用户名: 密码: 验证码:
提高钢轨铝热焊接头性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢轨铝热焊接是一种填充焊接,该技术具有设备简单,操作简便,接头平顺性好的特点,是目前我国铁路道岔、锁定焊、既有线应力放散、断轨抢修和日常换轨等工作中不可缺少的钢轨焊接方法。铁路运输提速重载的发展,加大了列车对接头的冲击,同时缩短了线路的维修时间,使得钢轨铝热焊接技术必须同时具备接头高性能和作业短流程两个特点。
     通过分析影响钢轨铝热焊接头性能因素发现,接头金属抗拉强度分布规律为轨腰部最低,轨底次之,轨头最高。焊缝金属轨腰抗拉强度较低的主要因素是疏松缺陷和夹杂物。此外影响接头承载能力的主要因素为焊接缺陷,焊筋形状,以及焊接残余应力。所以提高钢轨铝热焊接头性能的重点是减少或消除接头中可能存在的缺陷,优化金属凝固顺序,优化焊筋结构。
     焊剂配方研究发现,焊剂反应生成钢液的温度受反应物初始温度,添加物所占比例,氧化铁中FeO所占比例的影响。反应物初始温度每升高1℃,钢液温度升高0.6℃;添加物的加入量每增加1%,钢液温度降低25.7℃;反应物氧化铁中FeO比例增加,铝热钢液温度降低。焊剂反应速率受焊剂反应生成钢液的温度,反应物粒度和添加物粒度的影响。焊剂反应生成钢液温度越高,焊剂反应速率越快;反应物粒度适中时,焊剂反应速率最快,反应物粒度较大或较小时均不能使反应前沿液态生成物充分渗透焊剂颗粒形成的间隙,导致焊剂反应速率降低;添加物粒度为60~80目时,添加物充填焊剂反应物之间的间隙,降低反应速率,延长焊剂反应的固有时间。
     砂型研究发现,砂型的物理特性由制备砂型的原材料和工艺共同决定。石英砂SiO_2质量分数越高,泥分质量分数越小,砂型的强度和耐火度越高,水玻璃加入量越多,砂型紧实度越高,越有利于获得高耐火度和高强度的砂型。砂型烘干温度和烘干保温时间影响砂型烘干后的强度。砂型最佳烘干工艺可以是采用较低的烘干温度(120℃)进行长时间(120min)保温烘干,也可以是采用较高的烘干温度(300℃)进行短时间(20min)保温烘干,烘干具体工艺还要综合考虑实际生产情况下的能源效率和时间效率。ZTK浇注系统具有良好的焊合能力和接头金属性能,是大轨型钢轨铝热焊接应当选用的一种砂型结构。
     添加Ni合金的钢轨铝热焊剂和ZTK浇注系统的砂型适合75kg/mPG4钢轨的铝热焊接,焊接接头平均抗拉强度Rm=853MPa,轨头受压静弯破断载荷1759kN,轨头受拉静弯破断载荷1662kN,实物疲劳200万次循环不断,焊缝硬度达334HB,可与PG4热轧钢轨相匹配。
Alumino-thermit welding technology has the characters of filling metal welding, simple equipment, easy operation and smooth joints. So it is widely adopted in switches welding, positioned welding, stress relief, broken rail repairing and routine repair work. With the development of speed up and heavy haul transportation, the impact on the joints increased and the repairing time shortened accordingly. So alumino-thermit welding technology should have high joint performance and short operating time.
     Researches on joint performance show that the tensile strength of joint metal is the lowest in the rail web, higher in the rail foot, and the highest in the rail head. The distribution of tensile strength contributes to the micro porosity in the rail web and inclusions in the rail foot. In addition, the carrying capacities of joints mainly are affected by welding defects, welding collar shapes, as well as the welding residual stress. So the improvement of joint performance should firstly aimed on reducing or eliminating of welding defects that may exist in joints, optimizing solidification sequence of weld metal, optimizing the structure of weld collar.
     Researches on welding powder formula show that the temperature of liquid steel produced by thermit reaction is affected by the initial temperature of reactants, additives proportion, and FeO proportion in the iron oxide. If the initial reactants temperature increases 1℃, the liquid steel temperature increases 0.6℃. And If the additives proportion increases 1%, the liquid steel temperature decreases 25.7℃. In addition, the increase of FeO proportion in the iron oxide will lead to the decrease of liquid steel temperature. The reaction rate thermit reaction is affected by molten steel temperature, reactants particle size and particle size of additives. The higher the reaction temperature is, the faster the reaction rate is. If reactants particle size is appropriate, the reaction rate is the fastest. Larger or smaller reactants particle size can make the produced liquid substance penetrate the gap formed by welding powder fully, and results in the decrease of reaction rate. If the particle size of additives for 60 ~ 80 mesh, the additives can fill the reactants particle due to reduce the reaction rate and prolong the reaction time.
     Researches on sand mould show that the physical characteristics of sand mould are affected by raw materials and producing processes. Higher SiO2 mass fraction and lower mud mass fraction can improve the strength and refractoriness of sand mould. And higher amount of sodium silicate and compaction densities can improve the strength and refractoriness of sand mould as well. Drying temperature and holding time affect the strength of sand mould. The optimum drying process can be used for lower drying temperature with long time holding or higher drying temperature with short time holding. The concrete drying process should comprehensively consider the energy efficiency and time efficiency in the actual production situation. ZTK pouring system has good welding capabilities and joints performance, so it is recommended in thermit welding for large scale rails.
     Alumino-thermit welding powder with Ni and ZTK casting system are suitable for 75kg/mPG4 rail welding. The performance of welded joints as follows: the average tensile strength is 853MPa, static bending breaking load is 1759kN for rail head up and 1662kN for rail head down, physical fatigue is over two million cycles, and the hardness of weld metal is 334HB. So the joints are matched with 75kg/mPG4 hot-rolling rail steel.
引文
[1]董卫国,刘奇梅.钢轨无缝线路焊接技术现状[J].焊接,2000,3:37-39
    [2]广祖岩,高慧安.铁路无缝线路[M].北京:中国铁道出版社,2005:3-12
    [3]张末.铁路跨区间无缝线路[M].北京:中国铁道出版社,2000:7-21
    [4] Ueyama, Katsuyoshi,Fukada,ect. Improvement in fatigue strength of thermite welds on rails[J]. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society,2003.2,v21(1):87-94
    [5] Mutton, Alvarez. Failure modes in aluminothermic rail welds under high axle load conditions[J]. Engineering Failure Analysis,2004.4,v11(2):151-166
    [6] Kristan, Joseph. Advances in rail welding[J]. Railway Track and Structures. 2004.2,v100(n2):15-17
    [7]徐涌,贾国平,周清跃.法国、德国高速铁路钢轨的生产和使用技术[J].中国铁路,2001,4:49-54
    [8]雷宏微.钢轨现场焊接自控快速热处理设备的设计[D].硕士学位论文,四川成都,西南交通大学,1999
    [9] Steele, R. K.. Field Welding Of Rails[R]. Association Of American Railroads,Chicago,1985,12
    [10] O.Brien. Welding Handbook [C] . American Welding Society,Miami,1991
    [11]戴虹,吴细水.钢轨现代焊接技术装备综述[J].铁道建筑,2005,8:10-12
    [12]任德亮,李向国.无缝线路钢轨焊接技术[J].焊接技术,2003,32(5):4-5
    [13]刘利生,刘海军,张小卿.铁路无缝线路钢轨焊接技术的研究[J].石家庄铁道学院学报,2002,8:74-76
    [14]李东侠.钢轨接头铝热焊焊接质量的控制[J].铁道建筑,2005,5:70-71
    [15]赵东田.跨区间无缝线路现场铝热焊接技术[J].西部探矿工程,2003,5:97-98
    [16]刘多伟.浅谈铝热焊焊接钢轨技术山西建筑[J],2005,31(12):128-129
    [17]殷继友.秦沈客运专线跨区间无缝线路铺设综合技术研究[D].中南大学,2008
    [18]张春.无缝线路断轨施工及恢复处理[J].哈尔滨铁道科技, 2009,01:39-40
    [19] Kawada katsuzo, Aoyanagi kenji, Uchino koichi, etc.. Thermit welding method for rail[P], JP04118189, 1990
    [20] Couplet jean. Improvements to automatic-unplugging bushes for thermit welding crucibles[P], FR2624775A1, 1989
    [21]松本耕輔.控制车轮与钢轨间摩擦基本特性的评价[J].国外铁道车辆,2008,45(1):26-31
    [22]韩晓根,贾福虎.新型弹性减磨防脱护轮轨装置在小半径曲线上的使用[J].铁道学报,2007,31(11):40-43
    [23]董志洪. 21世纪钢轨钢的展望[J].钢铁,1999,34(8):73-74
    [24]周清跃,张银花,杨来顺等.钢轨的材质性能及相关工艺[M].北京:中国铁道出版社,2005:93-96
    [25]张银花,周清跃,崔建初. 1300MPa级在线热处理钢轨焊接及焊后热处理技术的研究[R].北京:铁道科学研究院,郑州铁路局,2005
    [26] Schroeder, L. C. and Poirier, D. R. The mechanical properties of thermite welds in premium alloy rails[J]. Material Science and Engineer, 1984, 63:1–21
    [27]崔成林,高松福,迟俊杰等.重载铁路用75kg/m含Cr钢轨使用性能及焊接技术试验研究-分报告之二[R].北京:铁道科学研究院,2008
    [28] R Moller, P Mutton, M Steinhorst. Improving the Performance of Aluminothermic Rail Welding Technology through Selective Alloying of the Rail Head[C]. The 7th International Heavy Haul Conference, Brisbane, 2001:331-338
    [29]崔成林,高松福,刘艳红等.钢轨铝热焊接工艺优化及新型珠光体焊剂研制[R].北京:铁道科学研究院,2006
    [30]姜斌,李向国,刘云涛.铁路无缝线路钢轨焊接技术[C] .第十一届全国结构工程学术会议论文集,2002:799-801
    [31]崔成林,高松福,迟俊杰等.国内外钢轨铝热焊接技术研究现状和发展[J] .铁道建筑,2009,06:99-103
    [32] Cyre. Concepts for improving the fatigue resistance of thermite rail welds[D]. University of llinois at Urbana-Champaign,2002
    [33]张新彬,王合春,韩秋红.高速铁路钢轨焊接技术[J] .石家庄铁道学院学报,2003,12:110-112
    [34]戴虹,吕其兵,骆德阳等.高速轨道焊接技术与装备的发展[J].电焊机, 2003,06:7-9
    [35]李力,邹立顺,高文会.钢轨铝热焊研究的应用与发展[C].铁道科学技术新进展——铁道科学研究院五十五周年论文集,2005:802-806
    [36] Chen Y, Lawrence F V, Barkan C P L,etc.. Weld defect formation in rail thermite welds[J]. Rail and Rapid Transit,2006,220:373-384
    [37]胡智博,李力,邹立顺等.秦沈客运专线钢轨铝热焊缺陷分析[J].铁道建筑,2003,10:3-4
    [38]李力,胡智博,邹立顺等.消除铝热焊剂中气孔的研究[J].铁道建筑,2003,10:10-11
    [39]范友岗.钢轨铝热焊接焊头伤损分析与防治措施[J].科技情报开发与经济,2007,8:266-267
    [40]杨云堂.钢轨铝热焊接应注意的要点[J].城市轨道交通研究,2007,5:61-64
    [41]唐晓梅.钢轨QPCJ铝热焊接技术浅析[J].山西建筑,2007,7:156-157
    [42]张伟娜,林哲,谭毅.预热时间对钢轨铝热焊焊缝组织和力学性能的影响[J].机械工程材料,2008,4:19-22
    [43]陈辉,苟国庆,涂铭旌.钢轨铝热焊工艺及焊接接头性能研究[J].电焊机, 2008,8:32-34
    [44]薛中全.轨道铝热焊质量的主要影响因素及防范措施[J].中国设备工程, 2009,07:45-46
    [45] Liu W., Sun J., and Markase M. J.. Progress on the Development of a Squeeze Thermite Process[C]. Proceedings of the International Symposium on Rail Steels,1994:145-153.
    [46] Lonsdale C. P.. An Evaluation of Grain Refinement Techniques in ThermiteRail Welds[D]. Case Western Reserve University,1993
    [47] Fry,G. T.. A Modified Thermite Rail Welding Procedure[R]. Association of American Railroads Report,Chicago,1993
    [48] Siska,P. C.. The Effect of Sonic Power Vibrations on Solidifying Thermit Welds[D]. The Ohio State University,1980
    [49] Schroeder L. C.,Poirier. Improving the Structure and Properties of Thermite Weld Metal[J]. Materials Science and Engineering,1984:23-33
    [50]中国机械工程学会铸造分会.铸造手册-铸钢[M].北京:机械工业出版社,2002:24-28
    [51]高义民,李继文,张祖临.硫化物夹杂形态对硅锰钢冲击韧性的影响[J] .西安交通大学学报,2000,03:76-79
    [52]李廷忠,罗吉荣,万里.两种脱氧剂对铸钢件夹杂物和低温冲击性能的影响[J].铸造,2009,02:50-53
    [53]刘兵,孟宪嘉,王永钦.铸钢件裂纹与钢中夹杂物关系及减少措施[J].铸造技术,2005,10:9-11
    [54]刘城.快速凝固技术的应用与发展[J].广东有色金属学报,2005,04:41-44
    [55]王均.合金元素对高铬耐磨铸铁凝固组织和亚临界硬化行为的影响[D].四川大学,2003
    [56]严伟林.铸态复相钢的成分设计及其性能的研究[D].广西大学,2003
    [57]叶庆佟.钢轨焊头静弯破断荷载标准的研究[J].铁道部标准计量研究所,1988,10:1-5
    [58]管德清.焊接钢结构疲劳强度与寿命预测理论的研究[D].湖南大学,2003
    [59]冯兆龙. LTTE改善焊接接头疲劳强度及其残余应力分布研究[D].天津大学,2005
    [60]史振民,巩育军.热力学方法是如何处理平衡问题的[J].辽宁教育学院学报,1997,5:83-85
    [61]谭娜.合金化自蔓延法制备陶瓷内衬复合钢管的研究[D].辽宁工程技术大学,2002
    [62]黄泽铣.热电偶材料发展概况和基本问题[J].仪表材料,1980,02:30-37
    [63]颜受琨.石棉保温材料的应用和环境保护[J].电力建设,1990,9:32-35
    [64]崔成林,高松福,高振坤等.钢轨铝热焊工艺优化和焊后热处理工艺研究[R].北京:铁道科学研究院,2007
    [65]李艳芬,刘向东.微波硬化对水玻璃砂性能的影响[J].粘接,2004,5:
    [66]卢晨,朱纯熙.脱水水玻璃的结构及强度[J].铸造,1998,2:22-24
    [67]韩文静,赵治平,关键等.水玻璃砂残留强度的形成及改善途径[J].铸造,2001,12:28-29
    [68]梁志霖,沈献勤.水玻璃砂粘结桥形貌的扫描电镜研究[J].工业工程,1994,4:1-8
    [69]斯松华,王豫.加钒中碳中铬合金铸钢的试验研究[J].华东冶金学院学报,2002,7:8-11
    [70]刘杰伦.对我国铁路重载运输发展的探讨[J].铁道运输与经济,2006,28(12):29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700