用户名: 密码: 验证码:
铜及硫化银纳米添加剂摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了铜、硫化银纳米微粒作为润滑油(剂)添加剂时的摩擦学性能,考察其作为添加剂时的减摩抗磨作用机理。
     (1)铜纳米微粒和二氧化硅纳米材料作为润滑油添加剂时具有良好的润滑性能已被大量研究证实。由此我们采用溶胶凝胶法制备了二氧化硅担载包覆铜纳米微粒的复合材料,考察其作为水基添加剂时的摩擦学性能。以五水合硫酸铜为铜源,以水合肼为还原剂,氨水调节pH值,制备铜溶胶。在铜溶胶中加入巯基丙基3甲氧基硅烷的无水乙醇溶液。室温下搅拌反应8h以上。得到Cu/SiO_2复合纳米材料。所得复合材料为二氧化硅担载包覆铜的结构,铜纳米微粒均匀担载在网状二氧化硅中,在铜纳米微粒表面有一层二氧化硅包覆,有从而效阻止铜的氧化和团聚。分别采用红外光谱、X射线粉末衍射仪、透射电子显微镜、紫外可见分光光度计对复合纳米材料的尺寸、形貌和结构进行表征。深入系统研究Cu/SiO_2复合纳米材料作为水基润滑添加剂的摩擦学行为。通过SEM、EDS及XPS对磨斑表面进行了分析,探讨了其摩擦作用机理。结果表明:Cu/SiO_2复合纳米材料作为水基添加剂具有良好的减摩抗磨性能和极压性能,其在摩擦过程中形成的沉积膜包含有Cu及少量FeS、FeSO_4和SiO_2。
     (2)采用原位表面修饰技术在水相中制备了稳定的聚乙二醇单甲醚黄原酸盐修饰的水溶性铜纳米微粒,所得纳米微粒粒径均匀,无团聚现象。并以所得到的聚乙二醇单甲醚黄原酸修饰铜纳米微粒作为水基添加剂对其摩擦学性能进行考察。结果表明:聚乙二醇单甲醚黄原酸修饰铜纳米微粒作为蒸馏水添加剂时在含量为0.1%时即能有效提高其承载能力。当聚乙二醇单甲醚黄原酸修饰铜纳米微粒添加量为0.5wt%时,蒸馏水的PB值即增加到206N,当添加量为5wt%时,PB值增加到了696N。在0.5wt%—3wt%的范围内,随着Cu纳米微粒添加量的增加,其PD值也逐渐增大。当浓度增大到3wt%时,其PD值达到8000N以上。EDS及XPS结果显示在含有铜纳米微粒蒸馏水润滑下,摩擦过程中在磨斑表面形成了主要含有Cu及少量FeS和FeSO_4的润滑膜。EDX结果显示在磨斑表面磨痕较深处对应的铜元素含量较高,这表明铜元素对磨斑有修复作用。在摩擦过程中形成的铜润滑膜,能有效降低摩擦接触压,避免直接的钢钢接触,从而改善蒸馏水的摩擦学性能。
     (3)合成辛烷基苯酚聚氧乙烯醚黄原酸修饰的水溶性单分子层修饰铜纳米微粒,考察其作为蒸馏水添加剂时的摩擦学性能。研究了添加剂含量、转速、载荷改变时辛烷基苯酚聚氧乙烯醚黄原酸修饰铜纳米微粒作为水基添加剂的摩擦学性能。结果表明:辛烷基苯酚聚氧乙烯醚黄原酸修饰铜纳米微粒作为水基添加剂具有较好的减摩抗磨性能。在所选择的添加量范围内,在相同条件下,均能明显提高蒸馏水的减摩抗磨能力。添加量为0.3wt%时具有相对最优的摩擦学性能,此时在转速为1450rpm、1200rpm、800rpm、400rpm时都具有优良的润滑减摩抗磨性能。转速较高时,摩擦系数和磨斑直径基本随着载荷的增加而增加。在低转速时,摩擦系数随着载荷的增加而降低。磨斑直径随载荷增加变化不大。
     (4)通过在油胺中高温分解油酸铜的方法,设计制备无硫、无磷环境友好纳米Cu润滑油添加剂,FTIR结果显示所得铜纳米微粒表面同时存在油酸和油胺。并将所得到铜纳米微粒作为PAO6添加剂考察其摩擦学性能。结果表明:所得Cu纳米微粒作为润滑油添加剂时具有较好的抗磨性能,但并不能提高PAO6的承载能力。SEM及EDS结果显示,在磨斑表面有铜元素存在,这表明在摩擦过程中有铜沉积在摩擦接触区域,形成低剪切强度的润滑膜。由此提高基础油润滑性能。
     (5)采用绿色的无溶剂热分解单源前驱体方法制备了不同粒径的硫化银纳米微粒,并考察了其作为液体石蜡添加剂时的摩擦学性能。在制备反应过程中不需要溶剂及表面活性剂,因此是一种绿色且简便易行的制备方法。通过热分解具有不同烷基链长的黄原酸银前驱体可以控制所得硫化银纳米微粒粒径。当前驱体从辛烷基黄原酸银到十六烷基黄原酸银和二十四烷基黄原酸银时,热分解后所得硫化银纳米微粒粒径逐渐减小。硫化银纳米微粒的粒径随着前驱体中烷基链长的增长而减小。对其形成机理进行了推测:在前驱体分解的时候,有一部分黄原酸配体从前驱体中解离出来,化学吸附在生成的硫化银纳米核表面。随着前驱体烷基链长的增加,解离出来的配体能更有效的阻止纳米微粒的生长。所得纳米微粒随着前驱体链长的增加依次减小。将所得硫化银纳米微粒作为液体石蜡添加剂采用四球摩擦磨损试验机考察其摩擦学性能。研究结果表明:三种粒径硫化银纳米微粒均能提高基础油的摩擦学性能,以平均粒径约为10纳米的硫化银纳米微粒作为添加剂时具有最好的减摩抗磨效果。
In this dissertation, copper and silver sulfide nanoparticles were synthesized by different methods. Thetribological properties of silver sulfide and copper nanomaterials as lubricant additive were studied toexplore the anti-wear and friction reducing mechanism.
     (1) Cu/SiO_2nanocomposite was synthesized by sol–gel method. The size, morphology and phasestructure of as-prepared Cu/SiO_2nanomaterials were analyzed by means of XRD, TEM and UV-vis wasmeasured in relation to surface Plasmon excitation of Cu particles. The tribological properties ofas-synthesized Cu/SiO_2nanocomposite as an additive in distilled water were investigated with a four-ballmachine, and the morphology and elemental composition of worn steel surfaces were examined. Resultsshow that as-synthesized Cu/SiO_2nanocomposite as a lubricant additive is able to significantly improve thetribological properties of distilled water. A protective and lubricious film composed of Cu and a smallamount of FeS, FeSO_4and SiO_2is formed on steel sliding surfaces lubricated by distilled water containingCu/SiO_2nanocomposite. During friction process Cu nanoparticles can be released from Cu/SiO_2nanocomposite to fill up micro-pits and grooves of steel sliding surfaces, resulting in greatly reducedfriction and wear of steel frictional pair via self-repairing. The state and thickness of the film formed on theworn surface is closely related to applied load; and Cu/SiO_2nanocomposite might be a promisingwater-based lubricant additive for steel-steel contact subjected to moderate load.
     (2) Cu nanoparticle surface-capped by methoxylpolyethyleneglycol xanthate was synthesized usingin-situ surface-modification technique. The tribological properties of as-synthesized Cu nanoparticle as anadditive in distilled water were investigated with a four-ball machine, and the morphology and elementalcomposition of worn steel surfaces were examined using XPS and SEM. Results show that as-synthesizedCu nanoparticle as a water-based lubricant additive is able to significantly improve the tribologicalproperties of distilled water, which is ascribed to the deposition of Cu nanoparticles on steel slidingsurfaces giving rise to a protective and lubricious Cu layer thereon. The tribological properties and antiwearmechanism of as-prepared surface-capped Cu nanoparticle as an additive in distilled water were discussed.The surface-capped Cu nanoparticles as additive in distilled water (mass fraction5%) can increase the PB values from88N of distilled water to696N.
     (3) Wate-soluble Cu nanoparticle surface-capped by po1yoxyethylene octylphenol ether xanthate wassynthesized using in-situ surface-modification technique. The tribological properties of as-synthesized Cunanoparticle as an additive in distilled water were investigated with a four-ball machine. We investigatedtribological properties of copper nanoparticles as water-based additive with the additive concentration,rolling speed and load. The results show that po1yoxyethylene octylphenol ether xanthate modified coppernanoparticles as distilled water additives can significantly improve the carrying capacity and anti-wear ofdistilled water. The surface-capped Cu nanoparticles as additive in distilled water (mass fraction0.3%) canincrease the tribological properties of distilled water when rolling speed are400rpm,800rpm,1200rpm,1450rpm.
     (4) We prepared Cu nanoparticles by thermolysis of copper oleate precursor in oil amine under240℃.The tribological properties of as-prepared Cu nanoparticles as lubricating additive in PAO6wereinvestigated using a four-ball friction and wear tester. Results show that as-synthesized Cu nanoparticles asa lubricant additive is able to significantly improve the tribological properties of PAO6. A protective andlubricious film composed of Cu is formed on steel sliding surfaces lubricated by PAO6containing Cunanoparticles. During friction process Cu nanoparticles can fill up micro-pits and grooves of steel slidingsurfaces, resulting in greatly reduced friction and wear of steel frictional pair via self-repairing.
     (5) Ag_2S nanoparticles with different diameters were prepared by solventless thermolysis of silveroctyl xanthate, silver hexadecyl xanthate and silver carnaubyl xanthate as single-source precursors.As-prepared Ag_2S nanoparticles were characterized by transmission electron microscopy, x-ray diffraction,and Fourier transform infrared spectrometry. Possible growth mechanism of Ag_2S nanoparticles wasspeculated. In the meantime, the tribological properties of as-prepared Ag_2S nanoparticles as additives inliquid paraffin were evaluated using a four-ball friction and wear tester. It was found that Ag_2Snanoparticles prepared from silver carnaubyl xanthate had the smallest mean diameter of10nm, while thesame products obtained from silver octyl xanthate and silver hexadecyl xanthate had a larger meandiameter of50nm and20nm. The three types of as-prepared Ag_2S nanoparticles as additives were all ableto improve the friction-reducing and antiwear properties of liquid paraffin, and as-prepared Ag_2Snanoparticles of the smallest average size possessed the best tribological properties for steel-steel pair. This could be because Ag_2S nanoparticles with a smaller mean diameter are easier to be deposited on slidingsurfaces and exert self-repairing function more efficiently.
引文
[1] Da ic P, Franek F, Assenova E, et al. International standardization and organizations in the field oftribology[J]. Industrial Lubrication and Tribology,2003,55(6):287-291.
    [2] Jost H P. Tribology Micro&Macro Economics: A Road to Economic Savings[J]. Tribology andLubrication Technology,2005,61(10):18.
    [3] Binnig. G.&Rohrer, H.:1986, Scanning tunneling microscopy, IBM Journal of Research and Develop-ment.30,355-369
    [4] Tersoff J, Hamann D R. Theory of the scanning tunneling microscope[J]. Physical Review B,1985,31(2):805.
    [5] Zhong Q, Inniss D, Kjoller K, et al. Fractured polymer/silica fiber surface studied by tapping modeatomic force microscopy[J]. Surface Science Letters,1993,290(1): L688-L692.
    [6] Giessibl F J. Advances in atomic force microscopy[J]. Reviews of modern physics,2003,75(3):949.
    [7] Zlatanova J, Lindsay S M, Leuba S H. Single molecule force spectroscopy in biology using the atomicforce microscope[J]. Progress in biophysics and molecular biology,2000,74(1):37-61.
    [8] Idziak S H J, Safinya C R, Hill R S, et al. The X-ray surface forces apparatus: Structure of a thinsmectic liquid crystal film under confinement[J]. SCIENCE-NEW YORK THEN WASHINGTON-,1994:1915.
    [9] Mazdiyasni K S, Dolloff R T, Smith J S. Preparation of High‐Purity Submicron Barium TitanatePowders[J]. Journal of the american Ceramic Society,2006,52(10):523-526.
    [10]张立德,牟季美.纳米材料学[M].辽宁科学技术出版社,1994.
    [11]李玲,材料科学,向航.功能材料与纳米技术[M].化学工业出版社,2002.
    [12]黄惠忠,材料学.纳米材料分析[M].化学工业出版社,2003.
    [13] Awschalom D D, McCord M A, Grinstein G. Observation of macroscopic spin phenomena innanometer-scale magnets[J]. Physical review letters,1990,65(6):783-786.
    [14]张池明.超微粒子的化学特性[J].化学通报,1993,8:20.
    [15] Post P. Industry&additive news[J].1986.
    [16] Korff J, Fessenbecker A. Additives for biodegradable lubricants[J]. NLGI spokesman,1993,57(3):19-24.
    [17]欧阳平,陈国需,李华峰.传统润滑油抗磨剂的研究趋势[J].润滑与密封,2006(006):165-167.
    [18] Bakunin V N, Suslov A Y, Kuzmina G N, et al. Synthesis and application of inorganic nanoparticles aslubricant components–a review[J]. Journal of Nanoparticle Research,2004,6(2):273-284.
    [19] Chen L, Chen Y B, Wu L M. Synthesis of uniform Cu2S nanowires from copper-thiolate polymerprecursors by a solventless thermolytic method[J]. Journal of the American Chemical Society,2004,126(50):16334-16335.
    [20] Chen S, Liu W. Oleic acid capped PbS nanoparticles: synthesis, characterization and tribologicalproperties[J]. Materials chemistry and physics,2006,98(1):183-189.
    [21] Chen S, Liu W, Yu L. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwearability of the prepared nanoparticles as additive in liquid paraffin[J]. Wear,1998,218(2):153-158.
    [22] Chen S, Liu W. Characterization and antiwear ability of non-coated ZnS nanoparticles andDDP-coated ZnS nanoparticles[J]. Materials research bulletin,2001,36(1):137-143.
    [23] Chinas-Castillo F, Spikes H A. Mechanism of action of colloidal solid dispersions[J]. Journal oftribology,2003,125(3):552-557.
    [24] Ding Y, Xu B, Guo R, et al. The preparation of silver sulfide nanoparticles in lamellar liquid crystaland application to lubrication[J]. Materials research bulletin,2005,40(4):575-582.
    [25] Gu C X, Zhu G J, Tian X Y, et al. Tribological Effects of Nano-Copper with Different Diameters inLubricants[J]. Advanced Materials Research,2010,123:1059-1062.
    [26] Hu Z S, Lai R, Lou F, et al. Preparation and tribological properties of nanometer magnesium borate aslubricating oil additive[J]. Wear,2002,252(5):370-374.
    [27] Ji X, Chen Y, Zhao G, et al. Tribological Properties of CaCO3Nanoparticles as an Additive in LithiumGrease[J]. Tribology Letters,2011,41(1):113-119.
    [28] Li B, Wang X, Liu W, et al. Tribochemistry and antiwear mechanism of organic–inorganicnanoparticles as lubricant additives[J]. Tribology Letters,2006,22(1):79-84.
    [29] Li J S, Hao L F, Xu X H, et al. Preparation, Characterization and Tribological Evaluation of CalciumBorate Nanoparticles as Lubricant Additives[J]. Advanced Materials Research,2011,148:1047-1056.
    [30] Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particleson a tribologically stressed surface[J]. Tribology letters,2004,17(4):961-966.
    [31] Liu Q, Xu Y, Shi P, et al. Analysis of self-repair films on friction surface lubricated with nano-Cuadditive[J]. Journal of Central South University of Technology,2005,12(2):186-189.
    [32] Li W, Zheng S, Cao B, et al. Friction and wear properties of ZrO2/SiO2composite nanoparticles[J].Journal of Nanoparticle Research,2011,13(5):2129-2137.
    [33] Li X, Cao Z, Zhang Z, et al. Surface-modification in situ of nano-SiO2nd its structure and tribologicalproperties[J]. Applied Surface Science,2006,252(22):7856-7861.
    [34] Mo Y, Tao D. Tribological performance of Nano-Tin as lubrication additives used in steel-coppertribo-pair[J]. Industrial Lubrication and Tribology,2011,63(2):72-77.
    [35] Peng D X, Kang Y, Hwang R M, et al. Tribological properties of diamond and SiO2nanoparticlesadded in paraffin[J]. Tribology international,2009,42(6):911-917.
    [36] Sunqing Q, Junxiu D, Guoxu C. Tribological properties of CeF3nanoparticles as additives inlubricating oils[J]. Wear,1999,230(1):35-38.
    [37] Rapoport L, Lvovsky M, Lapsker I, et al. Friction and wear of bronze powder composites includingfullerene-like WS2nanoparticles[J]. Wear,2001,249(1):149-156.
    [38] Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2nanoparticles under mixedlubrication[J]. Wear,2003,255(7):785-793.
    [39] Rapoport L, Leshchinsky V, Lvovsky M, et al. Superior tribological properties of powder materialswith solid lubricant nanoparticles[J]. Wear,2003,255(7):794-800.
    [40] Rapoport L, Nepomnyashchy O, Lapsker I, et al. Behavior of fullerene-like WS2nanoparticles undersevere contact conditions[J]. Wear,2005,259(1):703-707.
    [41] Samorodnitzky-Naveh G R, Redlich M, Katz A, et al. Towards medical applications of self-lubricatingcoatings with fullerene-like (IF) WS2nanoparticles[J]. International Journal of Nano and Biomaterials,2010,3(2):140-152.
    [42] Wang F, Bi Q L, Wang X B, et al. Sliding friction and wear performance of Ti6Al4V in the presence ofsurface-capped copper nanoclusters lubricant[J]. Tribology International,2008,41(3):158-165.
    [43] Wang L, Liu W, Wang X. The Preparation and Tribological Investigation of Ni–P Amorphous AlloyNanoparticles[J]. Tribology Letters,2010,37(2):381-387.
    [44] Wu Y Y, Tsui W C, Liu T C. Experimental analysis of tribological properties of lubricating oils withnanoparticle additives[J]. Wear,2007,262(7):819-825.
    [45] Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-modified TiO2nanoparticle as anadditive in liquid paraffin[J]. Wear,1997,213(1):29-32.
    [46] Yu H L, Xu Y, Shi P J, et al. Tribological properties and lubricating mechanisms of Cu nanoparticles inlubricant[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):636-641.
    [47] Zhao Q, Bahadur S. A study of the modification of the friction and wear behavior of polyphenylenesulfide by particulate Ag2S and PbTe fillers[J]. Wear,1998,217(1):62-72.
    [48] Zhang M, Wang X, Liu W, et al. Performance and anti-wear mechanism of Cu nanoparticles aslubricating oil additives[J]. Industrial Lubrication and Tribology,2009,61(6):311-318.
    [49] Zhou J, Yang J, Zhang Z, et al. Study on the structure and tribological properties of surface-modifiedCu nanoparticles[J]. Materials Research Bulletin,1999,34(9):1361-1367.
    [50] Zhou J, Wu Z, Zhang Z, et al. Study on an antiwear and extreme pressure additive of surface coatedLaF3nanoparticles in liquid paraffin[J]. Wear,2001,249(5):333-337.
    [51] Xiaodong Z, Xun F, Huaqiang S, et al. Lubricating properties of Cyanex302‐modified MoS2microspheres in base oil500SN[J]. Lubrication Science,2007,19(1):71-79..
    [52] Yang M D, Zhang J Y, Sun M, et al. Preparation of Cu Nanoparticle Additive in[BMIm] NTf (2) IonicLiquid and Evaluation of Its Tribological Behavior[J]. Materials Protection(China),2012,45(2):22-24.
    [53] Chen Q, Zheng S, Yang S, et al. Enhanced tribology properties of ZnO/Al2O3composite nanoparticlesas liquid lubricating additives[J]. Journal of sol-gel science and technology,2012:1-8.
    [54] Song X, Zheng S, Zhang J, et al. Synthesis of monodispersed ZnAl2O4nanoparticles and theirtribology properties as lubricant additives[J]. Materials Research Bulletin,2012,47(12):4305-4310.
    [55] Gara L, Zou Q. Friction and Wear Characteristics of Water-Based ZnO and Al2O3Nanofluids[J].Tribology Transactions,2012,55(3):345-350.
    [56] Padgurskas J, Rukuiza R, Prosy evas I, et al. Tribological properties of lubricant additives of Fe, Cuand Co nano-particles[J]. Tribology International,2013,60:224-232.
    [57] Wang H, Wang Y M. Tribological Performance of AlN Nanoparticles as Lubricating Oil Additive[J].Advanced Materials Research,2012,366:238-242.
    [58] Yidong Z. Focus on self-repairing performance and mechanism of Cu-DDP additive in base lubricatingoil[J]. Industrial Lubrication and Tribology,2012,64(1):11-15.
    [59] Wang Y M, Wang H. Study on the Tribological Performance of AlN Nanoparticles Additive[J].Advanced Materials Research,2013,661:33-36.
    [60] Zhang Z. Synthesis and Tribological Properties of Surface-Modified Lead Nanoparticles[J].Surfactants in Tribology,2013,3:33.
    [61]贾华东,柳刚,范荣焕.纳米材料作为润滑添加剂的研究回顾及目前的发展动向与展望[J].润滑与密封,2006,3:181-184.
    [62]欧忠文,刘维民,刘朝辉,等.超分散稳定纳米硫化锌油样的摩擦学综合评价及作用机制研究[J].润滑与密封,2008,8:1-5.
    [63]谢学兵,陈国需,孙霞,等.润滑油纳米TiO2添加剂的摩擦自修复及其性能研究[J].中国表面工程,2008,21(2):36-39.
    [64]董凌,陈国需,李华峰,等. SiO2/SnO2复合纳米微粒添加剂的摩擦学性能及其对磨损表面的修复作用研究[J].摩擦学学报,2004,24(6):517-521.
    [65]周立涛,刘伟. Al32O,六方BN纳米润滑油的摩擦学性能试验研究[J].润滑与密封,2007,32(2):159-161.
    [66]肖舟,侯根良,苏勋家,等.载荷对硅酸盐/纳米铜复合添加剂摩擦学性能的影响[J].润滑与密封,2008,8:58-61.
    [67]夏会芳,徐建生,周红星.纳米铜作润滑油添加剂的研究[J].材料开发与应用,2008,23(002):40-41.
    [68]欧雪梅,葛长路,汪剑,等.润滑油添加剂分散纳米铜的摩擦学性能[J].中国矿业大学学报,2005,34(5):640-643.
    [69]林冠宇,王淑荣,王立朋. MoS2基复合薄膜润滑球轴承在真空环境下的摩擦性能研究[J].摩擦学学报,2008,28(4):377-380.
    [70]郭志光,顾卡丽,徐建生,等.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-321.
    [71]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [72] Kroto H W, Heath J R, O'Brien S C, et al. C60: buckminsterfullerene[J]. Nature,1985,318(6042):162-163.
    [73] Bo F. Relationship between the structure of C60and its lubricity: A review[J]. Lubrication Science,1997,9(2):181-193.
    [74] Kr tschmer W, Lamb L D, Fostiropoulos K, et al. C60: a new form of carbon[J]. Nature,1990,347(6291):354-358.
    [75] Blau P J, Haberlin C E. An investigation of the microfrictional behavior of C60particle layers onaluminum[J]. Thin Solid Films,1992,219(1):129-134.
    [76] Gupta B K, Bhushan B, Capp C, et al. Materials characterization and effect of purity and ionimplantation on the friction and wear of sublimed fullerene films[J]. Journal of materials research,1994,9(11):2823-2838.
    [77]杨鹤,王闽南,王锋,等.金属磨损自修复技术(ART)在100台大功率内燃机车上的应用试验[J][J].材料保护,2004,37(07):60-63.
    [78]张治军.表面修饰纳米微粒的化学制备及摩擦学行为的研究[D].兰州:中国科学院兰州化学物理研究所,1996.
    [79] Zhou J, Wu Z, Zhang Z, et al. Tribological behavior and lubricating mechanism of Cu nanoparticles inoil[J]. Tribology Letters,2000,8(4):213-218.
    [80] Sun L, Zhang Z J, Wu Z S, et al. Synthesis and characterization of DDP coated Ag nanoparticles[J].Materials Science and Engineering: A,2004,379(1):378-383.
    [81]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2004,20(12):1157-1160.
    [82]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2).185–187.
    [83] Zhao Y, Zhang Z, Dang H. Fabrication and tribological properties of Pb nanoparticles[J]. Journal ofNanoparticle Research,2004,6(1):47-51.
    [84] Tao X, Jiazheng Z, Kang X. The ball-bearing effect of diamond nanoparticles as an oil additive[J].Journal of Physics D: Applied Physics,1999,29(11):2932.–2937
    [85]乔玉林,刘维民.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究[J].石油炼制与化工,2002,33(8):34-38.
    [86] Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium borate[J].wear,1998,216(1):87-91.
    [87] Dong J X, Hu Z S. A study of the anti-wear and friction-reducing properties of the lubricant additive,nanometer zinc borate[J]. Tribology International,1998,31(5):219-223.
    [88] Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titanium oxide[J].Wear,1998,216(1):92-96.
    [89]胡泽善.解放军后勤工程学院博士后工作报告[D].重庆,1998.
    [90]王立光,胡泽善,叶毅.纳米氢氧化锰抗磨减磨添加剂的研究[J].润滑与密封,1999(5):30-32.
    [91] Hu Z S, Dong J X, Chen G X. Study on antiwear and reducing friction additive of nanometer ferricoxide[J]. Tribology International,1998,31(7):355-360.
    [92] Zhang Z J, Zhang J, Xue Q J. Synthesis and characterization of a molybdenum disulfide nanocluster[J].The Journal of Physical Chemistry,1994,98(49):12973-12977.
    [93] Chen S, Liu W M. Study on the structure of surface-coated ZnS nanoparticles[J]. Langmuir,1999,15:8100-8104.
    [94]周静芳,油溶性纳米颗粒的制备、结构表征及摩擦学行为研究,中科院兰州化学物理研究所博士论文,2001,兰州
    [95]吕兆岐,谢泉,化工.润滑油品研究与应用指南[M].中国石化出版社,1997.
    [96] Rastogi R B, Yadav M, Bhattacharya A. Application of molybdenum complexes of1-aryl-2,5-dithiohydrazodicarbonamides as extreme pressure lubricant additives[J]. Wear,2002,252(9):686-692.
    [97] Rapoport L, Leshchinsky V, Lvovsky M, et al. Mechanism of friction of fullerenes[J]. IndustrialLubrication and Tribology,2002,54(4):171-176.
    [98]夏延秋,丁津原.纳米级金属粉改善润滑油的摩擦磨损性能试验研究[J].润滑油,1998,13(6):37-40.
    [99]夏延秋,金寿日.纳米级铜粉改善润滑油抗磨性能的研究[J].润滑与密封,1998(5):43-44.
    [100]夏延秋,冯欣.纳米级镍粉改善润滑油摩擦磨损性能的研究[J].沈阳工业大学学报,1999,21(2):101-103.
    [101]夏延秋,金寿日.纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999(3):33-34.
    [102]张明,王晓波,伏喜胜,等.油溶性纳米Cu在微动磨损条件下的自修复行为与机理研究[J].摩擦学学报,2005,25(6):504-509.
    [103]欧忠文,徐滨士.磨损部件自修复原理与纳米润滑材料的自修复设计构想[J].表面技术,2001,30(6):47-53.
    [104]徐滨士,欧忠文,马世宁.纳米表面工程基本问题及其新进展[J].电刷镀技术,2005(1):1-6.
    [106] Dong L, Chu Y, Liu Y, et al. Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solutions[J].Journal of colloid and interface science,2008,317(2):485-492.
    [107] Armelao L, Bertoncello R, Cattaruzza E, et al. Chemical and physical routes for composite materialssynthesis: Ag and Ag2S nanoparticles in silica glass by sol–gel and ion implantation techniques[J].Journal of Materials Chemistry,2002,12(8):2401-2407.
    [108] Jia W, Douglas E P, Guo F, et al. Optical limiting of semiconductor nanoparticles for nanosecondlaser pulses[J]. Applied physics letters,2004,85(26):6326-6328.
    [109] Zhao Q, Bahadur S. A study of the modification of the friction and wear behavior of polyphenylenesulfide by particulate Ag2S and PbTe fillers[J]. Wear,1998,217(1):62-72.
    [110]丁玲,李曦,张超灿.表面功能化聚苯乙烯磁性微球的制备及表征[J].化工新型材料,2010(010):50-53.
    [111]周静芳,吴志申,陶小军,等. DDP修饰Ag_2S纳米微粒的合成及摩擦学行为研究[C]//第五届全国青年摩擦学学术会议论文集.1999.
    [112] Ding Y, Xu B, Guo R, et al. The preparation of silver sulfide nanoparticles in lamellar liquid crystaland application to lubrication[J]. Materials research bulletin,2005,40(4):575-582.
    [113]郭文静,孙磊,吴志申,等.微乳液法制备硫化银纳米颗粒及抗磨性能[J].无机材料学报,2008,23(5):960-964.
    [114] Liu X, Geng B, Du Q, et al. Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cunanoparticles through a single-precursor route[J]. Materials Science and Engineering: A,2007,448(1):7-14.
    [115] Kim Y H, Lee D K, Jo B G, et al. Synthesis of oleate capped Cu nanoparticles by thermaldecomposition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,284:364-368.
    [116] Nasibulin A G, Ahonen P P, Richard O, et al. Copper and copper oxide nanoparticle formation bychemical vapor nucleation from copper (II) acetylacetonate[J]. Journal of Nanoparticle Research,2001,3(5-6):383-398.
    [117] Daróczi L, Beck M T, Beke D L, et al. Production of Fe and Cu Nanocrystalline Particles by ThermalDecomposition of Ferr-and Copper-Cyanides[C]. Materials science forum.1998,269:319-326.
    [118] Chen S, Sommers J M. Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry,and solid-state morphological evolution[J]. The Journal of Physical Chemistry B,2001,105(37):8816-8820.
    [119] Zhu H, Zhang C, Yin Y. Novel synthesis of copper nanoparticles: influence of the synthesisconditions on the particle size[J]. Nanotechnology,2005,16(12):3079.
    [120] Joshi S S, Patil S F, Iyer V, et al. Radiation induced synthesis and characterization of coppernanoparticles[J]. Nanostructured materials,1998,10(7):1135-1144.
    [121] Pileni M P, Ninham B W, Gulik‐Krzywicki T, et al. Direct relationship between shape and size oftemplate and synthesis of copper metal particles[J]. Advanced Materials,1999,11(16):1358-1362.
    [122] Song R G, Yamaguchi M, Nishimura O, et al. Investigation of metal nanoparticles produced by laserablation and their catalytic activity[J]. Applied surface science,2007,253(6):3093-3097.
    [123] Park B K, Jeong S, Kim D, et al. Synthesis and size control of monodisperse copper nanoparticles bypolyol method[J]. Journal of colloid and interface science,2007,311(2):417-424.
    [124]魏明真,伦宁,马西骋,等.溶剂热法制备铜与氧化亚铜纳米晶[J].无机盐工业,2007,39(1):21-22.
    [125] Arul Dhas N, Raj C P, Gedanken A. Preparation of luminescent silicon nanoparticles: a novelsonochemical approach[J]. Chemistry of materials,1998,10(11):3278-3281.
    [126]王立英,蔡灵剑,沈頔,等.金属纳米颗粒制备中的还原剂与修饰剂[J].化学进展,2010,22(4):580-592.
    [127] Liu Y, Chu Y, Zhuo Y, et al. Controlled synthesis of various hollow Cu nano/microstructures via anovel reduction route[J]. Advanced functional materials,2007,17(6):933-938.
    [128]苏永庆,杨明娣,李琮,等.离子液体[Bmim] PF6中铜纳米粒子的制备与结构表征[J].有色金属:冶炼部分,2010(001):50-52.
    [129] Yang J G, Yang S H, Tang C B, et al. Synthesis of ultrafine copper particles bycomplex-reduction-extraction method[J]. Transactions of Nonferrous Metals Society of China,2007,17:1182-1185.
    [130] Yang J, Zhou Y, Okamoto T, et al. Preparation of oleic acid-capped copper nanoparticles[J].Chemistry Letters,2006,35(10):1190-1191.
    [131] Gang L, Xiaohong L, Zhijun Z. Preparation Methods of Copper Nanomaterials[J]. Progress inChemistry,2011,23(8):1644-1656.
    [132] Liu Z, Yang Y, Liang J, et al. Synthesis of copper nanowires via a complex-surfactant-assistedhydrothermal reduction process[J]. The Journal of Physical Chemistry B,2003,107(46):12658-12661.
    [133] Pileni M P. Control of the size and shape of inorganic nanocrystals at various scales from nano tomacrodomains[J]. The Journal of Physical Chemistry C,2007,111(26):9019-9038.
    [134] Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors[J].Journal of the American Chemical Society,1993,115(10):3887-3896.
    [135] Lisiecki I, Pileni M P. Copper metallic particles synthesized" in situ" in reverse micelles: influence ofvarious parameters on the size of the particles[J]. The Journal of Physical Chemistry,1995,99(14):5077-5082.
    [136] Salzemann C, Lisiecki I, Urban J, et al. Anisotropic copper nanocrystals synthesized in asupersaturated medium: nanocrystal growth[J]. Langmuir,2004,20(26):11772-11777.
    [137] Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganicnanocrystals[J]. Nature materials,2003,2(3):145-150.
    [138] Filankembo A, Pileni M P. Shape control of copper nanocrystals[J]. Applied surface science,2000,164(1):260-267.
    [139] Lisiecki I, Billoudet F, Pileni M P. Control of the shape and the size of copper metallic particles[J].The Journal of Physical Chemistry,1996,100(10):4160-4166.
    [140] Tanori J, Pileni M P. Control of the shape of copper metallic particles by using a colloidal system astemplate[J]. Langmuir,1997,13(4):639-646.
    [141] Ye E, Zhang S Y, Liu S, et al. Disproportionation for Growing Copper Nanowires and theirControlled Self‐Assembly Facilitated by Ligand Exchange[J]. Chemistry-A European Journal,2011,17(11):3074-3077.
    [142] Salavati-Niasari M, Davar F. Synthesis of copper and copper (I) oxide nanoparticles by thermaldecomposition of a new precursor[J]. Materials Letters,2009,63(3):441-443.
    [143] Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticlesvia thermal decomposition[J]. Polyhedron,2008,27(17):3514-3518.
    [144] Salavati-Niasari M, Fereshteh Z, Davar F. Synthesis of oleylamine capped copper nanocrystals viathermal reduction of a new precursor[J]. Polyhedron,2009,28(1):126-130.
    [145] Salavati-Niasari M, Mir N, Davar F. A novel precursor for synthesis of metallic copper nanocrystalsby thermal decomposition approach[J]. Applied Surface Science,2010,256(12):4003-4008.
    [146] Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives tomotor oil[J]. Wear,2002,252(1):63-69.
    [147] Wang X, Xu B, Xu Y, et al. Preparation of nano-copper as lubrication oil additive[J]. Journal ofcentral south university of technology,2005,12(2):203-206.
    [148]王晓丽,徐滨士,许一,等.纳米铜润滑油添加剂的摩擦磨损特性及其机理研究[J][J].摩擦学学报,2007,27(3):235-240.
    [149] Yu H L, Xu Y, Shi P J, et al. Characterization and nano-mechanical properties of tribofilms using Cunanoparticles as additives[J]. Surface and Coatings Technology,2008,203(1):28-34.
    [150]王晓丽,徐滨士,许一,等.高速高温下发动机纳米铜润滑材料的摩擦学行为[J].粉末冶金材料科学与工程,2009,14(006):407-411.
    [151]王晓丽,徐滨士,许一,等.润滑油纳米铜添加剂及其对不同粗糙度表面的减摩自修复行为[J].装甲兵工程学院学报,2007,21(1):73-76.
    [152]夏延秋,王小波,刘维民,等.修饰的纳米铜粒子对合成机油抗磨性能研究[J].润滑与密封,2004(6):22-23.
    [153]马剑奇,王晓波,付兴国,等.油溶性Cu纳米微粒作为15W/40柴油机油添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):134-137.
    [154] Viesca J L, Hernández Battez A, González R, et al. Antiwear properties of carbon-coated coppernanoparticles used as an additive to a polyalphaolefin[J]. Tribology International,2011,44(7):829-833.
    [1] Nakagawa H, Ohmori Y, Watanabe S, et al, New cutting fluid additives derived from esters of higherhydroxy fatty acids[J], Journal of Japanese Society of Tribologists,1998,43(5):436-439
    [2] Zhang Z J, Zhang J, Xue Q J. Synthesis and characterization of a molybdenum disulfide nanocluster[J].The Journal of Physical Chemistry,1994,98(49):12973-12977.
    [3] Lei S, Zhijun Z, Hongxin D. Synthesis and characterization of oil soluble Ag nanoparticles[J].Chinese Journal of Chemical Physics,2004,17(5):618-622.
    [4] Sun L, Zhang Z J, Wu Z S, et al. Synthesis and characterization of DDP coated Ag nanoparticles[J].Materials Science and Engineering: A,2004,379(1):378-383.
    [5] Yanbao Z, Zhijun Z, Zhishen W, et al. Tribological properties of Pb nanoparticle in oil[J]. ChineseJournal of Chemical Physics,2004,17(2):171-174.
    [6] Z Zhao Y, Zhang Z, Dang H. Fabrication and tribological properties of Pb nanoparticles[J]. Journal ofNanoparticle Research,2004,6(1):47-51.
    [7] Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles[J]. Materials letters,2003,57(24):3874-3879.
    [8] Shen Y A N X Q W U Z, Jun Z J F Z Z, Xin D H. Preparation and Characterization of Oil-solubility NiNanoparticle [J][J]. Chinese Journal of Inorganic Chemistry,2002,2:015.
    [9] Zhou J, Wu Z, Zhang Z, et al. Tribological behavior and lubricating mechanism of Cu nanoparticles inoil[J]. Tribology Letters,2000,8(4):213-218.
    [10] Zhou J, Yang J, Zhang Z, et al. Study on the structure and tribological properties of surface-modifiedCu nanoparticles[J]. Materials Research Bulletin,1999,34(9):1361-1367.
    [11] Ma L, Xu T, Zhang Z, et al. Preparation and study of the structure of surface-modified MnSnanoparticles[J]. Acta Physicochimica Sinica,1999,15:5-9.
    [12] WU G, Zhi-Jun Z S Z. Preparation and Antiwear Properties of Silver Sulfide Nanoparticles inMicroemulsion[J]. Journal of Inorganic Materials,2008,5:020.
    [13] Zhang Z, Xue Q, Zhang J. Synthesis, structure and lubricating properties of dialkyldithiophosphatemodified MoS2compound nanoclusters[J]. Wear,1997,209(1):8-12.
    [14] Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-modified TiO2nanoparticle as anadditive in liquid paraffin[J]. Wear,1997,213(1):29-32.
    [15] Gao Y, Sun R, Zhang Z, et al. Tribological properties of oleic acid—modified TiO2nanoparticle inwater[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure andProcessing,2000,286(1):149-151.
    [16] Gao Y, Chen G, Oli Y, et al. Study on tribological properties of oleic acid-modified TiO2nanoparticlein water[J]. Wear,2002,252(5):454-458.
    [17] Ye W, Cheng T, Ye Q, et al. Preparation and tribological properties of tetrafluorobenzoicacid-modified TiO2nanoparticles as lubricant additives[J]. Materials Science and Engineering: A,2003,359(1):82-85.
    [18] Li X, Cao Z, Zhang Z, et al. Surface-modification in situ of nano-SiO2and its structure andtribological properties[J]. Applied Surface Science,2006,252(22):7856-7861.
    [19] Zhou J, Wu Z, Zhang Z, et al. Study on an antiwear and extreme pressure additive of surface coatedLaF3nanoparticles in liquid paraffin[J]. Wear,2001,249(5):333-337.
    [20] Liang Q, Zhang Z J, Xue Q J, et al, Synthesis and characterization of LaPO4nanoparticles, ActaPhysico-Chimica Sinica,1998,14,945-948
    [21] Dang H, Sun L, Zhou J, et al. Synthesis, Structure and Tribological Properties of Stearic Acid Coated(NH4)3PMo12O40Nanoparticles[J]. Tribology Letters,2004,17(2):311-316.
    [22] Sun L, Zhou J, Zhang Z, et al. Synthesis and tribological behavior of surface modified(NH4)3PMo12O40nanoparticles[J]. Wear,2004,256(1):176-181.
    [23] Edited by Martin J M and Ohmae N, Nanolubricants,2008, John Wiley&Sons, Ltd.
    [24] Wang L, Yang J, Bi Q, et al. The Tribological Properties of a Nano-Eutectic Fe1.87C0.13Alloy UnderLiquid Paraffine Lubrication[J]. Tribology Letters,2010,37(2):183-189.
    [25] Wang L, Liu W, Wang X. The Preparation and Tribological Investigation of Ni–P Amorphous AlloyNanoparticles[J]. Tribology Letters,2010,37(2):381-387.
    [26] Pei X, Xia Y, Liu W, et al. Polyelectrolyte‐grafted carbon nanotubes: Synthesis, reversiblephase‐transition behavior, and tribological properties as lubricant additives[J]. Journal of PolymerScience Part A: Polymer Chemistry,2008,46(21):7225-7237.
    [27] Wang L, Wang B, Wang X, et al. Tribological investigation of CaF2nanocrystals as greaseadditives[J]. Tribology international,2007,40(7):1179-1185.
    [28]杨长江,陈国需,赵立涛,等.纳米软金属作为自修复润滑添加剂的研究进展[J].润滑与密封,2009,34(5):115-117.
    [29]董凌,陈国需,方建华,等. SiO2/MgO复合纳米添加剂的摩擦学和磨损修复性能研究[J].润滑与密封,2005(5):26-28.
    [30]杨长江,陈国需,陈淑莲,等.纳米锌添加剂适宜自修复条件的试验研究[J].摩擦学学报,2009,29(6):531-536..
    [31]谢学兵,陈国需,孙霞,等.纳米锌粉的摩擦自修复研究[J].润滑与密封,2008,33(6):7-8.
    [32]乔玉林,徐滨士.含纳米金刚石复合润滑油添加剂的摩擦学性能[J].石油炼制与化工,1999,30(3):12-15.
    [33] Hernández Battez A, Viesca J L, González R, et al. Friction reduction properties of a CuOnanolubricant used as lubricant for a NiCrBSi coating[J]. Wear,2010,268(1):325-328.
    [34] Rosentsveig R, Gorodnev A, Feuerstein N, et al. Fullerene-like MoS2nanoparticles and theirtribological behavior[J]. Tribology Letters,2009,36(2):175-182.
    [35] Abdullah S F, Radiman S, Hamid M A A, et al. Tribological Behaviour of OA-Capped WO3Nanoparticles as an Additive to Base Oils[J]. Sains Malaysiana,2008,37(2):227-232.
    [36] Hernandez Battez A, Fernandez Rico J E, Navas Arias A, et al. The tribological behaviour of ZnOnanoparticles as an additive to PAO6[J]. Wear,2006,261(3):256-263.
    [37] Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2nanoparticles undermixed lubrication[J]. Wear,2003,255(7):785-793.
    [38]陈凤英,李湘祁,李哲韬,等. HCl用量对介孔二氧化硅形貌的影响[J].硅酸盐通报,2012,31(002):431-434.
    [39] Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions[J].Journal of colloid and interface science,2004,273(1):165-169.
    [40] Fukui H, Ohsuka H, Hino T, et al. Preparation of Microporous Si-OC Composite Material and ItsLithium Storage Capability[J]. Chemistry Letters,2009,38(1):86-87.
    [41] Brust M, Blass P M, Bard A J. Self-assembly of photoluminescent copper (I)-dithiol multilayer thinfilms and bulk materials[J]. Langmuir,1997,13(21):5602-5607.
    [42]马剑奇,王晓波,付兴国,等.油溶性Cu纳米微粒作为15W/40柴油机油添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):134-138.
    [43] Yu H L, Xu Y, Shi P J, et al. Tribological properties and lubricating mechanisms of Cu nanoparticlesin lubricant[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):636-641.
    [44]于鹤龙,许一,史佩京,等.蛇纹石超细粉体作润滑油添加剂的摩擦学性能[J].粉末冶金材料科学与工程,2009(5):310-315.
    [45] Li B, Wang X, Liu W, et al. Tribochemistry and antiwear mechanism of organic–inorganicnanoparticles as lubricant additives[J]. Tribology Letters,2006,22(1):79-84.
    [46] Nakamura S, Yamamoto A. Electrodeposition of pyrite FeS2thin films for photovoltaic cells[J]. Solarenergy materials and solar cells,2001,65(1):79-85.
    [47] Ban M, Ryoji M, Fujii S, et al. Tribological characteristics of Si-containing diamond-like carbon filmsunder oil-lubrication[J]. Wear,2002,253(3):331-338.
    [48] Chen S, Liu W, Yu L. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwearability of the prepared nanoparticles as additive in liquid paraffin[J]. Wear,1998,218(2):153-158.
    [49] Wang Y, Li J, Ren T H. A potential approach to replace sulfurized olefins with borate ester containingxanthate group in lubricating oil[J]. Chinese Science Bulletin,2008,53(7):992-997.
    [50] Lu Q, Wang H, Ye C, et al. Room temperature ionic liquid1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact[J]. Tribology international,2004,37(7):547-552.
    [51] Yu L, Bahadur S, Xue Q. An investigation of the friction and wear behaviors of ceramic particle filledpolyphenylene sulfide composites[J]. Wear,1998,214(1):54-63.
    [52] Wang J, Wang J, Li C, et al. A High-Performance Multifunctional Lubricant Additive forWater–Glycol Hydraulic Fluid[J]. Tribology Letters,2011,43(2):235-245.
    [53] Fourches N, Turban G, Grolleau B. Study of DLC/silicon interfaces by XPS and in-situellipsometry[J]. Applied surface science,1993,68(1):149-160.
    [1] Pileni M P, Gulik-Krzywicki T, Tanori J, et al. Template design of microreactors with colloidalassemblies: control the growth of copper metal rods[J]. Langmuir,1998,14(26):7359-7363.
    [2] Cole D H, Shull K R, Baldo P, et al. Dynamic properties of a model polymer/metal nanocomposite:Gold particles in poly (tert-butyl acrylate)[J]. Macromolecules,1999,32(3):771-779.
    [3] G. Schmid, Clusters and Colloids—From Theory to Applications, Wiley-VCH, Weinheim, Germany,1994.
    [4] Schmid G, Morun B, Malm J O. Pt309Phen36O30±10, a Four‐Shell Platinum Cluster[J]. AngewandteChemie International Edition in English,1989,28(6):778-780.
    [5] Whetten R L, Khoury J T, Alvarez M M, et al. Nanocrystal gold molecules[J]. Advanced materials,2004,8(5):428-433.
    [6] Little L H, Poling G W, Leja J, Infrared spectra of xanthate compounds: III. Organic solvent effect onthe C=S frequency[J]. Canadian Journal of Chemistry,1961,39(9):1783-1786.
    [7] D. S. Kim, Kim D S. Studies of the Pyrrhotite Depression Mechanism with Diethylenetriamine[J].Bulletin-korean Chemical Society,1998,19:840-840.
    [8] Chen J M, Liu R Q, Sun W, et al. Effect of mineral processing wastewater on flotation of sulfideminerals[J]. Transactions of nonferrous metals society of China,2009,19(2):454-457.
    [9] Sun Z, Forsling W. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution[J].Minerals engineering,1997,10(4):389-400.
    [10] De Donato P, Cases J M, Kongolo M, et al. Infrared investigation of amylxanthate adsorption ongalena: influence of oxidation, pH and grinding[J]. Colloids and surfaces,1990,44:207-228.
    [11]苏大伟,孙中溪,刘园园,等.不同链长黄原酸钾的制备和提纯[J].济南大学学报:自然科学版,2009,23(1):22-25.
    [12] Sun L, Zhou J, Zhang Z, et al. Synthesis and tribological behavior of surface modified(NH4)3PMo12O40nanoparticles[J]. Wear,2004,256(1):176-181.
    [13] Li B, Wang X, Liu W, et al. Tribochemistry and antiwear mechanism of organic–inorganicnanoparticles as lubricant additives[J]. Tribology Letters,2006,22(1):79-84.
    [14] Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction reduction by nanocopper additives to motoroil[J]. Wear,2002,252(1):63-69.
    [15] Wu Y Y, Tsui W C, Liu T C. Experimental analysis of tribological properties of lubricating oils withnanoparticle additives[J]. Wear,2007,262(7):819-825.
    [16] Tong M C, Chen W, Sun J, et al. Dithiocarbamate-capped silver nanoparticles[J]. The Journal ofPhysical Chemistry B,2006,110(39):19238-19242.
    [17] Christian P, Bromfield M. Preparation of small silver, gold and copper nanoparticles which disperse inboth polar and non-polar solvents[J]. J. Material Chemisty,2009,20(6):1135-1139.
    [18] Kapoor S, Palit D K, Mukherjee T. Preparation, characterization and surface modification of Cu metalnanoparticles[J]. Chemical physics letters,2002,355(3):383-387.
    [19] Balogh L, Tomalia D A. Poly (amidoamine) dendrimer-templated nanocomposites.1. Synthesis ofzerovalent copper nanoclusters[J]. Journal of the American Chemical Society,1998,120(29):7355-7356.
    [20]杨军,陈爽.油溶性Cu纳米颗粒的两相法制备[J].化学学报,2007,65(20):2243-2248.
    [21] Martin J M, Ohmae N. Nanolubricants[M], Wiley, New York,2008:175–202.
    [22] Zhang L, Chen L, Wan H, et al. Synthesis and Tribological Properties of Stearic Acid-ModifiedAnatase (TiO2) Nanoparticles[J]. Tribology Letters,2011,41(2):409-416.
    [23]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [24] Brust M, Blass P M, Bard A J. Self-assembly of photoluminescent copper (I)-dithiol multilayer thinfilms and bulk materials[J]. Langmuir,1997,13(21):5602-5607.
    [25]马剑奇,王晓波,付兴国,等.油溶性Cu纳米微粒作为15W/40柴油机油添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):134-138.
    [26] Yu H L, Xu Y, Shi P J, et al. Tribological properties and lubricating mechanisms of Cu nanoparticlesin lubricant[J]. Transactions of Nonferrous Metals Society of China,2008,18(3):636-641.
    [27] Nakamura S, Yamamoto A. Electrodeposition of pyrite FeS2thin films for photovoltaic cells[J]. Solarenergy materials and solar cells,2001,65(1):79-85.
    [28] Ban M, Ryoji M, Fujii S, et al. Tribological characteristics of Si-containing diamond-like carbon filmsunder oil-lubrication[J]. Wear,2002,253(3):331-338.
    [29] Chen S, Liu W, Yu L. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwearability of the prepared nanoparticles as additive in liquid paraffin[J]. Wear,1998,218(2):153-158.
    [30] Wang Y, Li J, Ren T H. A potential approach to replace sulfurized olefins with borate ester containingxanthate group in lubricating oil[J]. Chinese Science Bulletin,2008,53(7):992-997.
    [31] Lu Q, Wang H, Ye C, et al. Room temperature ionic liquid1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact[J]. Tribology international,2004,37(7):547-552.
    [32] Yu L, Bahadur S, Xue Q. An investigation of the friction and wear behaviors of ceramic particle filledpolyphenylene sulfide composites[J]. Wear,1998,214(1):54-63.
    [33] Wang J, Wang J, Li C, et al. A High-Performance Multifunctional Lubricant Additive forWater–Glycol Hydraulic Fluid[J]. Tribology Letters,2011,43(2):235-245.
    [34] Turcu R, Bica D, Vekas L, et al. Synthesis and characterization of nanostructuredpolypyrrole-magnetic particles hybrid material[J]. Romanian Reports in Physics,2006,58(3):359.
    [35] Wang S, Zhou Y, Niu H, et al. Layer-by-Layer self-assembly of polyaspartate and Poly (ethyleneimine)on magnetic nanoparticles: Characterization and adsorption of protein[J]. Current Applied Physics,2011,11(6):1337-1342.
    [36] Aarnink W A M, Weishaupt A, Van Silfhout A. Angle-resolved X-ray photoelectron spectroscopy(ARXPS) and a modified Levenberg-Marquardt fit procedure: a new combination for modeling thinlayers[J]. Applied Surface Science,1990,45(1):37-48.
    [1]陈波水,龚斌,娄方,等.纳米硼酸镧的制备,表征及其在水介质中的摩擦学性能[J].后勤工程学院学报,2008,24(2):51-55.
    [2]王建华,宋敏,李金龙,等.水溶性纳米二氧化硅添加剂的制备及摩擦学性能研究[J].摩擦学学报,2011,31(2):118-123.
    [3]官文超,雷洪.水溶性烷基硫代磷酸锌在钢球磨斑表面形成的润滑薄膜的分析研究[J].摩擦学学报,1998,18(1):75-79.
    [4]段标,官文超,余俊.水溶性金属络合聚合物的合成及其润滑性能初探[J].高分子材料科学与工程,1998,14(6):137-138.
    [5]高永建,王九. Mo2S水基润滑液的摩擦学性能研究[J].润滑与密封,2004,6:33-35.
    [6] Fang J, Xia Y, Liu W. The tribological behavior of bismuth dithiophosphate as water-based additive inaluminium alloy tapping[J]. Industrial Lubrication and Tribology,2010,62(6):327-331.
    [7] Shuang C. Comparison of the Tribological Properties of Oleic Acid Capped Inorganic Nanoparticles [J].Lubrication Engineering,2007,2:032.
    [8]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [9]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [10]方建华,陈波水,张斌,等.纳米润滑添加剂的抗磨减摩机理[J].合成润滑材料,2001,2:15-18.
    [11]沃恒洲,胡坤宏,胡献国.纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J].摩擦学学报,2004,24(1):33-37.
    [12]李晛,柳刚,范荣焕,等.纳米Al/Sn金属颗粒对润滑油抗磨极压性能的影响[J].润滑与密封,2004(4):60-62.
    [13]郭文静,孙磊,张平余,等.微乳液中单分散银纳米颗粒的制备及抗磨性能[J].物理化学学报,2007,23(3):367-372.
    [14]王李波,冯大鹏,刘维民.几种纳米微粒作为锂基脂添加剂对钢-钢摩擦副摩擦磨损性能的影响研究[J].摩擦学学报,2005,25(2):107-111.
    [15]朱公志,高玉周,刘世永,等.羟基硅酸镁复合粉体润滑油添加剂对钢钢摩擦副的抗磨自修复机理[J].摩擦学学报,2012,32(002):183-188.
    [16] Das L, Aggarwal M, Rajkumar K, et al. Tribological Properties of Magnesium Nano-AluminaComposites under Nano-Graphite Lubrication[J]. Tribology Transactions,2012,55(3):334-344.
    [17]Wang Y M, Wang H. Study on the Tribological Performance of AlN Nanoparticles Additive[J].Advanced Materials Research,2013,661:33-36.
    [18] Jiang X, Zhao Z, Huang X. The effect and mechanism of Nano-Cu lubricating additives on theelectroless deposited Ni-WP coating[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2012,27(5):815-820.
    [19] Menezes P L, Lovell M R, Kabir M A, et al. Green Lubricants: Role of Additive Size[J]. GreenTribology,2012:265-286.
    [20] Zhao Y H, Dai X L, Zhang J X. Research on Properties of Automobile Lubricant ContainingNano-Ceramic Additives[J]. Advanced Materials Research,2012,503:700-704.
    [21] Sawant P, Kovalev E, Klug J T, et al. Alkyl xanthates: new capping agents for metal colloids. Cappingof platinum nanoparticles[J]. Langmuir,2001,17(10):2913-2917.
    [22]施先义,覃雪媚,邓钟燕.丁基钠黄药合成工艺的改进[J].化工技术与开发,2006,35(004):47-48.
    [23] Little L H, Poling G W, Leja J, Infrared spectra of xanthate compounds: III. Organic solvent effect onthe C=S frequency[J]. Canadian Journal of Chemistry,1961,39(9):1783-1786.
    [24] D. S. Kim, Kim D S. Studies of the Pyrrhotite Depression Mechanism with Diethylenetriamine[J].Bulletin-korean Chemical Society,1998,19:840-840.
    [25] Chen J M, Liu R Q, Sun W, et al. Effect of mineral processing wastewater on flotation of sulfideminerals[J]. Transactions of nonferrous metals society of China,2009,19(2):454-457.
    [26] Sun Z, Forsling W. The degradation kinetics of ethyl-xanthate as a function of pH in aqueoussolution[J]. Minerals engineering,1997,10(4):389-400.
    [27] De Donato P, Cases J M, Kongolo M, et al. Infrared investigation of amylxanthate adsorption ongalena: influence of oxidation, pH and grinding[J]. Colloids and surfaces,1990,44:207-228.
    [28]苏大伟,孙中溪,刘园园,等.不同链长黄原酸钾的制备和提纯[J].济南大学学报:自然科学版,2009,23(1):22-25.
    [29] Christian P, Bromfield M. Preparation of small silver, gold and copper nanoparticles which disperse inboth polar and non-polar solvents[J]. J. Material Chemisty,2009,20(6):1135-1139.
    [30] Kapoor S, Palit D K, Mukherjee T. Preparation, characterization and surface modification of Cu metalnanoparticles[J]. Chemical physics letters,2002,355(3):383-387.
    [31] Balogh L, Tomalia D A. Poly (amidoamine) dendrimer-templated nanocomposites.1. Synthesis ofzerovalent copper nanoclusters[J]. Journal of the American Chemical Society,1998,120(29):7355-7356.
    [32]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):185-187.
    [33] Rohr O. Bismuth–the new ecologically green metal for modern lubricating engineering[J]. Industriallubrication and tribology,2002,54(4):153-164.
    [1] Zhang Y D, Yan J S, Yu L G, et al. Effect of nano-Cu lubrication additive on the contact fatiguebehavior of steel[J]. Tribology Letters,2010,37(2):203-207.
    [2] Zhang B S, Xu B S, Xu Y, et al. Cu nanoparticles effect on the tribological properties of hydrosilicatepowders as lubricant additive for steel–steel contacts[J]. Tribology International,2011,44(7):878-886.
    [3] Zhang M, Wang X, Liu W, et al. Performance and anti-wear mechanism of Cu nanoparticles aslubricating oil additives[J]. Industrial Lubrication and Tribology,2009,61(6):311-318.
    [4] Huang J, Li X, Zhang Z. The Tribological Properties of Oil-Soluble Nano-Copper and Nano-SilicaParticles as Additives of Lubricating Oils[M]. Advanced Tribology. Springer Berlin Heidelberg,2010:890-891.
    [5] Xiong X, Kang Y, Yang G, et al. Preparation and Evaluation of Tribological Properties of CuNanoparticles Surface Modified by Tetradecyl Hydroxamic Acid[J]. Tribology Letters,2012,46(3):211-220.
    [6] He Q, Ye J, Liu H, et al. Application of Cu nanoparticles as N32base oil additives[J]. Frontiers ofMechanical Engineering in China,2010,5(1):93-97.
    [7] Viesca J L, Hernández Battez A, González R, et al. Antiwear properties of carbon-coated coppernanoparticles used as an additive to a polyalphaolefin[J]. Tribology International,2011,44(7):829-833.
    [8] Padgurskas J, Rukuiza R, Prosy evas I, et al. Tribological properties of lubricant additives of Fe, Cuand Co nano-particles[J]. Tribology International,2012.
    [9] Wang S X, Gao X R. Tribological Property of Nano-Cu as Additive in Lubricating Oil[J]. AdvancedMaterials Research,2011,335:487-490.
    [10] Wang X, Xu B, Xu Y, et al. Tribology behavior of engine nano-cu lubricating material at a conditionof high speed and temperature [J][J]. Materials Science and Engineering of Powder Metallurgy,2009,6:011.
    [11] Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions[J].Journal of colloid and interface science,2004,273(1):165-169.
    [12] Fukui H, Ohsuka H, Hino T, et al. Preparation of Microporous Si-OC Composite Material and ItsLithium Storage Capability[J]. Chemistry Letters,2009,38(1):86-87.
    [1] Chen S, Liu W. Oleic acid capped PbS nanoparticles: synthesis, characterization and tribologicalproperties[J]. Materials chemistry and physics,2006,98(1):183-189.
    [2] Ding Y, Xu B, Guo R, et al. The preparation of silver sulfide nanoparticles in lamellar liquid crystal andapplication to lubrication[J]. Materials research bulletin,2005,40(4):575-582.
    [3] Gu C X, Zhu G J, Tian X Y, et al. Tribological Effects of Nano-Copper with Different Diameters inLubricants[J]. Advanced Materials Research,2010,123:1059-1062.
    [4] Hu Z S, Lai R, Lou F, et al. Preparation and tribological properties of nanometer magnesium borate aslubricating oil additive[J]. Wear,2002,252(5):370-374.
    [5] Ji X, Chen Y, Zhao G, et al. Tribological Properties of CaCO3Nanoparticles as an Additive in LithiumGrease[J]. Tribology Letters,2011,41(1):113-119.
    [6] Liu Q, Xu Y, Shi P, et al. Analysis of self-repair films on friction surface lubricated with nano-Cuadditive[J]. Journal of Central South University of Technology,2005,12(2):186-189.
    [7] Li W, Zheng S, Cao B, et al. Friction and wear properties of ZrO2/SiO2composite nanoparticles[J].Journal of Nanoparticle Research,2011,13(5):2129-2137.
    [8] Li X, Cao Z, Zhang Z, et al. Surface-modification in situ of nano-SiO2and its structure and tribologicalproperties[J]. Applied Surface Science,2006,252(22):7856-7861.
    [9] Mo Y, Tao D. Tribological performance of Nano-Tin as lubrication additives used in steel-coppertribo-pair[J]. Industrial Lubrication and Tribology,2011,63(2):72-77.
    [10] Peng D X, Kang Y, Hwang R M, et al. Tribological properties of diamond and SiO2nanoparticlesadded in paraffin[J]. Tribology international,2009,42(6):911-917.
    [11] Sunqing Q, Junxiu D, Guoxu C. Tribological properties of CeF3nanoparticles as additives inlubricating oils[J]. Wear,1999,230(1):35-38.
    [12] Rapoport L, Lvovsky M, Lapsker I, et al. Friction and wear of bronze powder composites includingfullerene-like WS2nanoparticles[J]. Wear,2001,249(1):149-156.
    [13] Rapoport L, Leshchinsky V, Lvovsky M, et al. Friction and wear of powdered composites impregnatedwith WS2inorganic fullerene-like nanoparticles[J]. Wear,2002,252(5):518-527.
    [14] Rapoport L, Leshchinsky V, Lvovsky M, et al. Superior tribological properties of powder materialswith solid lubricant nanoparticles[J]. Wear,2003,255(7):794-800.
    [15] Rapoport L, Nepomnyashchy O, Lapsker I, et al. Behavior of fullerene-like WS2nanoparticles undersevere contact conditions[J]. Wear,2005,259(1):703-707.
    [16] Yang M D, Zhang J Y, Sun M, et al. Preparation of Cu Nanoparticle Additive in[BMIm] NTf (2) IonicLiquid and Evaluation of Its Tribological Behavior[J]. Materials Protection(China),2012,45(2):22-24.
    [17] Chen Q, Zheng S, Yang S, et al. Enhanced tribology properties of ZnO/Al2O3composite nanoparticlesas liquid lubricating additives[J]. Journal of sol-gel science and technology,2012:1-8.
    [18] Song X, Zheng S, Zhang J, et al. Synthesis of monodispersed ZnAl2O4nanoparticles and theirtribology properties as lubricant additives[J]. Materials Research Bulletin,2012.
    [19] Gara L, Zou Q. Friction and Wear Characteristics of Water-Based ZnO and Al2O3Nanofluids[J].Tribology Transactions,2012,55(3):345-350.
    [20] Padgurskas J, Rukuiza R, Prosy evas I, et al. Tribological properties of lubricant additives of Fe, Cuand Co nano-particles[J]. Tribology International,2013,60:224-232.
    [21] Zhao Q, Bahadur S. A study of the modification of the friction and wear behavior of polyphenylenesulfide by particulate Ag2S and PbTe fillers[J]. Wear,1998,217(1):62-72.
    [22]周静芳,刘维民.表面修饰Ag2S纳米微粒的合成及摩擦学行为研究[J].化学研究,1999,10(4):1-5.
    [23]陶小军,吴志申.表面修饰Ag2S纳米微粒的热稳定性能及摩擦学行为研究[J].润滑与密封,2002(5):17-18.
    [24] Ding Y, Xu B, Guo R, et al. The preparation of silver sulfide nanoparticles in lamellar liquid crystaland application to lubrication[J]. Materials research bulletin,2005,40(4):575-582.
    [25] Larsen T H, Sigman M, Ghezelbash A, et al. Solventless synthesis of copper sulfide nanorods bythermolysis of a single source thiolate-derived precursor[J]. Journal of the American Chemical Society,2003,125(19):5638-5639.
    [26] Sigman Jr M B, Ghezelbash A, Hanrath T, et al. Solventless synthesis of monodisperse Cu2S nanorods,nanodisks, and nanoplatelets[J]. Journal of the American Chemical Society,2003,125(51):16050-16057.
    [27] Sigman Jr M B, Korgel B A. Solventless synthesis of Bi2S3(Bismuthinite) nanorods, nanowires, andnanofabric[J]. Chemistry of materials,2005,17(7):1655-1660.
    [28] Ghezelbash A, Sigman Jr M B, Korgel B A. Solventless synthesis of nickel sulfide nanorods andtriangular nanoprisms[J]. Nano Letters,2004,4(4):537-542.
    [29] Chen Y B, Chen L, Wu L M. Structure-controlled solventless thermolytic synthesis of uniform silvernanodisks[J]. Inorganic chemistry,2005,44(26):9817-9822.
    [30] Han Y C, Cha H G, Kim C W, et al. Synthesis of highly magnetized iron nanoparticles by a solventlessthermal decomposition method[J]. The Journal of Physical Chemistry C,2007,111(17):6275-6280.
    [31] Cha H G, Lee D K, Kim Y H, et al. Solventless Nanoparticles Synthesis under Low Pressure[J].Inorganic chemistry,2008,47(1):121-127.
    [32] Amara D, Grinblat J, Margel S. Solventless thermal decomposition of ferrocene as a new approach forone-step synthesis of magnetite nanocubes and nanospheres[J]. Journal of Materials Chemistry,2012,22(5):2188-2195.
    [33] Chen L, Chen Y B, Wu L M. Synthesis of uniform Cu2S nanowires from copper-thiolate polymerprecursors by a solventless thermolytic method[J]. Journal of the American Chemical Society,2004,126(50):16334-16335.
    [34] Sawant P, Kovalev E, Klug J T, et al. Alkyl xanthates: new capping agents for metal colloids. Cappingof platinum nanoparticles[J]. Langmuir,2001,17(10):2913-2917.
    [35]施先义,覃雪媚,邓钟燕.丁基钠黄药合成工艺的改进[J].化工技术与开发,2006,35(004):47-48.
    [36] Tzhayik O, Sawant P, Efrima S, et al. Xanthate capping of silver, copper, and gold colloids[J].Langmuir,2002,18(8):3364-3369.
    [37] Pradhan N, Katz B, Efrima S. Synthesis of high-quality metal sulfide nanoparticles from alkylxanthate single precursors in alkylamine solvents[J]. The Journal of Physical Chemistry B,2003,107(50):13843-13854.
    [38]程先华,薛玉君,谢超英.稀土改性玻璃纤维对PTFE复合材料摩擦磨损性能的影响[J].无机材料学报,2002,17(6):1321-1326.
    [39]党鸿辛,赵彦保,张治军.铋纳米微粒添加剂的摩擦学性能研究[J].摩擦学学报,2004,24(2):185-187.
    [40] Wang Y, Li J, Ren T H. A potential approach to replace sulfurized olefins with borate ester containingxanthate group in lubricating oil[J]. Chinese Science Bulletin,2008,53(7):992-997.
    [41] Lu Q, Wang H, Ye C, et al. Room temperature ionic liquid1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact[J]. Tribology international,2004,37(7):547-552.
    [42] Yu L, Bahadur S, Xue Q. An investigation of the friction and wear behaviors of ceramic particle filledpolyphenylene sulfide composites[J]. Wear,1998,214(1):54-63.
    [43] Wang J, Wang J, Li C, et al. A High-Performance Multifunctional Lubricant Additive forWater–Glycol Hydraulic Fluid[J]. Tribology Letters,2011,43(2):235-245.
    [44] Ahmed M H, Keyes T E, Byrne J A. The photocatalytic inactivation effect of Ag–TiO2on β-amyloidpeptide (1–42)[J]. Journal of Photochemistry and Photobiology A: Chemistry,2013,254:1-11.
    [45] Virkutyte J, Varma R S. Synthesis and visible light photoactivity of anatase Ag and garlic loaded TiO2nanocrystalline catalyst[J]. RSC Advances,2012,2(6):2399-2407.
    [46] Zhang Z, Lim W P, Wong C T, et al. From Metal Thiobenzoates to Metal Sulfide Nanocrystals: AnExperimental and Theoretical Investigation[J]. Nanomaterials,2012,2(2):113-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700