用户名: 密码: 验证码:
双丝脉冲MIG焊熔滴过渡分数阶控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高焊接效率最基本的方式之一是采用多丝焊。双丝焊是多丝焊中最基本的焊接方式,研究双丝高速焊具有代表意义。双丝焊的熔滴过渡过程及其控制的研究吸引了国内外许多研究者的关注。已有研究表明:控制熔滴过渡行为也就控制了焊接质量。进一步开展双丝脉冲焊的控制方法研究以及熔池过渡与焊缝成形的应用研究,可以为研发新的控制技术、改善和提高焊接系统的性能提供理论依据。
     双丝脉冲MIG焊是一种高效的焊接方法,在实际应用中非常广泛,研究双丝脉冲MIG焊具有理论和实际意义。论文从脉冲焊的机理出发,指出峰值电流Ip、峰值时间Tp、基值电流Ib、基值时间Tb是脉冲焊中最基本的4个参数,也是影响熔滴过渡的最重要参数。这些参数都与占空比有关,因而可以通过控制占空比来控制这些参数。采用状态空间变量法分析了逆变弧焊系统的混沌特性,指出弧焊系统的焊接规范参数需要非常配合的根本原因是由其混沌特性决定的。分析了自行研制的软开关逆变电源的前馈-反馈的控制原理和方式,并采用三端开关器件建模法,得到了有5个变量的非线性模型,从理论上证明了控制系统是一个非线性系统。通过线性化,得到一个简化的小信号数学模型。
     论文将当前控制领域研究的热点——分数阶理论——首次引入到弧焊控制,提出在弧焊控制系统中使用分数阶PID控制器,对分数阶理论在弧焊控制领域中的应用作了探讨,提出了一种设计分数阶控制器的新方法——值域图解法。采用值域图解法,针对建立的弧焊系统的数学模型设计了一类比例积分型的分数阶控制器(PIλ),并与传统整数阶控制器(PI)进行了仿真比较。仿真结果表明,分数阶控制器的调节动态性能比整数阶控制器要好,超调量少5%,提高了双丝MIG焊技术的动态性能。采用所设计的分数阶控制器进行了单丝焊试验,并与传统整数阶控制器的作了对比,结果分数阶控制器的效果更好。
     构建了双丝高速MIG焊及其高速摄影试验平台。双丝高速MIG焊平台由2台专用弧焊逆变电源(1250A+1000A)、水冷方式的“一炬双丝”焊炬等构成,焊接电流可达千安以上。高速摄影系统由功率40mW的半导体激光光源、每秒可拍摄10000张相片的彩色数字高速摄影机等组成,完全满足实验的要求。为了去除弧光,光路采用背光阴影法来拍摄熔滴过渡行为,图片更清晰。采用高速摄影,可以方便对焊接的熔滴过渡过程的观察与分析。
     论文对双丝大电流高速焊进行了工艺试验,研究了在一定的焊接规范下,双丝脉冲MIG焊接中主机与从机脉冲电流相位关系、脉冲电流频率等对熔滴过渡以及焊缝成形的影响。研究结果表明:脉冲电流相位为交替时,前丝、后丝电弧形态与单丝焊时一样,电弧为锥状。脉冲电流为同步相位时,前、后焊丝的电弧会相互吸引,引起电弧合并,电弧呈蟠桃状。脉冲电流为随机相位时,两电弧时而独立,时而吸引,电弧形状不断变化。脉冲电流频率的变化会改变前丝与后丝的熔滴过渡方式。在电流交替相位的焊接规范下,脉冲电流频率较高时,前丝熔滴过渡方式为射滴过渡,后丝熔滴过渡方式为射流过渡;在脉冲电流频率较低时,前丝、后丝熔滴过渡方式均为射滴过渡模式;而当脉冲电流频率中等时,前丝、后丝熔滴过渡方式均为射流过渡方式。当电流脉冲频率变化时,焊缝成形质量会发生变化。脉冲电流频率较高,焊缝成形较好;而脉冲频率较低时,焊缝成形较差。频率越低,成形越差,并出现驼峰焊。当脉冲电流频率在50-100Hz时,前丝、后丝在熔滴过渡时基本表现为一脉一滴形式,焊缝成形较好。
One of the most basic methods to improve welding efficiency is the multi-wire welding.Twin-wire welding is the basic way of multi-wire welding. So research on twin-wire weldingis of great significance. Many domestic and abroad researchers focused their study on doublewire welding droplet transfer process and the formation of weld pool. The existing resultshave demonstrated that the control of droplet transfer behavior will control the weldingquality. It is certain that in-depth study to double wire pulse welding control method andwelding droplet transfer process as well as the weld pool taking shape will provide the theoryfor new control technology and improve welding performance.
     Twin-wire pulsed MIG welding is a high efficient welding method which has a widerange of practical applications.Thus the study of double wire pulsed MIG welding hastheoretical and practical significance. On the basis of the mechanism of pulsed welding,wepointed out the most basic as well as the most important parameters which affect the droplettransfer in pulsed welding are the peak current Ip, peak time Tp, base current Iband basic timeTb. These parameters are associated with the duty cycle, thus to control these parameters canbe achieved by controlling the duty cycle. By using the state space variable method to analysethe chaotic characteristics of inverter arc welding system,we noted that the root cause for theneeds of the specification parameters match in arc welding system is determined by its chaoticnature of the tie. Also the feed-forward&feedback control principle of the self-developedsoft-switching inverter is analysised. Then a small signal model of the welding system isestablished based on the method of three-terminal-switching device modeling.
     This article first introduced the hot spot in control field---fractional theory into the arccontrol and pointed out using the fractional-order PID controller in the control system of arcwelding.Then the application of the fractional theory in arc welding control field is discussed,and a range-graphic method of design on fractional order controller is put forward. A kind ofintegral type of fractional order controller (PIλ) is designed depend of the model, andcompared with the traditional integer order controller (PI) in simulation. The simulationresults show that the fractional order controller is better than the integer order controller in theregulation of dynamic performance, less overshoot5%. It improves the double wire weldingtechnology dynamic performance. The single wire welding test using the fractional ordercontroller is done, the test effect is better than the integer order controller.
     A high-speed dual-wire pulse welding system and high-speed photography experimentplatform are built. The double wire welding experiment platform is composed of a two-wire torch with water cooling system, of two inverter power supplies1250A and1000A. Thebacklight shadow method is used to photograph the droplet transfer behavior in the high speedphotography system. The backlight light comes from a high power semiconductor laser. Thecamera’s type is FASTCAM Super-10KC color digital high speed camera, which can take10,000pictures per second. That can fully meet the experimental requirements. By high speedphotograph system, the welding droplet transfer process can easily be observed and analyzed.
     Large-current high-speed welding process of twin-wire test is studied. Under somewelding conditions, it is studied that the current phase relationships between the host andslave in double wire pulsed MIG welding, and the influences of droplet transfer and weldformation when pulse current frequency changes. The research results are:(1) the arc shape offormer and rear wire is not effect and is showing cone shape while their pulse current phaseschange by turn;(2) the arc shape is showing peach-shaped while their pulse current phaseschange synchronously, and the reason is the appeal caused by the same direction weldingcurrent of two wires;(3) the weld quality while their pulse current phases change random isbetween that in synchronization and by turn.
     The pulse current frequency will change the droplet transfer method of the former wireand the rear wire. With the welding specification of current phase changing by turn, thedroplet transfer manner of former wire is shot drops, and that of rear wire is jet transition withhigher frequency. The droplet transfer manners of former wire and rear wire are shot dropstransition with lower frequency. The droplet transfer manners of former wire and rear wire arejet transition with medium frequency. The droplets behave almost one-pulse-one-drop whilepulse current frequency changes around middle frequency. The welded shape is good whenthe pulse current frequency changes between50Hz and100Hz, and the welded shape qualitywill change depend on the pulse frequency.
引文
[1]陈善本.焊接过程现代控制技术[M].哈尔滨:哈尔滨工业出版社,2001,5:2-12
    [2]明珠,马新沛,王克鸿,等.厚板铝合金双丝气体保护焊工艺[J].焊接,2004(10):25-28
    [3]林放.脉冲MIG焊电弧调节机理与控制优化研究[D].广州:华南理工大学,2011:35-66
    [4]李星林,吴开源,黄石生,等.基于DSP协同控制的高速双丝脉冲MIG/MAG焊的研究[J].焊接技术,2007,36(6):24-25
    [5]李星林,黄石生,吴开源,等.高速双丝脉冲MIG焊的研究[J].电力电子技术,2008,42(3):39-40,69
    [6]王振民,赵鹏成,薛家祥.双丝GMAW熔滴过渡对焊缝形状的影响[J].华南理工大学学报(自然科学版),2008,36(8):92-97
    [7]李桓,梁秀娟,李幸呈,等.高效双丝MIG/MAG脉冲焊系统及工艺[J].焊接,2005(10):24-27
    [8]王卫彬.基于Logistic回归脉冲MIG熔滴过渡判断模型及焊接过程评估[D].上海:上海交通大学,2008:32-41
    [9]范宁.熔化极气体保护焊熔滴过渡模拟[D].沈阳:沈阳工业大学,2009:38-53
    [10]杨春利,刚铁,林三宝,等.高强铝合金厚板双丝MIG焊工艺的初步研究[J].中国有色金属学报,2004,14(5):259-264
    [11]卢振洋,黄鹏飞,蒋观军,等.高速熔化极气体保护焊机理及工艺研究现状[J].焊接,2006(3):16-20
    [12]卢振洋,黄鹏飞,殷树言,等.一种双丝MAG焊控制方法及其焊接电源[P].中国专利:CN1695866,2005-11-16
    [13]黄鹏飞,卢振洋,殷树言,等.一种用于双丝MAG逆变焊接电源的反馈信号控制电路[P].中国专利:CN2838834,2006-11-22
    [14]王克鸿,贾阳,钱锋,等.铝合金双丝MIG焊熔池图像采集与处理[J].焊接学报,2007,28(1):53-56,60
    [15] Amin. M. Synergic Pulse MIG Welding[J]. Metal Construction,1981,13(6):349-353
    [16] W. G. Essers, M. R. M. Van Gompel. Arc Control with Pulsed GMAWelding[J].Welding Journal,1984,63(6):26-32
    [17] Jiluan Pan,Zhiming Ou,Zhiqiang Wu,et a1.Pulsed Inert Gas Metal Arc Welding withFeed Back Control[J].Schweissen und Schneider,1985.37(4):54-55.
    [18]王其隆,张九海,张龙.自适应Synergic脉冲MIG(MAG)焊数字化控制研究[J].焊接,1990(9):1-5
    [19]姚屏,薛家祥,黄文超,等.脉冲MIG焊熔滴过渡阶段的波形控制[J].华南理工大学学报,2009,37(4):52-56
    [20] Pan Jiluan. Adaptive Control GMA Welding——A new technique for quality control[J].Welding Journal,1989,68(3):73-76
    [21]上山智之,全红军.微机数控电流波形GMA脉冲焊机的控制方法及焊接性能[[J].焊接,2000,(5):33-38
    [22] Zhang Y. M.,Liguo E, Walcott B.L. Robust control of pulsed gas metal arc welding[J].ASME Journal of Dynamic Systems, Measurement, and Control,2002,124(2):281-289
    [23] Amin.N. Pulsed current parameters for arc stability and controlled metal transfer in arcwelding[J].Metal Construction,1983,15(5):272-278
    [24] Jacobsen N. Monopulse investigation of drop detachment in pulsed gas metal arcwelding[J].Journal of Physics D:Applied Physics.1992(25):783-797
    [25] Allum.C.J. Metal transfer in arc welding as a varicose instability II:Development ofmodal for arc welding[J]. Journal of Physics D: Applied Physics,1985(18):1447-1468.
    [26] Rajasckaran.S.et al. Droplet detachment and plate fusion characteristics in pulsedcurrent gas metal arc welding[J]. Welding Research supplement.1998,19(6):254s-268s.
    [27] J.C Needham. Welding Institute Research Bulletin[A]. USA,1985,26(9):311-316
    [28] H.Maruo, et al. The4thinternational symposium of J.W.S.[C]. USA,1982,(1):8-13
    [29]华爱兵,殷树言,陈树君,等.纵向磁场对MAG焊电弧及熔滴过渡的控制作用[J].机械工程学报,2010,46(14):95-100
    [30] J.A.Johson, et al. Proceedings of the second international conference on trends inwelding research[J]. Gatlinburg, tenn., USA,1989:377-381
    [31]王其隆.气体保护焊过程的电弧声与电弧现象的关系的研究[A].哈尔滨:哈尔滨工业大学科学研究报告,1981,(9):78-78
    [32]张龙.脉冲MIG(MAG)焊熔滴过渡的弧光传感及其实时控制[D].哈尔滨:哈尔滨工业大学,1992:33-61
    [33] G.Adam.T.A.Siewert.Sensing of GMAW Droplet Transfer Modes Using anERl00S-1Electrode[J].Welding Journal,1990,69(3):103s-108s
    [34]李芳,华学明,王卫彬,等.脉冲熔化极气体保护焊熔滴过渡电信号特征及建模[J].焊接学报,2009,30(7):97-100
    [35]胡胜钢,李俊岳,李桓,等.脉冲MIG焊熔滴过渡光谱控制法的研究[J].机械工程学报,2001,37(9):18-23,29.
    [36] Subramaniam.S, et al. Droplet transfer in pulsed gas metal arc welding of aluminum[J].Welding Journal,1998,77(11):458s-464s
    [37]何波,孙长青,陈威.铝热焊的温度场及残余应力场有限元分析[J].焊接技术,2010,39(1):20-23
    [38]马宏波.基于视觉传感的机器人铝合金脉冲TIG焊接过程MLD建模方法研究[D].上海:上海交通大学,2011:44-70
    [39]黄健康,石玗,卢立晖,等.脉冲MIG焊建模仿真分析及弧长控制[J].机械工程学报,2011,47(4):37-41
    [40]段彬,张承慧,孙同景,等.脉冲逆变焊接电源建模与仿真[J].焊接学报,2012,33(4):57-60
    [41]何轩.基于Simulink的全桥逆变弧焊电源的建模与仿真[D].昆明:昆明理工大学,2010:36-58
    [42]李远波.软开关逆变式双丝高速脉冲MAG焊装备及其数字化协同控制技术研究[D].广州:华南理工大学,2004:38-53
    [43]张涛,唐跃军,马拥军.一种改进的熔滴过渡控制方法研究[J].中原工学院学报,2009,12(6):21-23,28
    [44] Chaoying Liu, Shisheng Huang. Program structures and synchronization schemes innumerical coordinate controllers of3wire welding[J]. China Welding,2006,15(4):9-12
    [45]朱六妹,李志远,王伟.用PID控制弧焊逆变电源的试验研究[J].电焊机,1991(3):14-18
    [46]何宽芳,黄石生.基于PID神经网络的弧焊电源控制器的研究[J].电焊机,2007(7):10-14
    [47] Oshima Kenji. Fuzzy expert system for Robotic arc welding[J].ASME.ProductionEngineer Division,1991,51:85-90
    [48] E.H.Mamdani. Application of fuzzy algorithms for control of simple dynamic plant[C].Proc.IEEE,1974,121(12):1585-1588
    [49] Y.S.Kim, Eagar.T. Metal transfer in pulsed current gas metal arc welding[J]. WeldingJournal,1993,72(7):279s-287s
    [50]王滨,姜力,刘宏.HIT/DLR多指手稳定抓取的控制策略[J].华中科技大学学报(自然科学版),2007(12):18-21
    [51]艾盛,王坚,马彩霞,等.焊接电弧的微机模糊控制设计与应用[J].西北工业大学学报,1996,2:13-16
    [52]陈强,潘际銮,大岛健司.焊接过程的模糊控制[J].机械工程学报,1995(4):4-7
    [53] Zhou Yiqing, Huang Shisheng, Zhang Hongbing, et al. Precision control of inverterwelding power sources by using T-S fuzzy systems[J]. China Welding,2007,16(4):72-76
    [54]薛家祥,杨国华,董飞,等.基于模糊逻辑的弧焊电源动特性分析[J].电焊机,2007,37(1):31-34
    [55]杜宏旺,刘铮,赵亚楠,等.基于观测器与前馈的送丝机模糊PI速度控制[J].焊接学报,2010,31(1):85-88
    [56] K. Zeng, N.Y.Zhang,W.L.Xu. Sufficient condition for linear T-S fuzzy systems asuniversal approximators[J].Acta Automatica Sinica,2001,27(50):606-612
    [57]吴冬春,李金友.基于模糊控制的焊缝自动跟踪系统的设计[J].组合机床与自动化加工技术,2011,6(6):73-76
    [58]孙德一,黄石生,何宽芳,等.脉冲MAG焊弧长稳定性模糊控制的研究[J].电焊机,2008,38(8):51-54
    [59]虎清乐.王永强.基于模糊和PI控制的MIG焊接电源设计[J].控制工程,2012,19(3):507-510,534
    [60]赵举东,杨虹,肖锦辉.机器人用逆变弧焊电源的神经元网络控制研究[J].电子技术应用,1997,23(7):13-16
    [61]胡庆贤,武传松,孙俊生,等.Kohonen神经网络在熔化极气体保护焊接质量检测中的应用[J].无损检测,2002,24(4):159-161
    [62] S.B.Chen, L.Wu, Q.L.Wang. Self-learning fuzzy neural networks for control ofuncertain system with time delay[C]. IEEE Transactions on system, Man, andCybernetics-Part B: Cybernetics.1997,27(1):142-148
    [63]李思奇,吴志生,郭建业,等.智能化逆变弧焊电源控制策略现状及发展趋势[J].焊接技术,2011,40(6):1-3
    [64]李慨,张庭.基于视觉传感器的移动焊接机器人测控系统[J].中南大学学报(自然科学版),2011,42(4):1050-1055
    [65] Alberto Carpinteti, Francesco Mainardi. Fractals and fractional calculus in continuummechanics[M].New York:Springer Vedag,1998:47-55
    [66] George M. Zaslavsky. Hamiltonian Chaos and Fractional Dynamics[M].USA:Oxford University Press,2005:50-61
    [67] Hiffer R.Application of fractional calculus in physics[M].World Scientific Company,Singapore, New Jersey, London and Hong Kong,2000:13-15
    [68] Concepcion A. Monje, YangQuan Chen, Blas M. Vinagre, et al. Fractional-ordersystems and control[M]. London:Springer-Verlag,2010:78-92
    [69] Yanzhu Zhang, Jingjiao Li. Fractional-order PID Controller Tuning Based on GeneticAlgorithm[C]. IEEE,2011:764-767
    [70] F. Padula A. Visioli. Optimal tuning rules for proportional-integer derivative andfractional-order proportional-integer derivative controllers for integral and unstableprocesses[J]. IET Control Theory Applications,2012(6):776-786
    [71] Y. Jin, Y.-Q. Chen, D. Xue. Time-constant robust analysis of a fractional order
    [proportional derivative] controller[J]. IET Control Theory Applications,2011,5(1):164-172
    [72] A Oustaloup. La commande[M]. Paris:Editions Hermes,1991:23-55
    [73] I Podlubny. Fractional-order systems and PIλDμ--controllers[J]. IEEE transactions onautomatic control,1999,44(1):208-214.
    [74] A Oustaloup, B Bluteau. First generation CRONE control[C]. Systems, InternationalConference on Man and Cybernetics,'Systems Engineering in the Service ofHumans',1993,2:130-135.
    [75] A Oustaloup, B Bluteau, P Lanusse. Second generation CRONE control[C].International Conference on Systems, Man and Cybernetics,'Systems Engineering in theService of Humans',1993,2:136-142.
    [76] P Lanusse,A Oustaloup,B Bluteau. Third generation CRONE control[C]. InternationalConference on Systems, Man and Cybernetics,'Systems1993.Engineering in the Serviceof Humans',1993,2:149-155.
    [77] Podlubny I, Dorcak L, Kostial I. On fractional derivatives, fractional-order dynamicsystems and PIλDμ-controllers[C]. Proceedings of the36th IEEE Conference onDecision&Control. USA: IEEE.1997,5:4985-4990.
    [78] CA Monje, BM Vinagre, AJ Calder 'on, et al. Self-tuning of Fractional Lead-LagCompensators[C]. IFAC World Congress.Prague, Czech,2005:267-272
    [79] CN Zhao, DY Xue, YQ Chen. A fractional order PID tuning algorithm for a class offractional order systems[C]. Proceedings of IEEE, International Conference onMechatronics&Automation, Niagara Falls, Canada,2005:216-221.
    [80] J Cervera, A Banos, CA Monje, et al. Tuning of fractional pid controllers by usingQFT[C]. in Proceedings of the32nd Annual Conference of the IEEE industrialElectronics Society (IECON'06), IEEE, Paris, France,2006:1157-1162
    [81] Jun-yi Cao, Bing-gang Cao. Design of fractional order controller based on particleswarm optimization [C].1st IEEE Conference on Industrial Electronics andApplications,2006:1-6.
    [82] T Bhaskaran, YQ Chen, DY Xue. Practical tuning of fractional order proportional andintegral controller (1): Tuning rule development[C]. Proceedings of the ASME2007International Design Engineering Technical Conferences&Computers and Informationin Engineering Conference,2007:154-157
    [83] D Valerio. Tuning of fractional Pm controllers with Ziegler-Nichols-type rules[J].Signal Processing,2006,86(10):2771-2784.
    [84] BJ Lurie. Tunable TID controller[P]. US Patent no.5371670,1994.
    [85] HF Raynaud, A Zerga'moh. State-space representation for fractional order controllers [J].Automatic,2000,36:1017-1021
    [86] CA Monje, BM Vinagre, V Feliu, et al. On autotuning of fractional orderPIλDμcontrollers[C]. Proceedings of the2nd FRAC on Fractional Differentiation and ItsApplication, Porto, Portugal,2006:138-142
    [87]王晓燕.分数阶控制系统分析及应用研究[D].北京:华北电力大学,2011:61-71
    [88]秦昌茂.高超声速飞行器分数阶PID及自抗扰控制研究[D].哈尔滨:哈尔滨工业大学,2011:65-70
    [89]齐乃明,宋志国,秦昌茂.基于最优Oustaloup的分数阶PID参数整定[J].控制工程,2012,19(2):283-285
    [90]张弘.分数阶PID控制器的研究与仿真[J].西安邮电学院学报,2011,16(1):107-110
    [91] Ying Luo and YangQuan Chen, Fractional-Order [Proportional Derivative] Controllerfor A Class of Fractional Order Systems[C]. Automatica,2009,45(10):2446-2450
    [92] Hongsheng Li, Ying Luo, YangQuan Chen. A Fractional Order Proportional andDerivative (FOPD) Motion Controller: Tuning Rule and Experiments[C]. IEEETransactions on Control SystemsTechnology,2010,18(2):516-520
    [93] Ying Luo,YangQuan Chen, Hyo-Sung Ahn, et al. Fractional order robust control forcogging effect compensation in PMSM position servo systems: Stability analysis andexperiments[C]. IFAC Control Engineering Pratice,2010,18(9):1022-1036
    [94]吴开源.基于DSP的GMAW-P焊逆变电源数字智能控制系统的研究[D].广州:华南理工大学,2005:33-46
    [95]张卫平,吴兆麟.电流型PWM开关变换器的稳定性研究[J].电力电子技术,1999(10):18-20
    [96]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社,2007:32-36
    [97]丁伟,侯启孝.铝合金脉冲MIG焊电弧稳定性[J].焊接学报,1996,17(2):116-121
    [98]王其隆,殷树言.脉冲电流熔化极气保焊电弧形态的控制及其实际意义[J].焊接学报,1980,1(1):34-41
    [99]姜伟雁,张九海,赵崇仪.MIG(MAG)脉冲焊熔滴的过渡行为[J].焊接学报,1994,15(1):50-58
    [100] E.Pardo. Prediction of weldpool and reinforcement dimensions of MIG/MAG weldsusing a finite-element model[J]. Metal. Trans. B,1989,20B(12):937-947
    [101]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007,4:43-44
    [102]冯雷,殷树言.高速焊接时焊缝咬边的形成机理[J].焊接学报,1999,20(1):17-21
    [103]黄石生,陆沛涛,张小城,等.用于铝合金焊接的中频MIG焊逆变器与工艺研究[J].机械工程学报,1994,30(4):91-96
    [104]胡寿松.自动控制原理(第五版)[M].北京:科学出版社,2007:83-101
    [105]卢京潮.自动控制原理[M].北京:西北工业大学出版社,2011:65-82
    [106] K.Pyragas. Continuous control of chaos by self-controlling feedback[J].Phys.Lett.A,1992,170:421-428
    [107]张波,李萍,齐群. DC-DC变换器分叉和混沌现象的建模和分析方法[J].中国电机工程学报,2002,22(11):81-86
    [108]钟洁,于盛林.电路参数变化引起的DC-DC变换器混沌现象的仿真研究[J].吉林大学学报(工学版),2003,33(4):73-78
    [109] R.D.Middlebrook,S.CUK.A General Unified Approach to Modeling SwitchingConverter Power Stages[C].Record of PESC’,1976:18-34.
    [110] Vatche Vorperian. Simplified analysis of PWM converters using model of PWMswitch[C]. IEEE fransactions on Aerospace and Electronic Systems.1990,26(3):490-505
    [111] A.R.Brown.R.D Middlebrook.Sampled data modeling of switching regulators[C].Record Of PESC’,1981:349-369
    [112]丘水生.开关功率变换器的符号分析方法原理[J].电子学报,1997,25(1):5-10.
    [113]周漪清.高速埋弧焊过程控制及其电弧信号的小波分析[D].广州:华南理工大学,2008:17-28
    [114]李宏胜.分数阶控制及PIλDμ控制器的设计与进展[J].机床与液压.2007,35(7):237-240
    [115]李大字,刘展,靳其兵,等.分数阶控制器参数整定策略研究[J].系统仿真学报,2007,19(9):4402-4406
    [116] Gerald Recktenwald.数值方法和MATLAB实现与应用[M].伍卫国,万群,张辉,等译.北京:机械工业出版社,2004:65-78
    [117]王亚芳. MATLAB仿真及电子信息应用[M].北京:人民邮电出版社,2011:57-75
    [118]同济大学数学系.高等数学[M].北京:高等教育出版社,2011:85-90
    [119] Allemand C D,Schoeder R,Ries D E et al. A Method of filming metal transfer inwelding arcs [J]. Welding Journal,1985,64(2):45-47
    [120]李桓,李国华,李俊岳,等.熔化极电弧熔滴过渡过程的高速摄影[J].中国机械工程,2002,13(9):796-798
    [121]唐慕尧.焊接测试技术[M].北京:机械工业出版社,1988:321-323
    [122]张三喜,姚敏,孙卫平.高速摄像及其应用技术[M].北京:国防工业出版社,2006:119-121
    [123]黄石生,文元美,薛家祥,等.弧焊熔滴过渡的高速摄像与电信号测试分析[J].华南理工大学学报(自然科学版),2008,36(4):1-5
    [124]文元美.双电弧共熔池脉冲MAG焊接熔滴过渡与熔池成形研究[D].广州:华南理工大学,2009:76-83
    [125]解生冕,吴开源,文元美,等.脉冲频率对TCG MAW熔滴过渡行为的影响[J].焊接学报,2012,33(3):69-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700