用户名: 密码: 验证码:
重庆沥鼻峡背斜煤层气富集成藏规律及有利区带预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气,曾称煤层瓦斯,是赋存于煤及其围岩中的一种与煤伴生共存的非常规天然气,主要成分为甲烷,是一种优质洁净的气体资源。开发利用煤层气不仅可以有效的遏制煤矿瓦斯灾害,降低甲烷气体对大气环境的温室效应,而且开采储量巨大的煤层气资源对于优化我国以煤为主的能源结构,缓解能源短缺具有战略意义。
     我国煤层气具有巨大的储量和诱人的开发前景,但至今尚未进入商业化开发阶段,主要是因为我国煤储层具有高煤级、高地应力、低渗透的特征,这使得我国煤层气的富集规律、渗透性变得异常复杂。本文针对我国当前煤层气富集区预测难以定量化、预测位置模糊不精确;高渗区预测定性描述、预测位置不准确;储量计算精度不高,难以反映煤厚和含量的非均质性;选区综合评价中指标矛盾不相容性;背斜煤层气富集规律及富集成藏机制缺乏系统完整的研究等几大关键科学问题展开研究,取得了如下成果:
     煤层气富集区预测,建立了地应力场、地温场中煤层气含量、压力预测方程,提出了煤层气富集区高精度、定量化预测理论与方法。进行了kaiser原岩应力测试实验、不同温度的甲烷吸附实验及煤质分析实验,结合原始地质数据,定量预测了重庆沥鼻峡盐井矿区主力煤层气的含量、压力分布,并划定了煤层气富集区,解决了煤层气富集区难以定量化预测和预测位置不准的难题。
     提出了两种新的、精度较高的煤层气储量计算方法——微元体积法,计算了研究区煤层气地质储量和技术可采储量,解决了当前煤层气储量计算中难以体现含气量和煤厚非均质性的问题。
     煤层气高渗透区预测,(1)建立了地应力场、地温场中煤层渗透率预测方程,同时提出了用实验室测试的渗透率计算真实渗透率的校正方法,定量预测了研究区7层煤的渗透率分布,划出了高渗透区的位置,解决了煤层气高渗区预测难以定量化和预测位置不准的问题;(2)进行了不同温度、不同有效应力下的CH4和He渗流实验,发现了不同有效应力条件下,渗透率与温度的关系,提出了升温渗流过程中的“内膨胀效应”和“外膨胀效应”理论模型,并通过数学推证,解释了低有效应力条件下渗透率随温度升高而增大,高有效应力条件下渗透率随温度升高而降低的实验现象;(3)提出了地应力场、地温场中煤层气渗流运移控制方程,以现场实际资料和实验为基础,计算了矿井煤层气的抽采运移能力。
     背斜煤层气富集成藏规律,进行了煤的扫描电镜实验、孔径分布与比表面积实验、从煤层气的生成、储集、保存和煤的沉积的角度,对重庆沥鼻峡高陡背斜煤层气富集规律进行了较为系统的研究,通过将各因素与含气量逐项对比分析,研究了重庆沥鼻峡盐井矿区煤层气富集的主控因素、控气机制及成藏模式,并得出本区煤层气富集影响因素为煤厚、埋深、断层、含碳量(煤阶),主控因素为构造动力,构造改造引起了煤厚、埋深、渗透率、煤体结构、煤的孔隙结构、应力等一系列变化,同时引起了局部动力变质作用。
     高陡背斜煤层气富集的构造控气机制,进行了煤岩的力学性质实验,计算了沥鼻峡背斜盐井矿区的应力场,研究了应力分布与煤层气富集的关系。从构造动力学角度,研究了高陡背斜、高角度断层、煤厚变化的成因及各因素的控气机制,研究了背斜煤层动力变质的分布规律及其控气机制。
     煤层气开发有利区带预测的选区综合评价,引入了全新的煤层气选区综合评价方法——模糊物元法,根据前述研究成果,提出了煤层气评价指标体系,对开发有利区块进行了优选排队,预测了本区煤层气开发的有利区带,并对各区开发条件进行了综合评价。
     根据评价结果,提出了重庆地区煤层气开发的建议。重庆地区高陡背斜煤层气富集规律与构造动力密切相关,从构造动力学定性和岩石力学定量综合研究,是今后重庆地区煤层气开发的主要研究方向,井下卸压抽采是本区较为合适的开发方式。
Coalbed methane, a kind of unconventional gas associated with coal, exists in coal seam and surrounding rocks of coal seam. CH4, main ingredient of coalbed methane, is a new kind of clean gas resource. Exploitation and utilization of coalbed methane is beneficial to not only prevent the mine methane disaster, but also reduce greenhouse effect generated by methane, meanwhile, exploitation of huge reserves coalbed methane has important strategic meaning for China to optimize energy structure dominated by coal and reduce energy shortage.
     There are huge coalbed methane reserves and attractive development future in China. But up to now, China has not moved into commercialization phase of coalbed methane exploiting. The main reason was that the coal seam has characteristics of high stress, high rank and low permeability in China, which makes coalbed methane enrichment regular complicated. According to five key scientific problems: the enrichment zone of coalbed methane has not been predicted quantitatively; high permeability zone of that is hard to predict exactly and quantitatively; calculation precision of gas storage capacity is not enough; appraisal indexes of favorable zone selecting are incompatible; coalbed methane enrichment law and mechanisms is lack of systematic study. The main achievements of the thesis are followings:
     Pressure and content prediction equations of coalbed methane are established in geothermal and geo-stress field. The quantitative prediction theory and method of coalbed methane enrichment zone is put forward. Ground stress testing by Kaiser Method, experiment of adsorption at different temperature and coal quality analysis is carried out. The coalbed methane content and pressure distribution of main coal seam of Yanjing mine area in Chongqing Libi gorge is predicted quantitatively, meanwhile, gas enrichment zone is determined. The problem of coalbed methane enrichment zone quantitative prediction is solved.
     Base on the above achievements, two new calculation methods of gas reserves are provided. Geological reserves and technical recoverable reserves of coalbed methane are estimated in liibi gorge Yanjing first mine area. The heterogeneity problem of gas reserves calculation is solved.
     The quantitative prediction theory and method of coalbed methane high permeability zone is established in geothermal and geo-stress field. Corrector method of permeability is put forward between experiment and actual measurement. The permeability distribution of seven coal seams is calculated, at the seam time, the high permeability zone of main coal seam is divided. CH4 and He seepage experiment in coal at different stress and temperature is carried out. The relationship between permeability and temperature at different stress is found. The pore model of internal expansion and out expansion is provided during gas flowing with temperature increasing. The permeability increases with the temperature increasing at low effective stress, but decreases with the temperature increasing at high effective stress. The seepage equation is put forward in geothermal and geo-stress field. The flowing process is simulated.
     Coalbed methane enrichment regular was studied. SEM and pore distribution experiments of coal are carried out. Coalbed methane enrichment law at Libi gorge high-steep anticline is systematically studied on four aspects, such as creation, reservoir, preservation and flow of coalbed methane. Compared content and the factors, main controlling factors and their controlling mechanism were studied. Main influencing factors of gas enrichment were found. The main influencing factors are coal seam thickness, depth, faults and FCd( coal rank), the main controlling factors is tectonic. The tectonic rebuilding generates changing of coal seam thickness, depth, permeability, coal mass structure, pore structure and stress and so on. Meanwhile, degree of coalification is promoted because of tectonic rebuilding in some locations..
     Mechanical property of rock is tested. Stress field is simulated in Libi gorge anticline. According to stress distribution, the cause and deformation of anticline, faults, and coal seam thickness is studied, the factors controlling mechanism is studied too.
     Fuzzy element method, a new evaluation method, is provided. Based on former research results, evaluation index system is established. The favorable exploration zone is predicted, and exploration condition of four zones are comprehensive assessmented.
     According to above results, suggestion of developing coalbed methane in Chongqing is put forward. There are close relations between coalbed methane enrichment and tectonic stress. Combined qualitative tectonic dynamics with quantitative rock mechanics, is a main research direction about coalbed methane in Chongqing. Drawing after reducing stress is favorable development method in the research area.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008,42(3):349-350.
    [2]田敏,庙延钢,王国华等. 2006年我国煤矿特大事故的统计分析[J]. 2007,12:97-101.
    [3]王礼全,邓宏刚.开发利用煤层气资源对改善生态环境的意义[J].重庆石油高等专科学校学报,2002,4(4):25-27.
    [4]程宏斌,张丽霞.煤层气气与环境[J].煤炭加工与综合利用,2004,3:44-46.
    [5]叶汝陵,苏文叔.煤矿煤层气排放对大气的污染对策[J].矿业安全与环保. 1999,1:1-2.
    [6]陶明信,高波,李晶莹.煤层气—新兴能源资源及其灾害与环境问题[J].矿物岩石地球化学通报,1999,18(3):182-188.
    [7]李毅中.从五方面加大煤矿瓦斯治理工作力度.全国煤矿瓦斯治理和利用工作现场会讲话.中华人民共和国中央人民政府网站. 2006. 1. 22.
    [8]丁学平.重庆瓦斯利用的环境影响评价[R].中梁山矿务局多种经营处.
    [9]丁学平.重庆煤层气工业的现状与未来发展对策[J].煤炭经济研究,1997,8:54-55.
    [10]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1991,4:33-34.
    [11]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M]. 1979,3:21-22.
    [12]胡殿明,林柏泉.煤层气瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006,10:121-140.
    [13] Gayer R and Harris L. Coalbed Methane and Coal Geology[M]. London:Geological Socity,1996:1-38.
    [14]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1994,4:4-5.
    [15]杨建业,杜美利.煤层气藏的储集特征及储层评价[J].西安地质学院学报,1995,17(3):77-82
    [16]唐修义.有关煤成烃的基本认识[J].地学前缘,1999,6(增):204-208
    [17] Scott A R, Kaier W R, Ayers W R Jr. Thermogenic and secondary biogenic gas San juan basin, Colorado and New Mexico-Implications for coalbed gas producibility[J]. AAPG bulletin,1994,78(8):1186-1209.
    [18] Scott A R. Composition and origin of coalbed gases from selected basins in the United States. In: proceedings of the 1993 International Coalbed Methane Symposium, Tuscaloosa, Alabama,1993,207-222.
    [19] Smith J W, Pallasser R J. Microbial origin of Australian coalbed methane[J]. AAPG Bulletin,1996,80(6):891-897.
    [20] Koatarba M J. Compostion and origin of coalbed gases in the Upper Silesian and Lublin basins. Poland[J]. Organic Geochemistry,2001,32(1):163-180.
    [21] Butala S J M, Medina J C, Taylor T Q, et al. Mechanisms and Kinetics of reactions leading to natural gas formation during coal matuarion[J]. Energy and Fuels,2000,14(2):235-259.
    [22] Ramswwamy G. A field evidence for mineral-catalyzed formation of gas during coal maturation[J]. Oil and Gas Journal 2002,100(38):32-36.
    [23] Michels R, Enjelvin-Raloult N, Elie M, et al. Understanding of reservioir gas compositons in a natural case using stepwise semi-open artificial maturation[J]. Marine and Petroleum Geology,2002,19(5):589-599.
    [24]鲜学福,辜敏.间接法预测煤层气含量时几个参数值的讨论[R].中国力学学会2005年第一次学术第八届渗流力学学术讨论会. 4-5.
    [25]陈昌国,辜敏,鲜学福.每层甲烷吸附与解吸的研究与进展[J].中国煤层气,1998,6,1:27-29
    [26] Gasser P H P.金属的化学吸附和催化作用[M].赵璧英等译.北京:北京大学出版社,1984.
    [27]张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(1):16-29.
    [28] Alexeev A D, Ulyanova E V, Starikov G P, et al. Latent methane in fossil coals[J]. Fuel,2004,83(10):1407-1411.
    [29] Alexeev A D, Vasylenko T A, Llyanova E V. Phase states of methane in fossil coals[J]. Solid State Comunications,2004,130(10):669-673.
    [30]煤炭科学研究总院抚顺分院.煤矿安全手册[M].北京:煤炭工业出版社,1994,5:20-21.
    [31] Yee D, Seidle J P,Hanson W B. 1993, Gas sorption on coal and measurement of gas content[J]. Hydrocarbons from Coal. AAPG, Tusa, Oklahoma, 203-218.
    [32]张丽萍,苏现波,曾荣树.煤体性质对煤吸附容量的控制作用探讨[J].地质学报,2006,80(6):910-915.
    [33]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学技术出版社,40-44.
    [34]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,18(4):29-35.
    [35] Ettinger I, Zimakov B, Yanovskaya M. Natrural factors influencing coal sorption properties-petrography and the sorption properties of coal[J]. Fuel,1966,45:243-259.
    [36]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特征研究[J].煤炭学报,1999,24(6):567-570.
    [37]В.В. Xодот.Внезапныевыбросыугольигаза,Государственноенаучно-техническоеиздательстволитературыпогорномуделу[M],Москвa,1961.
    [38]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,1:19-21.
    [39] Gan H, Nandi S P, Walker P L. Nature of the porosity in American coals[J] . Fuel 1972,52:272-277.
    [40] Laxm inarayana C, Crosdale P,I Role of coal type and rank on methane sorption characteristic of Bowen basin Australia coals int [J] Coal 1999,40:309-325.
    [41] Levine J R Calcification the evolution of coal as source rock and teservoir rock oil and gas in Law B E ,Rice D D(eds), Hydrocarbons from coal [J]. AAPG Studies in Geology 1993,38:39-77.
    [42]秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999,28(1):14-19.
    [43]桑树勋,朱炎铭,张井等.液态水影响煤吸附甲烷的实验研究[J].科学通报,2005,50(增):70-75.
    [44] Jouber J I,Grein C T, Bienstock D. Sorption of methane in moist coal. Fuel, 1973,52:181-185.
    [45] Joubert J I Effect of moisture on the methane capacity of American coals. Fuel,1974,53:186-191.
    [46]钟玲文.煤的吸附性能及影响因素[J].地球科学学报, 2004,29(3):327-333.
    [47] Clarkson C R, Bustin R M. Variation in micropore capacity and sieze distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin Implications for coalbed methane potential[J]. Fuel, 1996,75(13)1483-1498.
    [48] Radovic L R, mennon V C, Leon Y. Et al. On hte porous structure of coals :evidence for an interconnected but constricted micropore system and implication for coalbed methane recovery[J]. Adsorption, 1997,3(3):221-232.
    [49] Bustin R M, Clarkson C R Geological control on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38(1-2):3-36.
    [50] Clarkson C R, Bustin R M. Effect of pore Structure and gas pressure upon the transport property of coal: A laboratory and modeling study. 1. Isotherms and pore volume distribution [J]. Fuel,1999,78(11):1333-1344.
    [51] Clarkson C R, Bustin R M. Effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 2. Adsorption rate modeling [J]. Fuel,1999,78(11):1333-1344.
    [52] Alexeev A D, Vasilenko T A, Ulyanova E V. Closed porosity in fossil coals[J]. Fuel,1999,78(6):635-638.
    [53] Alexeev A D, Feldman E P, Vasilenko T A. Alteration of methane pressure in the coalbedpores of fossil coals[J]. Fuel,2000,79(8):939-943.
    [54] Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorption characteristic of Bowen Basin, Australia coals [J]. International Joural of Coal Geology, 1999,40(4):309-325.
    [55] Laxminarayana C, Crosdale P J. Control on methane sorption capacitiy of indian coals[J]. AAPG Bulletin,2002,86(2):201-212.
    [56] Crosdale P J, Beamsh B B,Valiex M. Coalbed methane sorption related to coal compositional[J]. International Journal of Coal Geology,2002,48(3-4):245-251.
    [57] Li H, Ogawa Y, Shimada S mechanism of methane flow through sheared coals and its role on methane recovery [J]. Fuel, 2003,82(10):1271-1279.
    [58]鲜学福,杜云贵,辜敏.地球物理场中煤层气的富集与运移研究[R].西安渗流会议论文集.西安,2007,4:1-2.
    [59] Ruppel T C. Adsorption of methane on dry coal at elected pressure [J]. Fuel, 1974(53):152-162.
    [60]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学学报,2005,34(4):427-432.
    [61]陈大力.浅析煤系地层围岩体的瓦斯赋存特征[J].煤矿安全,2006,12:48-69.
    [62]赵冰翠,张荣曾.关于煤孔隙的最新研究[J].煤质技术与科学管理,1997,3:25-32.
    [63]陈萍,唐修义.低温液氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [64]赵志根,唐修义.低温液氮吸附法测试煤中微孔隙及其意义[J].煤炭地质与勘探,2001,29(5):28-30.
    [65]姚艳斌,刘大锰,黄文辉.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报. 2006,31(2):165-170.
    [66]张井,于冰,唐家祥.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质,1995,8(2):71-74.
    [67]许浩,张尚虎,冷雪.沁水盆地煤储层孔隙模型与物性分析[J].科学通报,2005,50(10):45-50.
    [68]吴俊.中国煤成烃的基本理论与实践[M].北京:煤炭工业出版社,1994,3.
    [69]姚艳斌,刘大锰.煤储层孔隙系统发育特征与煤层气可采性研究[J].煤炭科学技术,2006,3:64-68.
    [70]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,4,51-55.
    [71]张慧,李小彦,郝琦.中国煤的扫描电子显微镜研究[M].地质出版社,2003,7,62-77.
    [72]张慧,王晓刚.煤的显微构造及其储集性能[J]. 1998,26(12)33-35.
    [73]苏现波,陈江峰,孙俊民.煤层气地质学与勘探开发[M].科学出版社,北京:2001,2
    [74] Ammosov,I, Eremin I V. Fracturing in coal. Washington D. C IZDAT Publishi, Office Technical Service,1954.
    [75]热姆尼日科夫,ю. A金兹堡. AЙ. (陈钟惠,李濂清译),煤岩学原理[M].北京:科学出版社,1965.
    [76] Macrae, J C. , Lawson, W. The incidence of cleat and fracture in some Yorkshire Coal Seams. Transaction of the Leeds[J], Geological Association,1954,(6):224-227.
    [77] Van Krevelen, D. W. , Coal, Amsterdam[M]. Elservier Publishing C o, 1981.
    [78] Starch, E. Murkowski, M,T Teichmuller,M et al,. Starch’s Textbook of Coal Petrology,3rd[M. ]Gebruder Borntraeger, Berlin, Stuttgart, Germany,1982.
    [79] Ting, F. TC. Origin and spacing of cleats in coalbeds [J]. Journal of Pressure Vessel Technology,1977.
    [80] Mavor, M,J. Close, J,C. Western cretaceous coal seam project evaluation of the Hamilton 3 well operated by mesa operating limited partnership[M]. Gas Research Institute Topical Report No. GR190/0040, 1989.
    [81] Close, J,C. Natural fractures in bituminous coal gas reservoir[M]. Gas Research Institute Topical Report No. GR191/0337, 1991.
    [82] Law, B E. The relationship between coal rank and cleat spacing: Implication for the prediction of permeability in coal. In Proceedings of the 1993 international coalbed methane symposium, 1993, 435-442.
    [83] Gash, B, W. Volz, R F, Potter, G, et al. The effect off cleat orientation and confining pressure on cleat porosity, permeability and relative permeability in coal, in Proceedings of the 1993 International Coalbed Methane Symposium,1993. 247-256.
    [84] Tyler, R. , Lauch, S. E. Ambrose, W,A et al, Coal fracturing pattern in the foreland of the Cordilleran thrust belt , west United States. In: Proceedings of the 1993 International Coalbed Methane Syposium,1993,695-704.
    [85] Laubach, S, E,. Marrett, R ,A Olson, J, E. et al. Characteristic and Origins of coal cleat; A review, International Journal of Coal Geology, 1998(35):175-208.
    [86] Levine, J, R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoir. In: Gayer, R. harris. I. (eds). Coalbed Methane and Coal Geology. Geological Spercial Publication No,109,1996. 197-212.
    [87] Mcculloch, C,M. Deul, J, M. Jeran, P,W. Cleat in bitumimous coal bed. U. S, bur. Mines, Rept, Invest,7910,1974.
    [88] Connolly P , Cosgrove J. 1999, Predication of fracture-induced permeability and fluid flow in the crust using experimental stress data[J]. AAPG Bulletin,83(5):757-777.
    [89] Enever R E Hening A , The relationship between permeability and effective stress for Australian. International Coalbed Methane Symposium, Alabama,13-22.
    [90] Karacan T , Okandan E . Fracture (cleat) analysis of coals from Zongudak Basin (northwestern Turkey) relation to the potential of coalbed methane production. International Journal of Coal Geology,44(2):109-125.
    [91]李小彦.煤储层裂隙研究方法辨析[J].煤田地质与勘探,1998,26(9):14-16.
    [92]王生维,张明,庄小丽.煤储层裂隙形成机理及其研究意义[J].地球科学,1996,21(6):637-640.
    [93]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科学情报,1995,14(1):53-58.
    [94]刘洪林,王红岩,张建博.煤储层割理评价方法[J].天然气工业,2000,7:27-29.
    [95] Wilfrido Solano-Asosta, Maria Mastalerz, Arndt Schimmelmann. Cleats and their relation lineaments and coalbed methane potential in Pennsylvanian coals in Indiana. International Journal of Coal Geology, 2007,72(3-4),187-208.
    [96]秦勇,徐志伟,张井.高煤级孔径结构的自然分类及其应用[J].煤炭学报,1995,20(3):266-271.
    [97]傅雪海,秦勇,张万红等.煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(10):51-55.
    [98]傅雪海,秦勇,薛秀谦.分形理论在煤储层研究中的应用[J].煤,2000,9(4):1-3.
    [99]傅学海,秦勇,薛秀谦.煤储层煤储层孔、裂隙系统分形研究[J].中国矿业大学学报,2001,30(3):225-228.
    [100]李小彦,解光新.孔隙结构在煤层气运移过程中的作用[J].天然气地球科学,2004,15(4):341-344.
    [101]姚艳斌,刘大锰.煤储层孔隙系统发育特征与煤层气可采性研究[J].煤炭科学技术,2006,3:64-68.
    [102]钟玲文,郑玉柱,员争荣.煤在温度和压力影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
    [103]钟玲文.煤的吸附性能及影响因素[J].地球科学,2004,29(3):327-333.
    [104]赵志根,唐修义.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-30.
    [105]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理研究[D].重庆:重庆大学,1995.
    [106]鲜学福,辜敏.有关间接法预测煤层气含量的讨论[J].中国工程科学,2006,8(8):15-22.
    [107]钱凯,赵庆波,汪泽成.等著.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996:119-142.
    [108]胡涛,马正飞.吸附热预测吸附吸附等温线.南京工业大学学报,2002,24(2):34-38.
    [109]崔永君,李育辉,张群.煤吸附甲烷的特征曲线及其在煤层储集研究中的作用[J].科学通报,2005,50(增刊),76-81.
    [110]苏现波,林萌,林晓英.吸附势理论在煤层甲烷吸附中的应用[J].中国煤层气,2006,3(2):28-30.
    [111]徐龙君,鲜学福,刘成伦等.恒电场作用下煤吸附甲烷特征的研究[J].煤炭转化,1999,10:68-69.
    [112]徐龙君,突出区煤的超细结构,电性质、吸附特征及其应用的研究[D],重庆:重庆大学建筑工程学院,1996.
    [113]刘保县,鲜学福,徐龙君等.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报,23(5):78-81.
    [114]鲜学福,辜敏,杜云贵.变形场、煤化度和外加电场对煤层中甲烷渗流影响的研究[J].西安石油大学学报,2007.
    [115]辜敏,鲜学福,杜云贵.电场作用下煤吸附甲烷的势模型[J].西安石油大学学报,2007,22(2):160-162.
    [116]王宏图,杜云贵,鲜学福,罗平亚.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644-646.
    [117]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].中国矿业大学博士学位论文. 2003.
    [118]曹运兴.构造煤的动力变质作用及其灾害性[D].北京大学博士学位论文,1999.
    [119]程瑞端.煤层瓦斯用处规律及其深部开采预测的研究[D].重庆:重庆大学,1995.
    [120]王宏图,鲜学福,杜云贵等.煤矿深部开采煤层气含量计算的解析法[J]. 2002,31(4):367-369
    [121]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-10.
    [122]谭学术,袁静.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1985,106-112.
    [123]王红岩,刘洪林,赵庆波.煤层气富集成藏规律[M].北京:石油工业出版社,2005,3:42-43.
    [124]刘洪林,赵国良,门相勇.煤层气富集成藏类型初探[J].辽宁工程技术大学学报,2005,24(2):165-168.
    [125]袁政文.煤层气藏类型及富集高产因素[J].断块油气田,1997,4(2):9-12.
    [126]赵庆波,李五忠,孙粉锦.中国煤层气分布特征及高产富集因素[J].石油学报,1997,18(4):1-6.
    [127]方爱民,侯泉林,琚宜文.不同层次构造活动对煤层气成藏的控制作用[J].中国煤田地质,2005,17(4):15-20.
    [128]刘成林,汪则成,冉启贵等.煤层气藏保存条件评价[J].石油天然气勘探开发. 1998,3:1-5.
    [129]桑树勋,范炳恒,秦勇.煤层气的封存与富集条件[J].石油与天然气地质. 1999,20(2):104-109.
    [130]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社. 1998,104-105.
    [131]叶建平,秦勇,林大杨.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [132]赵靖舟,时保宏.中国煤层气富集单元序列划分初探[J].天然气工业,2005,1:22-25.
    [133]赵靖舟,时保宏.沁水盆地煤层气富集单元划分[J].科学通报,2005,10,126130.
    [134]赵庆波,李五忠,王一兵等.中国煤层气勘探[J].高瑞琪,赵政璋编,中国油气田新区勘探.北京:石油工业出版社,2001.
    [135]张建博,王红岩,赵庆波.中国煤层气地质[M].北京:地质出版社,2000,111-114.
    [136]张建博,王红岩,邢厚松.煤层气高产富集主控因素及预测方法[J].油气井测试,2000,9(4):62-65.
    [137]郑重,王晓刚.韩城矿区煤层气富集区带划分研究[J].西安矿业学院学报,1997,17(4):341-344.
    [138]冯富成,毛耀保,王永等.沁水盆地煤层气高渗富集区遥感研究[J].中国煤田地质,2002,14(2):24~26.
    [139]胡朝元,彭苏萍,赵士华.煤层气储层参数多信息综合定量预测方法[J]。煤田地质与勘探,2005,33(1):28-29.
    [140]高波,马玉贞,陶明信等.煤层气富集高产的主控因素[J].沉积学报,2006,21(2):345-348.
    [141]彭金宁,傅雪海.铁法矿区煤储层裂隙系统评价与渗透率预测研究[J].中国煤田地质,2005,17(5):40~43.
    [142]李小彦,李静,杨利军等.铁法煤田煤储层渗透性预测[J].煤田地质与勘探,1998,26(2):34~36.
    [143]傅雪海,秦勇,李贵中.储层渗透率研究的新进展[J].辽宁工程技术大学学报,2001,20(6):739~742.
    [144]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报,2001,20(3):161~165.
    [145]孙培德,鲜学福.煤层气越流的固气耦合理论及应用[J].煤炭学报,1999,24(1):60~64.
    [146]员争荣.构造应力场对煤储层渗透性的控制机制研究[J].煤田地质与勘探,2004,4:44~46.
    [147]张泓,王绳祖,郑玉柱等.古构造应力场与低渗煤储层的相对高渗区预测[J].煤炭学报,2004,29(6):708~711.
    [148]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:124~128.
    [149]冯富成,毛耀保,王永等.沁水盆地煤层气高渗富集区遥感研究[J].中国煤田地质,2002,14(2):24~26.
    [150]董敏涛,张新民,郑玉柱等.煤层渗透率统计预测方法[J].煤田地质与勘探,2005,33(6):28~30.
    [151]晋香兰,张泓.基于多元回归分析的煤储层高渗透区预测[J].煤田地质与勘探,2006,34(2):22~25.
    [152]关德师.煤层甲烷资源评价[J].天然气勘探与开发,1994,3:27-30.
    [153]张培河,张群,王宝玉等.煤层气可采性综合评价方法研究[J].煤田地质与勘探,200634(1):21-25.
    [154]王生维,段连秀,陈钟惠等.煤层气勘探开发中的煤储层评价[J].天然气工业,2004,5:82-84.
    [155]杨永国,王贵梁,秦勇等.煤层气项目经济评价方法及应用研究[J].中国矿业大学学报,2001,30(2):126-129.
    [156]朱志敏,沈冰,刘飞燕.辽宁阜新盆地煤层气地质条件模糊综合评判[J].中国地质灾害与防治学报,2006,17(3):77-79.
    [157]王起新.阜新盆地煤层气储运规律及资源预测研究[D].辽宁:辽宁工程技术大学,2005,79.
    [158]吴欣松,韩德馨,张金强.华北地区煤层气聚集带评价与优选[J].天然气工业,2004,4:4-6.
    [159]姚艳斌,刘大锰,胡宝林.地理信息系统在煤层气资源综合评价中的应用[J].煤炭科学技术,2005,12:1-4.
    [160]霍凯中,赵永军,孙立东.灰色聚类分析在煤层气选区评价中的应用[J].断块油气田,2007,14(2):14-17.
    [161]李侠,魏永佩.用Fisher模型法评价山西煤层气资源[J].中国煤田地质,1999,11(1):33-35.
    [162]王红岩,刘洪林,李贵中.煤层气储量计算方法及应用[J].天然气工业,2004,7:26-28
    [163] King G R et al. Methods of calculating coalbed methane reserves with insight into the advantages and disadvantages of each method. Paper Present at the 1987 Coalbed Methane Symposium, Tuscaloosa, Nov. 16-19.
    [164]李明宅,胡爱梅,孙晗森.煤层气储量计算方法[J].天然气工业,2002,10:32-34.
    [165] Henry M E, Finn T M. Evalutation of undiscovered natural gas in the Upper Cretaceous Ferron Coal/Wasatch Plateau Total Petroleum System[J]. Wasatch Plateau and Castle Valley ,Utah international Jounal of Coal Geology,2003:56-337.
    [166] Cook T. Calculation of estimnated ultimate recovery for wells in continiuous-type oil and gas accumulation of the ulta piceance province International Journal of Coal Geology 2003,56:39-44.
    [167]陈玉华,杨永国,秦勇.蒙特卡洛法在煤层气资源量计算中的应用[J].煤田地质与勘探,2006,34(6):30-34.
    [168] Kissell, F N. McCulloch, C M. ,Elder, C H. The direct method of determining methane cotent of coals for Ventilation design[J]. U. S. Bureau of Mine Report of Investigation, R177767,1975.
    [169] Diamond, W, P. Levine, J R. Direct method determination of gas content of coal[J]. Procedures and Result, U,S Bureau of Mine Report of Investigation, R8515,1981.
    [170]中华人民共和国煤炭工业部标准.煤层气测定方法(解吸法)MT/T77-94.
    [171]王兆丰.空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].中国矿业大学博士学位论文,2001.
    [172] Smith, D ,M. , Wlillianms, F, L. , A new technique for determining the methane content fo coal[C]. Proceedings fo the Inersociety Energy Concersion Engineering Conference,1981,1267-1272.
    [173] Ulery, J, P. , Hyman, D M. The direct method of gas content determination[J] ,Application and Result, Proceeding fo the 1991 Coalbed Methane Symposium. University of Alabma/ Tuscaloosa,1991,489-497.
    [174] Yee D,seidle, J, P. Hanson, W. B. Gas sorption on coal ans measurement of gas content. Hydrocarbons from coal. American Association of Petroleum Geologitists. Tusa, Okalahoma,1993,208-213.
    [175] Airey, L,E. Yee D. , Mogan, W D, Jeasonnne, M, W. Modelling coalbed methane production with binary gas sorption, SPE Paper 24363,presented at the SPE Rocky Mountain Regional Meeting, Casper, Wyomiong,1992.
    [176]中华人民共和国国家标准.煤的高压等温吸附试验方法容量法GB/t19560-2004.
    [177] Kim, A G. Estimating methane content of bituminous coalbeds from adsoption data[R] , Bureau of Mines Report of Investigation, R18245,1997.
    [178] Purir, Elvanoff J C, Brugler M L. Measurement of coal cleat porosity an reative permeability characteristics[A]. SPE Pro Gas Thecnol Symp[C]. Houston: soc of petroleum Engineers of AIME,1991:93-104.
    [179] Nelson C R. Effect of geologic variables on cleat porosity trends in coalbed gas reservoirs[A]. SPE. Proceedings.
    [180]程瑞端,陈海焱,鲜学福等.温度对煤样渗透系数影响的实验研究[J].矿业安全与环保,1998,1:13–16.
    [181]张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工业大学学报,1995,24(4):65–68.
    [182]杨胜来,崔飞飞,杨思松等.煤层气渗流特征实验研究[J].中国煤层气,2005,2(1):36–39.
    [183]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65
    [184]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和试验研究[J].岩石力学与工程学报,2005,24(12):2009–2012.
    [185]刘均荣,秦积舜,吴晓东.温度对岩石渗透率影响的实验研究[J].石油大学学报,2001,25(4):51-53.
    [186]贺玉龙,杨立中.温度和有效应力对砂岩渗透率的影响机理研究[J].岩石力学与工程学报,2005,24(12):2420–2427.
    [187]陈波,李宁,祥瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J].岩石力学与工程学报,2001,20(4):467-472.
    [188]郝振良,热应力作用下的有效应力对多孔介质渗透系数的影响[J].水动力学研究与进展,2003,18(6):792-796.
    [189]寿建峰,张惠良,斯春松.砂岩动力成岩作用[M].北京:石油工业出版社,2005,4:35-40.
    [190]孔祥言.高等渗流力学[M].科学技术出版社,2002.
    [191]李晶莹,陶明信.国际煤层气组成和成因研究[J].地球科学进展,1998,13(5):467-472.
    [192] Taloy G H, Teichmuller M, Davis A, et al. Organic Petrology[M]. Berlin : Gebuder Borntraeger,1998,10-205.
    [193] Cao Y X, Davis A. Liu R X et al. The influce of tectonic deformation on some geochemical properties of coals–a possible indication of outburst potential.
    [194] Hower J C. Observations on the role of Bernice coal field anthracites in the development of coalification thories in the Appalachians [J]. Coal Geol, 1997, 33:95-102.
    [195] Sajgo C S, Mcevoy J, Wolf G A ,et al. Influncen of temperature and pressure on maturation process I, premininary report[R]. Org Geochem,1986,19:141-159
    [196]曹代勇,李小明,张守仁.构造应力对煤化作用的影响[J].中国科学D辑,2006,36(1):59-68.
    [197]张代钧.煤结构及其与煤孔隙性、弹性、强度和吸附特性关系的研究[D].重庆:重庆大学,1990.
    [198]琚宜文,姜波,侯泉林.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005,50(17):1884-1892.
    [199]蔡文.物元分析[M].广东:广东高等教育出版社,1987.
    [200]肖芳淳.模糊物元分析及其应用研究[J].强度与环境,1995,2:51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700