用户名: 密码: 验证码:
船体精度控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶精度控制技术是提高船舶质量,降低生产成本的主要手段。国外先进造船国家已经在船舶精度控制方面有所突破,日立造船公司有明工厂已经做到从下料直到大合拢,实现了分段全方位无余量,均以补偿量代替余量,并且已从船体扩展到舾装、管系,达到了全方位无余量。国内精度控制技术也已开展多年,但目前大多数船厂仍然立足于分段无余量上船台,对于从零件下料即开始以补偿量代替余量的全过程精度控制技术研究推广程度较差,缺乏对补偿量的理论研究。
     本论文对船舶精度控制关键技术进行了重点研究。
     一,运用尺寸链原理,解决误差传递以及公差分配问题,然后将尺寸链原理应用到船舶重量重心精度控制数据库中。运用船舶重量重心精度控制数据库,船厂可以根据尺寸链的误差传递及公差分配计算方法对重量重心位置进行监控和调整。
     二,应用热弹塑性有限元方法研究了焊接角变形问题,并进行了实验验证。如何施加弹性反变形是这一部分研究的主要内容。本文将利用MSC. software开发的软件MSC. Marc进行焊接结构的热弹塑性有限元模拟,对不同面板厚度焊接结构在不同线能量条件下进行热弹塑性有限元模拟。通过计算结果分析,焊接前施加弹性反变形的结构在焊接后角变形趋于零。通过焊接试验验证了该结论。
     三,介绍了船舶结构尺寸链中补偿环的设置与计算,并且建立了补偿量数据库,同时应用BP神经网络技术对焊接补偿量进行建模研究。建立了部分零部件加工变形规律的数学模型,为部分零部件加工所需补偿量的设计提供了定量依据,为全船实施零部件补偿量的精度控制方法奠定了基础。
Ships' accuracy control technique is an important means to ensure ships' quality and reduce the cost of production. Many advanced countries have improved in ships' accuracy management. Youming shipyard in Japan has no residual quantity in all blocks during the manufacturing. Domestic ships' accuracy control technique has been developed for many years, but most shipyards have no residual quantity only during producing blocks. Ships' accuracy control technique has been extended lowly, which has only compensated quantity instead of residual quantity during whole ships' production. And the research of compensated quantity is deficient.This paper has researched the system of ships' accuracy control technique and applies size chain principle to ships' accuracy management.The paper has managed the problems of error transfer and tolerance assign of ships' dimension by the principle. We have built the database about ships' weight and centre of gravity by the probabilistic technique of the principle. Shipyards can monitor and control ships' weight and centre of gravity during the whole production from design to complete.The paper has researched weld distortion by thermal elasto-plastic finite element techniques, and carried out an experiment. The main content is how to force elastic reversed angular distortion. This paper has simulated the welding process of the T-Joint Fillet Structures used thermal elasto-plastic finite element techniques by MSC's MSC.Marc/ MSC.Patran. The study has calculated the distortion of the structures which are different thickness and are thrown different heat flow. According to analysis of calculating result, the structures thrown elastic reversed angular distortion before welding have no angular distortion after welding. An experiment has been carried out in Dalian Shipyard that prove elastic reversed angular distortion is effective means to control weld distortion in ships' accuracy management.The research has introduced the compensation database simply and used the practice data from Dalian Shipyard to study mathematical models construction for weld shrinkage by BP neural network. This paper has built the mathematical model calculating components compensation value by welding distortion.
引文
[1] 「工作精度」特集.日本造船学会志,第833号
    [2] Richard Lee Storch, Sethipong Anutarasoti, Smith Sukapanpotharam. Implementation of Variation Merging Equations for Production Data Collections in Accuracy Control: A Case Study[J]. Journal of Ship Production, 1999, 15(1): 21-31
    [3] Yasuhisa Okumoto. Dimensional Error of Assembled Blocks[J]. Journal of Ship Production, 2001, 17(1): 8-15
    [4] 野本敏治,武市祥司,青山和浩.溶接变形予测基精度管理関研究.日本造船学会论文集,第181号,249~260
    [5] 武市祥司,青山和浩,野本敏治.精度管理用位置決的作业支援関研究.日本造船学会论文集,第188号,399~407
    [6] 奥本泰久, 存濑晃平,田中朝子.遗伝的船殻搭载日本造船学会论文集,第188号,553~558
    [7] 山川武人.溶接变形事前对策·後处理 第1回 溶接变形発生.溶接技术,1999,5:140~144
    [8] 山川武人.溶接变形事前对策·後处理 第2回 溶接变形种类变形量予测.溶接技术,1999,6:143~148
    [9] 山川武人.溶接变形事前对策·後处理 第3回 溶接变形事前对策.溶接技术,1999,7:148~152
    [10] George J. Bruce, M. Z. Yuliadi, A. Shahab. Towards a Practical Means of Predicting Weld Distortion. Tournal of Ship Production. 2001. 17 (2), 62~68
    [11] 叶家玮.船体建造测量及数据处理技术,华南理工大学出版社,2001
    [12] 薛忠明,曲文卿,柴鹏,张彦华.焊接变形预测技术研究进展[J].焊接学报,2003,24(3):87-91
    [13] Watana M, Satoh K. Fundamental study on buckling of thin steel plate due to bead-welding[J]. Journal of Japan Welding Society, 1959, 27(6): 13-20
    [14] Taniguchi C. Out-of-plane distortion caused by fillet welds in aluminum[D]. Master' s thesis. MIT, Cambridge, Mass, 1972
    [15] Satoh K, Terasaki T. Effect of welding conditions on residual stress distributions and welding deformation in welded structures materials[J]. Journal of Japan Welding Society, 1976,45(1):42-53
    [16] Karlsson L , Jonsson M, Lindgren L E, et al. Residual stresses and deformations in a welded thin-walled pipe[J]. Pressure Vessels and Piping Division, 1989,173(7):23-27
    [17] Masubuchi K. Prediction and control of residual stresses and distortion in welded structures[J]. Welding Research Abroad, 1997, 43(6-7):2-16
    [18] McDill J M J, Oddy A S, Reed R C. Predicting residual stress and distortion when welding aeroengine alloys [J]. Canadian Aeronautics and Space Journal, 1998, 44(2): 68-72
    [19] Teng T L Analysis of residual stresses and distortions in T-joint fillet welds[J]. International Journal of Pressure Vessels and Piping, 2001, 78(8): 523-528
    [20] Ueda Y, Ma N X. Expression of inherent strain in form of form of function and its estimation[J]. Journal of the Japan Welding Society, 1993,11(1): 189-198
    [21] Koji Gotoh, Masahiro Toyosada, Shoji Takechi. A practical estimation method of the skin plate distortion derived from fillet weld.[J]. Japan Shipbuilding Acad. Paper Volume2001,189:291-298
    [22] A. Bachorski, M. J. Painter, A. J. Smailes. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal of Materials Processing Technology(1999), 92-93:405-409
    [23] Seung II Seo, Chang Doo Jang. A Study on the Prediction of Deformations of Welded Ship Structures [J]. Journal of Ship Production, 1999,15(2) :73~81
    [24] Daniewicz S R, Mc Aninch M D, McFarland B. Application of distortion control technology during fabrication of large offshore structures[C]. Proc. Of AWS/ORNL International Conference on Modeling and Control of Joining Processes, 1993
    [25] Tso-Liang Teng, Chin-Ping Fung, Peng-Hsiang Chang. Analysis of residual stresses and distortions in T-joint Fillet welds[J]. International Journal of Pressure Vessels and Piping, 2001,78:523-538
    [26] O. A. Vanli, P. Michaleris. Distortion Analysis of Welded Stiffeners. Journal of Ship Production, 2001, 17 (4) : 226~240
    [27] A. Bachorski, M. J. Painter, A. J. Smailes, et al. Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach[J]. Journal Materials Processing Technology, 1999, 92-93: 405-409
    [28] Dean Deng, Hidekazu Murakawa, Yukio Ueda. Theoretical Prediction of Welding Distortion Considering Position and Gap Between Parts[J]. International Journal of Offshore and Polar Engeering, 2004, 14(2): 138-144
    [29] Deo MV, Michaleris P, Sun J. Prediction of Buckling Distortion of Welded Structures. Science and Technology of Welding and Joining, 2003, 8 (1): 55-61
    [30] 田锡唐,顾福明,高进强.大型圆柱形壳体上圆形焊缝的焊接变形[J].焊接学报,1996,18(1):50-56
    [31] 汪建华,戚新海,钟小敏等.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65 .
    [32] 汪建华,陆皓.预测焊接变形的残余塑性应变有限元方法[J].上海交通大学学报,1997,31(4):53-56
    [33] 汪建华,魏良武.焊接变形和残余应力预测理论的发展遗应用前景(1)[J].焊接,2001,9:5-7
    [34] 汪建华,魏良武.焊接变形和残余应力预测理论的发展遗应用前景(2)[J].焊接,2001,10:4-6
    [35] 汪建华,陆皓.焊接残余应力形成机制与消除原理若干问题的讨论[J].焊接学报,2002,23(3):75-79
    [36] 魏良武,汪建华,陆皓.汽车制造中的焊接变形预测[J].焊接学报,2004,15 (13): 1218-1221
    [37] 马继,陆皓,汪建华.预测焊接变形几种方法的比较[J].造船技术,2002,1, 27-29
    [38] 谢雷,罗宇,谢志勇等.基于固有应变的大型焊接结构变形的预测[J].焊接学报,2004,25(2):107-110
    [39] 李冬青,孟庆国,陶军等.焊接动态位移场的建模与数值模拟[J].焊接,2002, 2:13-15
    [40] 刘黎明,梁国俐,刘玉君等.基于人工神经网络的船舶告强度钢焊接变形分析预测[J].焊接学报,2002,23(1):27-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700