. 306-315
    [106] Alley, W, M., Aguado, E. & Remson, I.,, Aquifer Mengement under Transient and Steady-State Conditions, Water Resources Bulletin, V. 12, No5, 1976
    
    
    [107] Aziz,A.R.,Mathematical Foundations of the finite Element Method,Academic Press.1972
    [108] Bathe,K.J.& E.L.Wilson,Numerical Methods in Finite Element Analysis,Pretice-Hall,1976
    [109] Cheung,Y.K.et al.,TWO-& Three-Dimensional Ground Water Seepage by Finite Elements,in "Finite element Methods in Engineering",1974
    [110] Chung,T.J.,Finite Element Analysis in Fluid Dynamics,McGraw-Hill,1978
    [111] Cooley,R.L.,Finte Element Solutions for the Equations of Ground Water Flow,University of Nevada,Publ.No.18,1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700