用户名: 密码: 验证码:
DCE-01菌株果胶酶基因克隆与表达及其多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果胶酶是降解果胶类物质所需多种酶的总称。果胶酶的用途十分广泛,例如,用于饲料行业消除抗营养因子的添加剂,用于食品行业中果汁的提取和澄清处理,用于纺织业中麻类生物脱胶和棉纤维生物精炼以及用于造纸行业中的生物制浆。作为各行各业清洁生产的工具酶,碱性果胶裂解酶近年来受到越来越多的关注。
     本研究以基因组测序注释拥有14个果胶酶基因的麻类脱胶高效菌株DCE-01为基础,采用分子生物学、生物化学、酶学、结构生物学、生物信息学等方法,从基因水平和蛋白质酶学两个层面,开展果胶酶基因克隆及其表达产物的催化功能、酶学性质、分子结构等研究,获得如下结果:
     1.根据全基因组测序注释结果设计引物,从DCE-01菌株中成功克隆到14个果胶酶基因,包括11个果胶解聚酶基因、2个果胶酯酶基因和1个果胶脱乙酰基酶基因。其核苷酸序列与其他微生物来源的果胶酶基因核苷酸序列的一致性在71%-100%之间,其中,一致性高于95%的基因序列占1.8%,低于85%的基因序列占58.5%。DCE-01菌株所有14个果胶酶基因核酸序列之间的一致性在36.3%-84.2%之间;同样属于果胶解聚酶基因的核酸序列一致性同样在36.1%-84.2%之间,两个果胶酯酶的核酸序列一致性仅为42.8%。
     2.以果胶酶基因核苷酸序列为基础,生物信息学分析结果表明:DCE-01菌株14个果胶酶氨基酸序列与其他微生物的果胶酶氨基酸序列一致性在21%-100%之间,其中,氨基酸序列一致性在95%以上者占1.8%,一致性低于50%者占54.6%,与Dickeya dadantii3937的PelB(Pectate lyaseB)氨基酸序列比较,DCE-01菌株果胶解聚酶419在8个氨基酸位点上存在差异;DCE-01菌株的14个果胶酶氨基酸序列的一致性为16.4%-84.8%;MEGA聚类分析证明,该菌株果胶酶进化关系十分复杂。在14种果胶酶中,具有明显信号肽的果胶酶9种,没有明显信号肽的5种;定位在胞外的果胶酶10种,定位在胞内的2种,定位在细胞膜外膜的1种,无明确定位的1种;果胶酶分子量为30-90kDa;等电点为5.0-9.5。构建14个果胶酶基因的原核表达体系,平板水解圈法、酶活力测定法、SDS-PAGE电泳鉴定,有12个果胶酶基因获得成功表达,其中10个基因表达出具有生物活性的胞外果胶酶。经IPTG诱导,DNS法测定,有9个基因工程菌株的胞外果胶解聚酶活力为0.08-164.9IU/mL。深入研究结果表明,果胶解聚酶RP65、5P8、SH8和4J4的最适反应温度分别为50°C、45°C、50°C和55°C;最适pH均为8.5;热稳定温度分别为40°C、40°C、35°C和45°C;最适Ca~(2+)终浓度分别为0.5mmol/L、0mmol/L、2.0mmol/L和1.0mmol/L;最适底物分别为酯化度20%-34%的橘子果胶、聚半乳糖醛酸钠、酯化度20%-34%的橘子果胶和酯化度≥85%的橘子果胶。
     3. Pel419的最适反应温度为50°C;保温1.0h,酶活稳定温度≤45°C;最适pH为9.0;稳定pH为8.5-10.0;Ca~(2+)、Zn~(2+)和NH_4~+促进酶活力,Ca~(2+)的最适作用终浓度为2.0mmol/L,Fe~(3+)、Pb~(2+)和EDTA严重抑制酶活力;聚半乳糖醛酸钠为最适底物。PelG403最适反应温度为55°C;保温1.0h,酶活稳定温度≤60°C;最适反应pH为9.5;稳定pH为9.0-10.0;Ca~(2+)能最大幅度提高酶活力,其最适作用终浓度为1.5mmol/L,Pb~(2+)和EDTA能严重抑制酶活力;苹果果胶为最适底物。诱导基因工程菌株pEASY-E1-243/BL21表达有生物活性的胞外果胶酯酶,以高度酯化橘子果胶(DE≥85%)为底物,测定其发酵液酶活为1.5IU/mL,是原始菌株DCE-01的22.4倍。
     综上所述,本研究成功从DCE-01菌株中克隆出全基因组测序注释的14个果胶酶基因。通过系统研究果胶酶基因核苷酸序列及果胶酶分子结构、酶学性质、催化功能,证实DCE-01菌株果胶酶基因资源具有极为丰富的多样性。初步鉴定出在生物质加工过程中具有重要工业化应用前景的工具酶3种,为阐明麻类生物脱胶的作用机理提供科学依据,为发掘优异生物质加工用果胶酶资源奠定基础。
Pectinase is a heterogeneous group of related enzymes that hydrolyze the pectin. Pectinase is usedwidely in various industries, such as in feed industry as additives for anti-nutrients elimination, in foodindustry for fruit juice extraction and clarification, in textile industry for process of cotton fiber and bastfibers biodegumming, and in the papermaking industry for bio-pulping. As one of the most importantcatalytic agents in all walks of life, alkaline pectate lyases have been paid more and more attention inrecent years.
     From previous studies, fourteen pectinase genes had been annotated in the genomic sequence ofDCE-01strain, an efficient strain for bast fibers biodegumming. Based on this preliminary study, withthe methods of molecular biology, biochemistry, enzymology, structural biology, bioinformatics and soon, pectinase genes cloning and catalytic function, enzymatic properties and molecular structure of theirexpression products were studied. Main results were as follows:
     1. Primers were designed by the result of whole genome sequencing annotation, and fourteenpectinase genes were obtained. Fourteen pectinase genes were divided into three groups which wereeleven pectin depolymerase genes, two pectin methyl esterase genes, and one pectin acetyl esterase gene.Nucleotide sequence identities of pectinase genes from DCE-01strain and other microbiology were71%-100%. Ratio of pectinase genes with identity higher than95%was1.8%, and that with identityless than85%was58.5%. Nucleotide sequence identities among the fourteen pectinase genes fromDCE-01strain were36.3%-84.2%. Identities of the eleven pectin depolymerase genes were36.1%-84.2%, and the identity of the two pectin methyl esterase genes was only42.8%.
     2. Based on the pectinase genes nucleotide sequences, the bioinformatics analysis results showedthat amino acid sequence identities of the pectinase from DCE-01strain and other microbiology were21%-100%. Ratio of pectinase with identity higher than95%was1.8%, and that with identity less than50%was54.6%. Comparing the pectin depolymerase419from DCE-01strain with the PelB from D.dadantii3937, they were obviously different in eight amino acid sites. MEGA cluster analysis provedthat evolution relationship of the fourteen pectinase from DCE-01strain was very complex. Amongfourteen pectinase, nine pectinase had obvious signal peptides, and five pectinase had no apparent signalpeptides. Ten pectinase located in extracellular, two pectinase located in intracellular, one pectinaselocated in outer membrane of the cell membrane, and one pectinase had no clear position. Themolecular weights of pectinase were30-90kDa, and the isoelectric points were5.0-9.5. Prokaryoticexpression systems were constructed to express the fourteen pectinase genes. By plate hydrolysis circles,pectinase activity assay and SDS-PAGE analysis, the results showed that twelve pectinase succeed inexpressing, and ten extracellular pectinase had catalytic activity. Detected by DNS method, theextracellular pectin depolymerase activity secreted by nine genetic engineering strains induced by IPTG,were0.08-164.9IU/mL. The optimal reaction temperatures of depolymerase RP65,5P8, SH8and4J4were50°C,45°C,50°C and55°C respectively. Their optimal reaction pHs were8.5. Theirthermostable temperatures were40°C,40°C,35°C and45°C in sequence. Their optimal Ca~(2+) concentrations were0.5mmol/L,0mmol/L,2.0mmol/L and1.0mmol/L. Their optimal substrates werecitrus pectin esterified20%-34%, polygalacturonic acid sodium salt, citrus pectin esterified20%-34%and citrus pectin esterified≥85%, respectively.
     3. The optimal reaction temperature of the Pel419was at50°C and was stable at no more than45°C after being incubated for60min. The optimal reaction pH of the Pel419was pH9.0and wasstable at pH8.5-10.0. The Pel419activity was activated by Ca~(2+), Zn~(2+)and NH_4~+, and the maximalactivity of Pel419was obtained at Ca~(2+)concentration of2.0mmol/L. The optimum substrate for Pel419was polygalacturonic acid sodium salt. The optimal reaction temperature of the PelG403was at55°Cand was stable at no more than60°C after being incubated for60min. The optimal reaction pH of thePelG403was pH9.5and was stable at pH9.0-10.0. The PelG403activity was activated by Ca~(2+)andinhibited seriously by Mn~(2+), Pb~(2+)and EDTA. The maximal activity of PelG403was obtained at Ca~(2+)concentration of1.5mmol/L. The optimum substrate for PelG403was pectin from apple.pEASY-E1-243/BL21was induced by IPTG to express extracellular pectin methyl esterase. With highmethoxyl citrus pectin (DE≥85%) as substrate, the pectin methyl esterase activity secreted by thegenetic engineering strain was1.5IU/mL,22.4times higher than that from the original DCE-01strain.
     The above results fully reveal fourteen pectinase genes were cloned from DCE-01strain, and thatpectinase expressed by the pectinase genes from DCE-01strain had very rich diversity in molecularstructure, enzyme properties, and catalytic function. Moreover, three important tool enzymes potentialfor industrial application in the process of biomass were identified primarily. This study may providescientific basis to elucidate the mechanism of bast fibers biodegumming, and lay foundation to explorethe excellent pectinase resources for biomass process.
引文
1.陈峰,俞吉安,张承康,等.果胶分解菌的简便筛选方法.微生物学杂志,1999,19(4):63.
    2.陈英.脂肪酶基因的克隆表达、酶学性质研究与分子改造[硕士学位论文].南宁:广西大学,2010.
    3.杜国军,刘晓兰,郑喜群.产果胶酶黑曲霉的筛选及诱变育种.农业与技术,2008,28(2):68-70.
    4.高海有. β-甘露聚糖酶和木聚糖酶基因共表达体系构建[硕士毕业论文].北京:中国农业科学院,2012.
    5.葛英亮.樱桃番茄中果胶酯酶的基因克隆及在毕赤酵母中表达的初步研究[硕士学位论文].成都:西华大学,2007.
    6.顾红燕,齐鸿雁,张洪勋.高大毛霉制取果胶酶发酵条件实验.过程工程学报,2002,2(3):252-256.
    7.顾佳佳.欧文氏杆菌变异菌株CXJZ-120果胶酶纯化及其酶学基础研究[硕士学位论文].乌鲁木齐:新疆农业大学,2007.
    8.郭雨刚,毕赤酵母表达系统及其应用[博士学位论文].合肥:中国科学技术大学,2012.
    9.焦云鹏,王志民,蒋长兴.固定化果胶酯酶的研究.食品与发酵工业,2005,31(8):137-140.
    10.雷激,李中柱,易彪,等.内源果胶酯酶制备低甲氧基果胶的研究.中国食品添加剂,2006,5:46-51.
    11.雷激,李中柱,易彪,等.内源果胶酯酶制备低甲氧基果胶的研究.食品工业科技,2007,28(02):46-51.
    12.李建武,萧能庚,余瑞元,等.生物化学实验原理与方法.北京:北京大学出版社,1997:53-55,216-223.
    13.李平,景庆庆,邵蔚蓝.海栖热袍杆菌来源的极耐热碱性果胶裂解酶的表达、纯化及定性.生物工程学报,2009,25(2):223-229.
    14.林陈水.色氨酸酶基因工程菌的构建与表达[硕士学位论文].杭州:浙江大学,2002.
    15.林建城,王志鹏,杨文杰,等.几种效应物对黑曲霉果胶酶活力的影响.云南师范大学学报,2006,26(6):48-51.
    16.刘恩平,郭安平,邓伟科,等.果胶裂解酶PelC基因在原核和真核细胞中的表达.热带作物学报,2010,31(8):1288-1292.
    17.刘正初.麻类纤维生物提取与工程研究进展.中国麻业科学,2009,31(增刊1):93-97.
    18.刘正初,胡镇修,张运雄,等.中华人民共和国农业部. NY/T1537-2007.苎麻生物脱胶技术规范.北京:中国农业出版社,2008-03-01.
    19.刘正初,彭源德,冯湘沅,等.一种工厂化条件下龙须草/红麻韧皮生物制浆工艺.中国,发明专利, CN03102808. X,2004-08-04.
    20.刘正初,张运雄,冯湘沅,等.清洁型草本纤维生物提取工艺的污染机理研究.中国农业科学,2008,41(2):546-551.
    21.钱微君,陈海敏,陈建勇,等.大麻韧皮果胶分解菌株的分离与鉴定.纺织学报,2006,27(11):52-54.
    22.曲增君,姜修敏,于忠东,等.果胶酶治疗胃石症的临床研究曲志敏.医师进修杂志,2003,26(2):37.
    23.权衡,袁辉,谭艳君,等.果胶酶精练乳化工艺及其对棉织物精练效果的影响.印染助剂,2005,22(2):31-32.
    24.王宝维,姜晓霞,孙鹏,等.鹅源草酸青霉产果胶酶对肉鸡消化生理影响的研究.动物营养学报,2010,22(2):358-364.
    25.王槐传,叶汉玲,王清.优良碱性果胶酶产生菌选育.南京林业大学学报,1994,18(4):51-54.
    26.武莹浣,叶汉英.果胶酶微生物筛选和酶活测定方法研究.食品与机械,2010,26(2):57-60.
    27.徐建荣,程东成,李波.福寿螺消化酶的活力测定研究及其酶解效果分析.水产养殖,2007,28(3):3-5.
    28.徐君飞.枯草芽孢杆菌BE-91木聚糖酶基因多样性及其克隆与表达研究[博士学位论文].长沙:湖南农业大学,2010.
    29.徐毅.乳酸菌高效膜蛋白表达体系的构建及其自溶性质的研究[博士学位论文].青岛:山东大学,2012.
    30.苑鹏.果胶酶基因的克隆表达及其在小尾寒羊瘤胃环境中的多样性分析[博士学位论文].北京:中国农业科学院,2012.
    31.张海燕,吴天祥.微生物果胶酶的研究进展.酿酒科技,2006,9:82-85.
    32.张庆坤,雷激,张大凤.果胶酯酶制备低酯果胶的研究进展.食品工业科技,2007,28(08):243-246.
    33.赵丽莉,田呈瑞,纪花,等.微生物果胶酶研究及其在果蔬加工中的应用进展.现代生物医学进展,2007,7(6):951-953.
    34.赵圣国.牛瘤胃脲酶基因多样性分析与酶活性调控[博士学位论文].北京:中国农业科学院,2012.
    35.钟卫鸿,王启军,岑沛霖.螺孢菌ZG9901的筛选及其产碱性果胶酶发酵条件研究.应用与环境生物学报,2000,6(5):468-472.
    36.周海燕.甘露聚糖酶Man23的基因表达体系优化及其分子改造[博士毕业论文].长沙:湖南农业大学,2008.
    37.周小乔,王宝维.饲用果胶酶研究的进展.饲料研究,2010,8:14-16
    38.朱海珍,雷少华,刘春艳,等.人膜蛋白CD81的原核表达与纯化.湖南大学学报(自然科学版),2012,39(8):52-56.
    39. Adams J B, McAllan J W. Pectinase in the saliva of Myzus persicae (Sulz.)(Homoptera: aphididae).Canadian Journal of Zoology,1956,34(6):541-543.
    40. Adams J B, McAllan J W. Pectinase in certain insects. Canadian Journal of Zoology,1958,36(3):305-308.
    41. Ahlawat S, Dhiman S S, Battan B, et al. Pectinase production by Bacillus subtilis and its potentialapplication in biopreparation of cotton and micropoly fabric. Process Biochemistry,2009,44(5):521-526.
    42. Antier P, Minjares A, Roussos S, et al. Pectinase-hyperproducing mutants of Aspergillus nigerC28B25for solid-state fermentation of coffee pulp. Enzyme and Microbial Technology,1993,15(3):254-260.
    43. Antov M G, Peri in D M. Production of pectinases by Polyporus squamosus in aqueous two-phasesystem. Enzyme and Microbial Technology,2001,28:467-472.
    44. Arenas-Ocampo M, Evangelista-Lozano S, Arana-Errasquin R, et al. Softening and biochemicalchanges of sapotemamev fruit (Pouteriasapota) at different development and ripening stages.Journal of Food Biochemistry,2003,27(2):91-107.
    45. Arias C R, Burns J K. A pectin methylesterase gene associated with a heat-stable extract from citrus.Journal of Agricultural and Food Chemistry.2002,50(12):3465-3472.
    46. Arotupin D J, Akinyosoye F A, Onifade A K. Purification and characterization ofpectinmethylesterase from Aspergillus repens isolated from cultivated soil. African Journal ofBiotechnology,2008,7(12):1991-1998.
    47. Astapovich N I, Ryabaya N E. Inactivation of polygalacturonase during growth of Saccharomycespastorianus in culture. Applied Biochemistry and Microbiology,2000,36(2):134-137.
    48. Bai Z H, Zhang H X, Qi H Y, et al. Pectinase production by Aspergillus niger using wastewater insolid state fermentation for eliciting plant disease resistance. Bioresource Technology,2004,95(1):49-52.
    49. Barnby F M, Morpeth F F, Pyle D L. Endopolygalacturonase production from Kluyveromycesmarxianus. I. Resolution, purification and partial characterization of the enzyme. Enzyme MicrobialTechnol,1990,12:891-897.
    50. Barras F, Thurn K K, Chatterjee A K. Resolution of four pectate lyase structural genes of Erwiniachrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Molecularand General Genetics,1987,209(2):319-325.
    51. Basu S, Ghosh A, Bera A, et al. Thermodynamic characterization of a highly thermoactiveextracellular pectate lyase from a new isolate Bacillus pumilus DKS1. Bioresource Technology,2008,99(17):8088-8094.
    52. Basu S, Saha M N, Chattopadhyay D, et al. Large-scale degumming of ramie fibre using a newlyisolated Bacillus pumilus DKS1with high pectate lyase activity. Journal of Industrial Microbiologyand Biotechnology,2009,36(2):239-245.
    53. Berensmeier S, Singh S A, Meens J, et al. Cloning of the pelA gene from Bacillus licheniformis14Aand biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase. ApplMicrobiol Biotechnol,2004,64:560-567.
    54. Blanco P, Sieiro C, Reboredo N M, et al. Cloning, molecular characterization, and expression of anendo-polygalacturonase-encoding gene from Saccharomyces cerevisiae IM1-8b. FEMSMicrobiology Letters,1998,164(2):249-255.
    55. Boland W E, Henriksen E D, Doran-Peterson J. Characterization of two Paenibacillus amylolyticusstrain27C64pectate lyases with activity on highly methylated pectin. Applied and EnvironmentalMicrobiology,2010,76(17):6006–6009.
    56. Brühlmann F, Kim K S, Zimmerman W, et al. Pectinolytic enzymes from actinomycetes for thedegumming of ramie bast fibers. Applied Environmental Microbiology,1994,60(6):2107-2112.
    57. Brühlmann F. Production and characterization of an extracellular pectate lyase from an Amycolatasp. Appl Environ Microbiol,1995,61:3580-3585.
    58. Calafell M, Garriga P. Effect of some process parameters in the enzymatic scouring of cotton usingan acid pectinase. Enzyme and Microbial Technology,2004,34,2004:326-331.
    59. Caprari C, Bergmann C, Migheli Q, et al. Fusarium moniliforme secretes fourendopolygalacturonases derived from a single gene product. Physiological and Molecular PlantPathology,1993,43:453-462.
    60. Carr J G. Tea, coffee and cocoa. In: Wood B.J.B., eds. Microbiology of Fermented Foods (vol. II).London: Elsevier Applied Science,1985,133-154.
    61. Cho S W, Lee S, Shin W. The X-ray structure of Aspergillus aculeatus polygalacturonase and amodeled structure of the polygalacturonase-octagalacturonate complex. Journal of MolecularBiology,2001,311(4):863-878.
    62. Christgau S, Kofod L V, Halkier T, et al. Pectin methyl esterase from Aspergillus aculeatus:expression cloning in yeast and characterization of the recombinant enzyme. Biochem J,1996,319(3):705-712.
    63. Corredig M, Kerr W, Wicker L. Separation of thermostable pectin methylesterase from marshgrapefruit pulp. Journal of Agricultural and Food Chemistry,2000,48(10):4918-4923.
    64. Dinnella C, Lanzarini G, Stagni A. Immobilization of an endopectin lyase on γ-alumina: study offactors influencing the biocatalytic matrix stability. J Chem Technol Biotechnol,1994,59:237-241.
    65. Dinnella C, Lanzarini G, Ercolessi P. Preparation and properties of an immobilizedsoluble-insoluble pectinlyase. Process Biochem,1995,30(2):151-157.
    66. Giner J, Bailo E, Gimeno V. Models in a Bayesian framework for inactivation of pectinesterase in acommercial enzyme formulation by pulsed electric fields. Eur Food Res Technol,2005,221:255-264.
    67. EI-Sheekh M M, Ismail A S, EI-Abd M A, et al. Effective technological pectinases by Aspergilluscarneus NRC1utilizing the Egyptian orange juice industry scraps. International Biodeterioration&Biodegradation,2009,63(1):12-18.
    68. EStratilová E, Markovi O, krovinová D, et al. Pectinase Aspergillus sp. polygalacturonase:multiplicity, divergence, and structural patterns linking fungal, bacterial, and plantpolygalacturonases. Journal of Protein Chemistry,1993,12:15-22.
    69. Favey S, Bourson C, Bertheau Y, et al. Purification of the acidic pectate lyase and nucleotidesequence of the corresponding gene (pelA) of Erwinia chrysanthemi strain3937. Journal of GeneralMicrobiology,1992,138:499-508.
    70. Fernández-González M, úbeda J F, Vasudevan T G, et al. Evaluation of polygalacturonase activityin Saccharomyces cerevisiae wine strains. FEMS Microbiology Letters,2004,237(2):261-266.
    71. Gummadi S N, Kumar D S. Microbial pectic transeliminases. Biotechnology Letters,2005,27:451-458.
    72. Guo G, Liu Z C, Xu J F, et al. Purification and characterization of a xylanase from Bacillus subtilisisolated from the degumming line. Journal of Basic Microbiology,2011,51:1-10.
    73. G tesson A, Marshall J S, Jones D A, et al. Characterization and evolutionary analysis of a largepolygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. TheAmerican Phytopathological Society,2002,15(9):907-921.
    74. Hamdy H S. Purification and characterization of the pectin lyase produced by Rhizopus oryzaegrown on orange peels. Ann Microbiol,2005,55:205-211.
    75. Hasui Y, Fukui Y, Kikuchi J, et al. Isolation, characterization, and sugar chain structure of EndoPGIa, Ib, and Ic from Stereum purpureum. Bioscience, Biotechnology, and Biochemistry,1998,62(5):852-857.
    76. Heikinheimo R, Flego D, Pirhonen M, et al. Characterization of a novel pectate lyase from Erwiniacarotovora subsp. carotovora. Mol Plant-Microbe Interact,1995,8:207-217.
    77. Heikinheimo R, Hemil H, Pakkanen R, et al. Production of pectin methylesterase from Erwiniachrysanthemi B374in Bacillus subtilis. Applied Microbiology and Biotechnology,1991,35(1):51-55.
    78. Hodgson A S, Kerr L H, Walter H. Tropical fruit products, in The Chemistry and Technology ofPectin, Walter, R. H., Ed., Academic Press, New York,1991,67.
    79. Hoondal G S, Tiwari R P, Tewari R, et al. Microbial alkaline pectinases and their industrialapplications: a review. Appl Microbiol Biotechnol,2002,59:409-418.
    80. Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, et al. Regulation of pectinolysis in Erwiniachrysanthemi. Annual Review of Microbiology,1996,50:213-257.
    81. Ishii S, Kiho K, Sugiyama S, et al. Low-methoxyl pectin prepared by petinesterase from Aspergillusjaponicus. Journal of Food Science,1979,44(2):611-614.
    82. Ishii S, Yokotsuka T. Purification and properties of pectin trans-eliminase from Aspergillus sojae.Agric Biol Chem,1972,36:146-53.
    83. Ishii T, Matsunaga T. Pectic polysaccharide rhamnogalacturonan II is covalently linked tohomogalacturonan. Phytochemistry,2001,57:969-974.
    84. Jayani R S, Saxena S, Gupta R. Microbial pectinolytic enzymes: A review. Process Biochemistry,2005,40:2931–2944.
    85. Jia Y J, Feng B Z, Sun W X, et al. Polygalacturonase, pectate lyase and pectin pethylesterasepctivity in pathogenic strains of phytophthora capsici incubated under different conditions. Journalof Phytopathol,2009,157:585-591.
    86. Kapoor M, Beg Q K, Bhushan B, et al. Production and partial purification and characterization of athermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochemistry,2000,36(5):467-473.
    87. Karr A L. Cell wall bigenesis. In: Bonner J. and VarnerJ. E., eds. Plant Biochemistry. New York:Academic Press,1976,405.
    88. Kashyap D R, Vohra P K, Chopra S, et al. Applications of pectinases in the commercial sector: areview. Bioresource Technology,2001,77(3):215-227.
    89. Kaur G, Kumar S, Satyanarayana T. Production, characterization and application of a thermostablepolygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. BioresourceTechnology,2004,94(3):239-243.
    90. Kertesz Z I. Pectic enzymes. Methods in Enzymology,1955, l:158-162.
    91. Kertesz Z I. The pectic substances. Interscience Publishers, Inc. New York.1951.
    92. Khanh N Q, Ruttkowski E, Leidinger K, et al. Characterization and expression of a genomic pectinmethyl esterase-encoding gene in Aspergillus niger. Gene,1991,106(1):71-77.
    93. Kitamoto N, Okada H, Yoshino S, et al. Pectin methylesterase gene (pmeA) from Aspergillus oryzaeKBN616: its sequence analysis and overexpression, and characterization of the gene product.Bioscience Biotechnology and Biochemistry,1999,63(1):120-124.
    94. Klug-Santner B G, Schnitzhofer W, Vr anskáb M, et al. Purification and characterization of a newbioscouring pectate lyase from Bacillus pumilus BK2. Journal of Biotechnology,2006,121(3):390-401.
    95. Ko C H, Tsai C H, Tu J, Tang S H, et al. Expression and thermostability of Paenibacilluscampinasensis BL11pectate lyase and its applications in bast fibre processing. Annals of AppliedBiology,2011,158(2):218-225.
    96. Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970,277:680-685.
    97. Laurent F, Kotoujansky A, Bertheau Y. Overproduction in Escherichia coli of the pectinmethylesterase A from Erwinia chrysanthemi3937: one-step purification, biochemicalcharacterization, and production of polyclonal antibodies. Can J Microbiol,2000,46:474-480.
    98. Liu Y, Chen G, Wang J, et al. Efficient expression of an alkaline pectate lyase gene from Bacillussubtilis and the characterization of the recombinant protein. Biotechnology Letters,2012,34(1):109-115.
    99. Liu Y H, Chen G Q, Wang J L, et al. Efficient expression of an alkaline pectate lyase gene fromBacillus subtilis and the characterization of the recombinant protein. Biotechnology Letters,2012,34(1):109-115.
    100. Liu Z C, Duan S W, Sun Q X, et al. A rapid process of ramie bio-degumming by Pectobacterium sp.CXJZU-120. Textile Research Journal.2012,82(15):1-7.
    101. Liu Z C, Dai X Y, Zhang J Z, et al. Screening of a xylanase high-producing strain and its rapidseparation and purification. Annals of Microbiology,2011,61(4):901-906.
    102. Li Z M, Jin B, Zhang H X, et al. Purification and characterization of three alkalineendopolygalacturonases from a newly isolated Bacillus gibsonii. The Chinese Journal of ProcessEngineering,2008,8(4):768-773.
    103. Losonczi A, Csiszar E, Szakacs G, et al. Bleachability and dyeing properties of biopretreated andconventionally scoured cotton fabrics. Textile Research Journal,2004,74(6):501-508.
    104. Maldonado M C, Strasser A M, Callieri D, et al. Purification and characterization of pectinesteraseproduced by a strain of Aspergillus niger. Current Microbiology,1994,28(4):193-196.
    105. McAllan J W, Cameronm M L. Determination of pectin polygalacturonase in four species of aphids.Canadian Journal of Zoology,1956,34:559-564.
    106. McCarthy R E, Kotarski S F, Salyers A A. Location and characteristics of the enzymes involved inthe breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J Bacteriol,1985,161:493-499.
    107. Mishra R K, Banthi A K, Majeed A B A. Pectin based formulations for biomedical applications: areview. Asian Journal of Pharmaceutical and Clinical Research,2012,5(4):1-7.
    108. Moharib S A, El-Sayed S T, Jwanny E W. Evaluation of enzymes produced from yeast. MolecularNutrition Food Research,2000,44(1):47-51.
    109. Moyo S, Gashea B A, Collison E K, et al. Optimising growth conditions for the pectinolytic activityof Kluyveromyces wickerhamii by using response surface methodology. International Journal ofFood Microbiology,2003,85:87-100.
    110. Murad H A, Azzaz H H. Microbial pectinases and ruminant nutrition. Research Journal ofMicrobiology,2011,6(3):246-269.
    111. Nagai M, Katsuragi T, Terashita T, et al. Purification and characterization of anendo-polygalacturonase from Aspergillus awamori. Biosci Biotechnol Biochem,2000,64:1729-1732.
    112. Nakamura A, Furuta H, Maeda H, et al. Structural studies by stepwise enzymatic degradation of themain backbone of soybean soluble polysaccharides consisting of galacturonan andrhamnogalacturonan. Biosci Biotechnol Biochem,2002,66:1301–1313.
    113. Nakkeeran E, Umesh-Kumar S, Subramanian R. Aspergillus carbonarius polygalacturonasespurified by integrated membrane process and affinity precipitation for apple juice production.Bioresource Technology,2011,102:3293-3297.
    114. Parini C, Fortina M G, Manachini P L. Properties of two pectin lyases produced by Aureobasidiumpullulans LV10. J Appl Bacteriol,1988,65:477-481.
    115. Pissavin C, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. Regulation of pelZ, a gene of thepelB-pelC cluster encoding a new pectate lyase of Erwinia chrysanthemi3937. Journal ofBacteriology,1996,7187-7196.
    116. Pitkanen K, Heikinheimo R, Pakkanen R. Purification and characterization of Erwiniachrysanthemi B374pectin methylesterase produced by Bacillus subtilis. Enzyme Microbial Technol,1992,14:832-836.
    117. Pouderoven G van, Snijder H, Benen J, et al. Structural insights into the processivity ofendopolygalacturonase I from Aspergillus niger. FEBS Letters,2003,554(3):462-466.
    118. Reid I, Ricard M. Pectinase in papermaking: solving retention problems in mechanical pulpsbleached with hydrogen peroxide. Enzyme Microb Technol,2000,26:115-123.
    119. Renard C M G C and Thibault J F. Structure and properties of apple and sugar-beet pectinsextracted by chelating agents. Carbohydrate research,1993,244(1):99-114.
    120. Roy C, Kester H, Visser J, et al. Modes of action of five different endopectate lyases from Erwiniachrysanthemi3937. Journal of bacteriology,1999,181(12):3705-3709.
    121. Scheller H V, Jensen J K, S rensen S O, et al. Biosynthesis of pectin. Physiologia Plantarum,2007,129(2):283-295.
    122. Schlemmer A F, Ware C F, Keen N T. Purification and characterization of a pectin lyase producedby Pseudomonas fluorescens W51. J Bacteriol,1987,169:4493-4498.
    123. Semenova M V, Grishutin S G, Gusakov A V. Isolation and properties of pectinases from the fungusAspergillus japonicus. Biochemistry (Moscow),2003,68(5):559-569.
    124. Sharma S, Mandhan R P, Sharma J. Pseudozyma sp. SPJ: an economic and eco-friendly approachfor degumming of flax fibers. World Journal of Microbiology and Biotechnology,2011,27(11):2697-2701.
    125. Shevchik V E, Boccara M, Vedel R, et al. Processing of the pectate lyase PelI by extracellularproteases of Erwinia chrysanthemi3937. Mol Microbiol,1998,29:1459-1469.
    126. Shevchik V E, Condemine G, Hugouvieux-Cotte-Pattat N, et al. Characterization of pectinmethylesterase B, an outer membrane lipoprotein of Erwinia chrysanthemi3937. MolecularMicrobiology,1996,19(3):455-466.
    127. Shevchik V E, Condemine G, Robert-Baudouy J, et al. The exopolygalacturonate lyase PelW andthe oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwiniachrysanthemi3937. Journal of Bacteriology,1999,181(13):3912-3919.
    128. Shevchik V E, Hugouvieux-Cotte-Pattat N. Identification of a bacterial pectin acetyl esterase inErwinia chrysanthemi3937. Molecular Microbiology,1997,24(6):1285-1301.
    129. Shevchik V E, Hugouvieux-Cotte-Pattat N. PaeX, a second pectin acetylesterase of Erwiniachrysanthemi3937. Journal of Bacteriology,2003,185(10):3091-3100.
    130. Shieh M T, Brown R L, Whitehead M P, et al. Molecular genetic evidence for the involvement of aspecific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls.Appl Environ Microbiol,1997,63:3546-3552.
    131. Shih J, Wei Y, Goodwin P H. A comparison of the pectate lyase genes, pel-1and pel-2, ofColletotrichum gloeosporioides f.sp. Malvae and the relationship between their expression inculture and during necrotrophic infection. Gene,2000,243(1-2):139-150.
    132. Silva D, Martins E S, Silva R, et al. Pectinase production by Penicillium viridicatum RFC3by solidstate fermentation using agricultural wastes and agro-industrial byproducts. Braz J Microbiol,2002,33:318-324.
    133. Silva D, Tokuioshi K, Silva Martins E da, et al. Production of pectinase by solid-state fermentationwith Penicillium viridicatum RFC3. Process Biochemistry,2005,40:2885-2889.
    134. Singh S A, Plattner H, Diekmann H. Exo-polygalacturonate lyase from a thermophilic Bacillus sp.Enzyme Microbial Technol,1999,25:420-425.
    135. Sinitsyna O A, Fedorova E A, Semenova M V, et al. Isolation and characterization of extracellularpectin lyase from Penicillium canescens. Biochemistry (Moscow),2007,72:565-571.
    136. Soares J C, Moreira P R, Queiroga A C, et al. Application of immobilized enzyme technologies forthe textile industry: a review. Biocatalysis and Biotransformation,2011,29(6):223-237.
    137. Solbak A I, Richardson T H, McCann R T, et al. Discovery of pectin-degrading enzymes anddirected evolution of a novel pectate lyase for processing cotton fabric. Journal of BiologicalChemistry,2005,280(10):9431-9438.
    138. Soriano M, Blanco A, Diaz P, et al. An unusual pectate lyase from a Bacillus sp. with high activityon pectin: cloning and characterization. Microbiology,2000,146(1):89-95.
    139. Soriano M, Diaz P, Pastor F I. Pectate lyase C from Bacillus subtilis: a novel endo-cleaving enzymewith activity on highly methylated pectin. Microbiology,2006,152(3):617-625.
    140. Takasawa K, Sagisaka K, Yagi K, et al. Polygalacturonase isolated from the culture of thepsychrophilic fungus Sclerotinia borealis. Canadian Journal of Microbiology,1997,43(5):417-424.
    141. Tanabe H, Yoshihara K, Tamura K, et al. Pretreatment of pectic wastewater from orange canningprocess by an alkalophilic Bacillus sp. J. Fermentation Technol.1987,65(2):243-246.
    142. Tardy F, Nasser W, Robert-Baudouy J, et al. Comparative analysis of the five major Erwiniachrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. Journal ofBacteriology,1997,179(8):2503-2511.
    143. Thakur B R, Singh R K, Handa AK, et al. Chemistry and uses of pectin-A review. Critical Reviewsin Food Science and Nutrition,1997,37(l):47-73.
    144. Tzanova T, Calafellb M, Guebitzc G M, et al. Bio-preparation of cotton fabrics. Enzyme andMicrobial Technology,2001,29:357-362.
    145. Valette-Collet O, Cimerman A, Reignault P, et al. Disruption of Botrytis cinerea pectinmethylesterase Bcpme1gene reduces virulence on several host plants. Mol Plant Microbe Interact,2003,16:360-367.
    146. Walker S G, Ryan M E. Cloning and expression of a pectate lyase from the oral spirocheteTreponema pectinovorum ATCC33768. FEMS Microbiology Letters,2003,226(2):385-390.
    147. Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functionalanalysis. Plant Mol Biol,2001,47:9-27.
    148. Wubben J P, Mulder W, Have A ten, et al. Cloning and partial characterization ofendopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol,1999,65(4):1596-1602.
    149. Wu C H, Yan H Z, Liu L F, et al. Functional characterization of a gene family encodingpolygalacturonases in Phytophthora parasitica. The American Phytopathological Society,2008,21(4):480-489.
    150. XiaoZ, Wang S, Bergeron H, et al. A flax-retting endopolygalacturonase-encoding gene fromRhizopus oryzae. Antonie van Leeuwenhoek,2008,94:563-571.
    151. Yadav S, Shastri N V. Partial purification of an extracellular pectin lyase from a strain ofAspergillus niger. Indian J Microbiol,2004,44:201-204.
    152. Yadav S, Yadav P K, Yadav D, et al. Purification and characterization of an alkaline pectin lyasefrom Aspergillus flavus. Process Biochem,2008,43:547-552.
    153. Yadav S, Yadav P K, Yadav D, et al. Purification and characterization of an acidic pectin lyaseproduced by Aspergillus ficuum strain MTCC7591suitable for clarification of fruit juices. AnnMicrobiol,2008,58:61-65.
    154. Yakoby N, Beno-Moualem D, Keen N T, et al. Colletotrichum gloeosporioides pelB is an importantvirulence factor in avocado fruit-fungus interaction. Mol Plant Microbe Interact,2001,14:988-995.
    155. Yuan P, Meng K, Shi P, et al. An alkaline-active and alkali-stable pectate lyase from Streptomycessp. S27with potential in textile industry. Journal of Industrial Microbiology and Biotechnology,2012,39(6):909-915.
    156. Zhang C H, Li Z M, Peng X W, et al. Separation, purification and characterization of threeendopolygalacturonases from a newly isolated Penicillum oxalicum. The Chinese Journal ofProcess Engineering,2009,9(2):242-249.
    157. Zheng L, Du Y, Zhang J. Degumming of ramie fibers by alkalophilic bacteria and theirpolysaccharide-degrading enzymes. Bioresource Technology,2001,78(1):89-94.
    158. Zhuge B, Du G C, Shen W, et al. Expression of a Bacillus subtilis pectate lyase gene in Pichiapastoris. Biochemical Engineering Journal,2008,40(1):92-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700