用户名: 密码: 验证码:
生物质流态化燃烧过程理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质循环流化床燃烧技术作为一种新兴的生物质直燃发电技术,在我国已经到了工业推广阶段。本文介绍了国内秸秆直燃发电主要技术路线、发展状况、存在的问题以及产业发展前景。本文针对流态化生物质燃烧技术发展,对生物质流态化燃烧过程中燃料颗粒收缩和破碎特性,生物质与床料的混合分离特性,炉内传热特性,反应动力学特性以及流动过程中颗粒在受热面上的沉积问题进行了理论和实验研究,为生物质流态化燃烧的工业应用提供了技术指导。
     搭建了小型生物质半焦破碎特性研究实验台,针对流化床内生物质燃料颗粒燃烧过程中收缩、变形和破碎特性,采用热态燃烧淬熄取样的方法,对于典型生物质流态化燃烧状况下的半焦颗粒粒径的分布进行研究,摸索适用于生物质半焦炉内破碎的方程表达形式,建立恰当的破碎数学模型,通过实验手段获得生物质半焦燃烧过程中破碎模型关键系数。
     搭建循环流化床冷态颗粒混合原理实验装置,采用自主研发设计的小室取样技术,从生物质燃料燃烧过程热量释放角度,抽提出生物质燃料种类和床料粒径组合两方面主要影响因素,对于不同工况组合下的燃料和床料混合分离特性进行研究,考察工况变化对于其混合分离特性的影响,从而可以定量理解和掌握这些参数对流态化条件下的燃料沿炉膛高度和沿炉膛截面分布的影响规律,并探索生物质燃料颗粒相、床料相和气相三相之间的相互作用。重点研究了生物质燃料品种、炉内位置等因素的影响。
     利用现有0.5MW生物质循环流化床燃烧装置,在对冷态多相流动的认识基础上,针对不同特性的生物质燃料,研究不同工况因素对炉内流态化燃烧过程稀相区传热系数的影响,主要关注床层温度,燃料种类,一二次风配比和过量空气系数等,在实验数据的基础上,通过对现有稀相区传热系数计算理论的验证,探索得出合理的修正系数,从而指导生物质循环流化床锅炉的工业设计。
     借助于热重试验分析,掌握典型生物质的挥发分析出温度、着火温度和焦炭燃尽的难易程度等燃烧特性,建立生物质燃烧动力学方程,得到反应活化能等动力学参数,从而为生物质在循环流化床中燃烧特性的数值模拟提供基础数据。
     在上述实验研究和关键参数获取的基础上,建立生物质流化床锅炉整体数学模型,模拟生物质颗粒在循环流化床中的燃烧情况,预测生物质循环流化床锅炉炉膛温度分布、气相浓度分布、污染物排放等参数,从理论上指导生物质流态化燃烧技术的工程实践应用。
     最后,针对农林业生物质流态化燃烧过程中的碱金属问题,以采用循环流化床技术的生物质直接燃烧发电工程项目为平台,对长期运行后炉内水冷壁、过热器、烟道表面沉积块进行取样分析,剖析其形成过程,重点研究生物质流化床内多相流动对其形成过程造成的影响。
As a brand-new biomass direct combustion technology, biomass circulating fluidized bed combustion technology has come to the popularization and extension stage. This article introduces the mainstream technologies of biomass combustion in China. Here, the present situations, existing problems and development prospects of these technologies, as well as the efficient solution and probable improvement methods are discussed. Therefore, this article is providing the technical advice by making through research in the fields of:1) shrinkage and fragmentationcharacter,2) mixing and separating character of biomass and bed material,3) thermal conduct character,4) reaction dynamic character and5) deposition problem.
     Aiming at collecting the information of the shrinkage, deformation and fragmentation of biomass particles during the combustion process, a small sized biomass semi-char fragmentation research system is built. Utilizing this test system and "fire immediately extinguish method", the size distribution of semi-char particles are studyed and analyzed, and the law of biomass char fragmentation is expressed into a combination of equations. Finally, a mathematical model is set up with the data from our experiments, which is tally with the actual situation and meets the practice.
     Initial stage of this project, the cold phase modeling theory is adopted and the test rig is built in which the "small-room sampling method" is developed by our own research group. Two main aspects influencing the biomass heat release are extracted during combustion:1)kinds of biomass and2)size distribution of bed material. By arranging these two facts, several different combinations are obtained. Under different combinations, the way of separation characteristics between the fuel and bed materials is discussed. The influence of different combination on mixing and separating character is explored. By a series of experiments, the law of these parameters influence on the distribution of fuel either along the height or along the section direction of the furnace is investigated, and the rules of interaction among particle phase, bed material phase and gas phase of biomass are explored. Our particular interests are on the influence of multiple factors to the admixture, such as the variety of biomass and distribution inside the furnace.
     On the second stage, a0.5MW biomass CFB facility is involved. With the understanding of cold multiphase flow, the influence of different combination factors to thermal conduct coefficiency in dilute region is analyzed. The study focuses mainly on the bed temperature, fuel diversity, the ratio of primary and secondary air and exceed air ratio. Based on scientific experiments, the existing theoretical calculation method of thermal conduct coefficiency in dilute region is verified, come up with rational correction coefficient, which help instructing the industrial design of biomass CFB boiler.
     With the aid of thermal gravity analysis, the temperature of devolatization, ignition temperature and the difficulty of char burn out of typical biomass fuels are analyzed. Armed with these data, the dynamic parameters (such as activation energy) is obtained, the kinetic equations of biomass combustion are built, preparing for the establishment of a mathematical model for biomass combustion in a CFB boiler.
     On the basis of the previous research and data, and taking the mathematic model of coal CFB boiler as a reference, a mathematical model for biomass CFB is built up. Under ideal conditions, it provides the computer simulation of combustion of biomass in CFB. Therefore, it is able to predict the parameters of temperature distribution of furnace, the gas phase density and pollutants discharge. Just as expected in the beginning of this project, this model may theoretically guide the practical application of biomass fluidized combustion technology.
     Last but not least, the study focuses on one of the practical problems of real biomass direct combustion for power project on agricultural and forest residues-the deposition problem. The deposition significantly reduces the efficiency of thermal conduction and as a result, has been cost a loss to the electricity generating efficiency. The data in the field work is collected and analyzed. The forming process of deposition investigated. Our main interest is the influence of multiphase flow in biomass CFB on deposition formation.
引文
[1]IEA, Technology Roadmap:Bioenergy for Heat and Power, OECD/IEA, Paris,2012.
    [2]马志刚,吴树志,白云峰.生物质能利用技术现状及进展[J].能源工程,2008,5:21-27.
    [3]骆仲泱,周劲松.中国生物质能利用技术评价[J].中国能源,2004,9:39-42.
    [4]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2:78-82.
    [5]王风雷.生物质能发电发展状况及炉前备料系统[J].起重运输机械,2007,5:4-7.
    [6]颜涌捷,许庆利.生物质能:清洁理想的可再生资源[N].中国建设报,北京:2009-02-09(二版).
    [7]秦建光.秸秆类生物质流态化燃烧特性研究[D].杭州:浙江大学,2009.
    [8]国能生物发电有限公司http://baike.baidu.com/view/1888690.htm.
    [9]秦建光,余春江,王勤辉,等.流化床秸秆燃烧技术与开发[J].水利电力机械,2006,12: 70-75.
    [10]范鲁,克佩耶.生物质燃烧与混合燃烧技术手册[N].第一版.田宜水,姚向君译.北京:化学工业出版社,2008.
    [11]马文超,陈冠益,颜蓓蓓,等.生物质燃烧技术综述[J].生物质化学工程,2007,1:4348.
    [12]马隆龙,吴创之,孙立.生物质气化技术及其应用[N].北京:化学工业出版社,2003.
    [13]马洪儒,崔亚量.生物质气化发电技术相关问题的研究[J].农机化研究,2007,6:190-192.
    [14]阴秀丽,周肇秋,马隆龙,吴创之.生物质气化发电技术现状分析[J].现代电力,2007,24(5):48-52.
    [15]王建楠,胡志超,彭宝良,等.我国生物质气化技术概况与发展[J].农机化研究,2010,1:198-201.
    [16]周应华.我国发展生物质能的思路与政策[J].中国热带农业,2006,5:7-8.
    [17]Brown H P, Panshin A J, Forsaith C C. Text book of wood technology, vol. Ⅱ[M]. New York:McGraw-Hill Book Company, Inc.; 1952.p.36-41.
    [18]Kumara R R, Kolara A K, Leckner B. Shrinkage characteristics of Casuarina wood during devolatilization in a fluidized bed combustor[J]. Biomass and Bioenergy,2006, 30(2):153-165.
    [19]Hastaoglu M A, Berruti F. A gas-solid reaction model for flash wood pyrolysis[J]. Fuel,1989,68:1408-1415.
    [20]Byrne C E, Nagle D C. Carbonized wood monoliths-characterization[J]. Carbon 1997,35(2):267-273.
    [21]Byrne C E, Nagle D C. Carbonization of wood for advanced materials applications[J]. Carbon 199735(2):259-266.
    [22]White R H. Charring rate of composite timber products[J]. The Proceedings of Wood and Fire Safety,2000(Part 1):353-63.
    [23]Larfeldt J. Drying and pyrolysis of logs of wood[D]. Department of Energy Conversion, Chalmers University of Techno logy, Goteborg, Sweden,2000.
    [24]Davidsson K O, Pettersson J B C. Birch wood particle shrinkage during rapid pyrolysis [J]. Fuel.2002,81:263-270.
    [25]Alves S S, Figueiredo J L. A model for pyrolysis of wet wood[J]. Chemical Engineering Science,1989,44(12):2861-2869.
    [26]Di Blasi C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation[J]. Chemical Engineering Science,1996,41:1121-1132.
    [27]Bellais M, Davidsson K O, Liliedahl T, Sjostrom K, Pettersson JBC. Pyrolysis of large wood particles:a study of shrinkage importance in simulations [J]. Fuel,2003, 82:1541-1548.
    [28]Bryden K M, Ragland K W, Rutland CJ. Modeling thermally thick pyrolysis of wood. Biomass and Bioenergy[J],2002,22:41-53.
    [29]Tran H C, White R H. Burning rate of solid wood measured in a heat release rate calorimeter[J]. Fire and Materials,1992,16:197-206.
    [30]Larfeldt J, Leckner B, Melaaen M C. Modelling and measurements of the pyrolysis of large wood particles[J]. Fuel,2000,79:1637-1643.
    [31]Hagge M J, Bryden K M. Modeling the impact of shrinkage on the pyrolysis of dry biomass[J]. Chemical Engineering Science,2002,57:2811-2823.
    [32]Bryden K M, Hagge M J. Modeling the combined impact of moistureand char shrinkage on the pyrolysisof a biomass particle[J]. Fuel,2003,82:1633-1644.
    [33]Scala F, Chirone R. Fluidized bed combustion of alternative solid fuels[J]. Experimental Thermal and Fluid Science,2004,28:691-699.
    [34]Scala F, Chirone R, Salatino P. Combustion and attrition of biomass chars in a fluidized bed[J]. Energy & Fuels,2006,20:91-102.
    [35]Sudhakar D R, Srinivas Reddy K, Kolar Ajit Kumar, Leckner Bo. Fragmentation of wood char in a laboratory scale fluidized bed combustor[J]. Fuel Processing Technology, 2008,89:1121-1134.
    [36]Scala F, Salatino P, Chirone R. Fluidized bed combustion of a biomass char (Robinia pseudoacacia) [J]. Energy & Fuels,2000,14:781-790.
    [37]Johnstone RW, Thring M W. Pilot Plants, Models and Scale-up Methods in Chemical Engineering[M]. New York:McGraw-Hill,1957.
    [38]Horio M, Nonaka A, Sawa Y, Muchi Ⅰ. A new similarity rule for fuidised bed scale-up[J]. Aiche Journal.1986,32:1466-1482.
    [39]Glicksman L R. Scaling relationships for fluidized beds[J]. Chemical Engenieering Science. 1982,39(9):1373-1379.
    [40]岑可法,樊建人燃烧流体力学[M].北京:水利电力出版社,1991
    [41]Rhodes M J, Laussman P. A study of the pressure balance around the loop of a circulating fluidized bed[J]. Canadian Journal of Chemical Engineering.1992,70:625-630.
    [42]Kim SW, Kirbas G, Bi HT, Lim CJ, Grace JR. Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser. Powder Technology.2004; 142:48-58.
    [43]李双江.流态化生物质燃烧冷热态实验研究[硕士学位论文],杭州,浙江大学,2008.
    [44]李社锋,低挥发分劣质燃料循环流化床燃烧特性研究[D],浙江大学,2010.
    [45]Osvalda S. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology [J].2007,88(1):87-97.
    [46]Gil M V, Casal D, Pevida C, PisF. Rubiera J J. Thermal behaviour and kinetics of coal/biomass blends during co-combustion[J]. Bioresource Technology,2010,101 (14): 5601-5608.
    [47]Sait H H, Hussain A, Salema A A, Ani F N. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis[J]. Bioresource Technology.2012,118:382-389.
    [48]Kok M V, Ozgur E. Thermal analysis and kinetics of biomass samples [J]. Fuel Processing Technology,2013,106:739-743.
    [49]赖艳华,吕明新,马春元,施明恒.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [50]崔亚兵,陈晓平,顾利锋.常压及加压条件下生物质热解特性的热重研究[J].锅炉技术,2004,35(4):12-15.
    [51]马孝琴.生物质燃烧动力学特性实验研究[J].可再生能源,2004,6:18-22.
    [52]陈东雨.秸秆类生物质热解反应动力学的研究[D].沈阳农业大学.2006.
    [53]孙志翱.棉秆流化床燃烧试验研究及其数值模拟[D].东南大学.2008.
    [54]梁爱云,惠世恩.徐通模,赵钦新,周屈兰,谭厚章,孙鹏.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,26(4):56-61.
    [55]景振涛,梁喆,王钦,陈方.徐乔,余万,胡益李培生.两种秸秆类生物质燃烧反应动力学研究[J].水电与新能源,2010,3:69-71.
    [56]吕薇,李彦栋,柳建华,邵海江.生物质秸秆燃烧动力学特性分析[J].哈尔滨理工大学学报,2010,15(5):129-131.
    [57]张红霞,杨石.生物质秸秆与煤混合的反应动力学研究[J].电站系统工程,2010,26(1):13-1421.
    [58]Vuthaluru H B. Thermal behaviour of coal/biomass blends during CO-pyrolysis[J]. Fuel Processing Technology,2003,85:141-155.
    [59]Vuthaluru H B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis [J]. Bioresource Technology,2004,92:187-195.
    [60]文丽华等.生物质的多组分热烈解动力学模型.浙江大学学报,2005,2:247-252.
    [61]宋春财等.生物质秸秆熟重分析及几种动力学模型秸秆比较.燃料化学学报,2003,31(4):311-315.
    [62]李社锋,方梦祥,舒立福,等.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006,12(6):535-539.
    [63]顾利峰,陈晓平,赵长隧,等.城市污泥和煤混燃特性的热重分析方法研究[J].热能动力工程,2003,18(6):561-563.
    [64]Liang X H, Kozinski J A Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems[J]. Fuel,2000,79:1477-1486.
    [65]Kastanaki E, Vamvuka D, Grammelis P, et al. Thermogravimetric studies ofthe behavior of lignite-biomass blends during devolatilization[J]. Fuel Processing Technology,2002, 77:159-166.
    [66]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [67]Basu P, Nag P K. An investigation into heat transfer in circulating fluidized bed[J]. International Journal of Heat and Mass Transfer,1987,30:2399-2409.
    [68]Subbarao D, Basu P. A model for heat transfer in circulating fluidized beds[J]. International Journal of Heat and Mass Transfer,1986,29:487-489.
    [69]Glicksman L. Circulating ftuidized bed heat transfer[C]. In:Basu P, Large JF, editors. Circulating Fluidized Bed Technology Ⅱ; Oxford:Pergamon Press; 1988.13-29.
    [70]Basu P. Heat transfer in high temperature fast fluidized beds[J]. Chemical Engineering Science,1990,45(10):3123-3136.
    [71]程乐鸣.循环流化床与压力循环流化床传热研究[D].杭州:浙江大学;1996.
    [72]刘德昌.流化床燃烧技术的工业应用[M].北京:中国电力出版社,1999.1.
    [73]工业锅炉设计计算标准方法编委会.工业锅炉设计计算标准方法[M].北京:中国标准出版社,2003.
    [74]Leckner B, Andersson B. Characteristic features ofheat transfer in circulating fluidized bed boilers[J]. Powder Technology,1992,70(3):303-314.
    [75]王勤辉.循环流化床锅炉总体数学模型及性能试验[D].杭州:浙江大学,1997.
    [76]Qinhui W, Zhongyang L, MingjiangN, et al. Particle population balance model for a circulating fluidized bed boiler [J]. Chemical Engineering Journal,2003,93:121-133.
    [77]Scala F, Salatino P, Modelling Fuidized bed combustion of high-volatile solid fuels[J], Chemical Engineering Science 2002,57:1175-1196.
    [78]Okasha F. Modeling combustion of straw-bitumen pellets in a fluidized bed[J], Fuel Processing Technology,2007,88:281-293.
    [79]Hannes J., Renz U., Bleek C.M. The IEAmodel for circulating fluidized bed Combustion[C]. Proceedings of the 13th International Conference on FBC, Florida, USA, 1995:281-296.
    [80]Zhang W, Johnsson F, Leckner B. Fluid-Dynamic Boundary Layers in CFB Boilers[J]. Chemical Engineering Science,1995,50:201-210.
    [81]Werther J. Fluid dynamics, Temperature and concentration fields in large-scale CFB combustions[C]. Proceedings of Circulating Fluidized Bed Technology VIII. Hangzhou,China,2005:1-25.
    [82]Ross I B, Davidson J F. Combustion of carbon particles in a fluidized bed [J]. Transaction of Chemical Engineering,1982,60:108-114.
    [83]Basu P. Combustion of coal in circulating fluidized-bed boilers:a review [J]. Chemical Engineering Science,1999,54:5547-5557.
    [84]聂虎.生物质燃烧污染物排放特性研究[硕士学位论文],杭州,浙江大学,2010
    [85]Miller J A, Bowman C T, Mechanism and modeling of nitrogen chemistry in combustion [J]. Prog. Energy Combustion Sci.1989.15:287-338.
    [86]Johnsson J. E. Modelling of N2O reduction in a circulating fluidized bed boiler[C]. Proceedings of Circulating Fluidized Bed Technology V, Ontario. Canada,1996:338-343.
    [87]Kallio S., Kilpinen, P., Hupa M. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors:parametric study of Hydro dynamics[C]. Proceedings of Circulating Fluidized Bed Technology Ⅵ, Wuerzburg, Germany,1999:659-664.
    [88]曾东,郑守忠.流化床煤燃烧中氧化亚氮生成机理研究[J].热力发电,2001,1:16-19.
    [89]Hao L, Bernard M G. Modelling of NO and N2O emissions from biomass circulating fluidized bed boiler[C]. Proceedings of Circulating Fluidized Bed Technology Ⅶ, Ontario, Canada,2002:730-738.
    [90]Johnsson J E, Jensen A. Nielsen J S. Kinetics of heteterogeneous NO and N2O reduction at FBC conditions[C]. Proceedings of 15th International Conference on Fluidized Bed Combustion, Georgia, USA,1999:FBC99-0099.
    [91]Zbogar A, Frandsen F, Jensen P A. Shedding of ash deposits[J]. Progress in Energy and Combustion Science,2009,35:31-56.
    [92]Nielsen H P, Baxter L L, Sclippab G, et al.. Deposition of potassium salts on heat transfer surfaces in straw-fired boilers:a pilot-scale study. Fuel,2000,79:131-139.
    [93]Srikanth S, Das S K, Ravikumar B, et al.. Nature of fireside deposits in a bagasse and groundnut shell fired 20 MW thermal boiler[J]. Biomass and Bioenergy,2004.
    [94]Kaufmann H, Nussbaumer Th, Baxter L, et al.. Deposit formation on a single cylinder during combustion of herbaceous biomass[J]. Fuel,2000,79:141-151.
    [95]N. Mendes L J, Bazzo E. Characterization and growth modeling of ash deposits in coal fired boilers[J]. Powder Technology,2012,217:61-68.
    [96]Kassman H, Brostrom M, Berg M. Measures to reduce chlorine in deposits:Application in a large-scale circulating fluidised bed boiler firing biomass[J]. Fuel 2011,90:1325-1334.
    [97]Johansson L S, Leckner B, Tullin C, et al.. Properties of particles in the fly ash of a biofuel-fired circulating fluidized bed (CFB) boiler [J]. Energy Fuels,2008,22 (5): 3005-3015.
    [98]Jensen P A, Stenholm M, Hald P. Deposition investigation in straw-fired boilers[J]. Energy Fuels,1997,11(5):1048-1055.
    [99]Davidsson K O, Steenari B M, Eskilsson D.. Kaolin addition during biomass combustion in a 35 MW circulating fluidized-bed boiler[J]. Energy Fuels,2007,21 (4):1959-1966.
    [100]Davidsson K O., Amand L E, Steenari B M, et al.. Countermeasures against alkali-related problems during combustion of biomass in a circulating fluidized bed boiler[J]. Chem. Eng. Sci.2008.63 (21):5314-5329.
    [101]Xiong S J, Burvall J, Orberg, H, et al.. Slagging characteristics during combustion of corn stovers with and without kaolin and calcite[J]. Energy Fuels,2008,22 (5):3465-3470.
    [102]Aho M, Ferrer E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass[J]. Fuel,2005,84 (2-3): 201-212.
    [103]Turn S Q, Kinoshita C M, Ishimura D M. Removal of inorganic constituents of biomass feedstocks by mechanical dewatering and leaching[J]. Biomass Bioenergy,1997,12(4): 241-252.
    [104]Khan A A, Aho M, de Jong W, Vainikka P, Jansens P J, Spliethoff H. Scale-up study on combustibility and emission formation with two biomass fuels (B quality wood and pepper plant residue) under BFB conditions [J]. Biomass Bioenergy,2008,32 (12): 1311-1321.
    [105]Pettersson A, Zevenhoven M, Steenari B M, Amand L E. Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes[J]. Fuel,2008,87 (15-16):3183-3193.
    [106]Niu Y Q, Tan H Z, Wang X B, Liu Z N, Liu Y, Xu T M. Study on deposits on the surface, upstream, and downstream of bag filters in a 12 MW biomass-fired boiler[J]. Energy Fuels,2010,24 (3):2127-2132.
    [107]Zhou H, Jensen P A, Frandsen F J. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler[J]. Fuel,2007,86:1519-1533.
    [108]Miles T. R., Baxter L. L.. Boiler Deposits from firing biomass fuels[J]. Biomass and Bioenergy,1996,10(2-3):125-138.
    [109]Bashir M S. Jensen P A, Frandsen F. Ash transformation and deposit build-up during biomass suspension and grate firing:Full-scale experimental studies [J]. Fuel Processing Technology,2012,97:93-106.
    [110]Koukouzas N, Ketikidis C, Itskosa G. Heavy metal characterization of CFB-derived coal fly ash[J], Fuel Processing Technology,2011,92:441-446.
    [111]Hansen L A, Nielsen H P, Frandsen F J, et al., Influence of deposit formation on corrosion at a straw-fired boiler[J], Fuel Processing Technology,2000,64:189-209.
    [112]Niu Y. Tan H. Lin Ma L. Pourkashanian M, Liu Z. Liu Y, Wang X, Liu H, and Xu Y. Slagging Characteristics on the Superheaters of a 12 MW Biomass-Fired Boiler[J], Energy Fuels,2010,24 (9):5222-5227.
    [113]Itskos G, Itskos S. Koukouzas Itskos N. Size fraction characterization of highly calcareous fly ash[J]. Fuel Process. Technol.2010,91 (11):1558-1563.
    [114]Nielsen H P. Deposit formation and corrosion at biomass fired boilers [D]. Department of Chemical Engineering, Technical University of Denmark,1998.
    [115]Yang X Y, Yu D G, Wang J H. Research on hydration mechanism of calcium sulfate anhydrite activated by potassium sulfate [J]. J. Shenyang Jianzhu Univ.2008,24 (1):104-107.
    [116]Kloprogge J T, Ding Z, Martens W N, Schuiling R D, Duong L V, Frost R L. Thermal decomposition of syngenite, K2Ca(SO4)2H2O. Thermochim. Acta 2004,417:143-155.
    [117]Christensen K A, Stenholm M, Livbjerg H. The formation of submicron aerosol particles, HCl and SO2 in straw-fired boilers[J]. J. Aerosol Sci.1998,29 (4):421-444.
    [118]van Lith S C, Alonso-Ramirez V, Jensen P A, Frandsen F J. G larborg P. Release of inorganic elements during wood combustion. Part 1:Development and evaluation of quantification methods[J]. Energy Fuels,2006,20:964-978.
    [119]van Lith S C, Jensen P A, Frandsen F J, Glarborg P. Release to the gas phase of inorganic elements during wood combustion. Part 2:Influence of fuel composition[J]. Energy Fuels,2008,22:1598-1609.
    [120]Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels,2004,18: 1385-1399.
    [121]Barroso J, Ballester J, Ferrer L M, Jime nez S. Study of coal ash deposition in an entrained flow reactor:Influence of coal type, blend composition and operating conditions[J]. Fuel Process. Technol.2006,87 (8):737-752.
    [122]Akiyama K, Pak H, Tada T. Ueki Y, Yoshiie R, Naruse I. Ash deposition behavior of upgraded brown coal and bituminous coal[J]. Energy Fuels,2010,24:4138-4143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700