用户名: 密码: 验证码:
焦化废水氮杂环化合物降解功能菌的分离、降解特性与代谢途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮杂环化合物是焦化废水有机污染物质的主要组分,占总有机组分的20-30%,含量超过200 mg/L。多数氮杂环化合物气味恶臭且毒性大,不仅对人体健康与生态环境造成威胁,还对微生物产生抑制作用。在焦化废水生物处理单元中,氮杂环化合物的降解率达90%以上,说明在焦化废水长时间驯化与高浓度复杂污染物的压力下,活性污泥中的微生物很可能通过环境的选择和诱导出特异的功能降解特性。广谱高效菌源的获得与研究是生物强化方法处理难降解有机废水的关键问题之一,因此,从焦化废水活性污泥中分离获得功能特异的高效降解菌的可行性,为提高生物强化处理含氮杂环化合物废水的效率,达到减少环境污染目的提供了新的思路。本文以吡啶与喹啉作为氮杂环化合物的模型污染物,采用驯化富集的方法,从韶钢焦化废水生物处理系统的好氧活性污泥中获得了以吡啶为唯一碳、氮和能源生长的优势降解菌,考察了该菌在不同营养条件下降解吡啶的特性,该菌利用吡啶的生长动力学特征,降解吡啶与喹啉的代谢途径以及氮杂环化合物结构与生物降解活性的相关关系。主要结果有:
     (1)吡啶优势降解菌DN-06被鉴定为无色杆菌Achromobacter sp.,是新发现的吡啶降解菌。DN-06的最佳生长环境是pH = 7-8,温度30-35℃和摇床转速为150-170 r/min。在最佳生长条件下,不同金属离子、氮源物质、碳源物质对吡啶降解的影响各异。(I)Fe~(3+)、Mn~(2+)和Zn~(2+)能促进吡啶的降解;Mo(VI)与Cu~(2+)抑制DN-06菌对吡啶的降解,且Cu~(2+)的抑制作用显著。(II)添加尿素(< 36 mg/L)与NH4Cl(< 200 mg/L)并不影响菌体生长与降解吡啶的速率;NaNO2对DN-06降解吡啶有明显抑制作用;当NaNO_3浓度为0-30 mg/L时,其对吡啶的生物降解无影响,当NaNO_3浓度为50-80 mg/L时,则对吡啶的生物降解起到抑制作用。(III)低浓度葡萄糖对吡啶的降解具有促进作用;在不同混合物(苯酚+吡啶,吡啶+喹啉)降解试验中,DN-06能同时降解两种基质,且共基质间存在拮抗作用,吡啶受苯酚与喹啉的影响大于吡啶对苯酚与喹啉的影响。
     (2) DN-06利用吡啶的生长动力学符合抑制动力学方程。在最佳降解条件下,DN-06利用50~4300 mg/L吡啶生长,DN-06菌的适应期随着吡啶浓度的增高而延长,DN-06的比生长速率(μ)表现出先增大后降低的趋势。通过抑制动力学方程(Haldane、Yano、Webb和Aiba方程)以及Monod方程对各个初始浓度S0及对应比生长速率(μ)进行非线性拟合,结果是Haldane与Yano方程在实验浓度范围内能与实测数据很好的吻合,表明高浓度的吡啶对微生物生长具有抑制作用。Haldane方程的动力学参数为μmax= 0.161 h~(- 1),K_S = 142.6 mg /L,Ki= 4234.5 mg /L。较大的μmax和KS值表明菌株DN-06对吡啶具有快速降解以及能耐受高浓度吡啶的抑制作用的能力。
     (3) DN-06以独特的双代谢途径来降解吡啶,对喹啉的降解则通过8-羟基香豆素途径来实现。联合使用多种手段,包括紫外光谱扫描、HPLC与GC/MS检测中间产物以及相关酶活性分析,研究了DN-06降解吡啶与喹啉的代谢途径。检测结果表明:DN-06降解吡啶的途径是直接还原开环,具有在N-C2处与C2-C3处打开吡啶环的两个开环途径;DN-06降解喹啉则是通过8-羟基香豆素途径来实现:喹啉2(1H)-喹喏酮8-羟基香豆素2,3-二羟基苯丙酸。无色杆菌Achromobacter sp.DN-06是新报道的降解吡啶与喹啉的降解菌,所提出的代谢途径为吡啶与喹啉的微生物降解的补充。
     (4)样品中同时测定喹啉与2-羟基喹啉含量分析方法的建立。基于等吸收点以及考虑胞外聚合物(EPS)的光谱干扰,建立三波长(289、326和380 nm)紫外分光光度法同时测定样品中喹啉与2-羟基喹啉的分析方法。该方法具有操作步骤简单、快速处理等优点,非常适合于喹啉生物过程中底物与主要中间产物的分析,为监控喹啉生物降解过程提供一个快速而有效的表征手段。
     (5)含氮杂环化合物的化学结构与其生物降解活性具有相关性。通过实验获得焦化废水活性污泥对7种吡啶与喹啉类化合物的平均降解速率并以此表征生物降解活性,运用Gaussian软件在B3LYP/6-311+G(d)理论水平下进行量子化学计算,手动分子拓扑学连接性指数的计算,获得建模参数,运用偏最小二乘法(PLS)建立了能稳定预测NHCs(吡啶及喹啉类物质)在水体生物降解活性的模型。模型变量重要性分析表明最高占有轨道能量和分子前线轨道能量差(ELUMO–EHOMO)、最负氢原子电荷(QH–)以及三价连接指数(4XVP)对吡啶与喹啉类物质的生物降解速率有着重要的制约作用。
     以上结果说明DN-06是特异的功能降解菌,活性污泥在焦化废水长期、高污染物压力条件下可诱导出功能特异的降解菌,焦化废水活性污泥可作为强化功能降解菌的主要来源。
Nitrogen heterocyclic compounds (NHCs) are the main organic contamination in coking wastewater. The concent of NHCs is about 20-30% of total organic compounds and their total concentration exceeds 200 mg/L. Most NHCs with malodor and toxicity pose a threat to the environment and human health, and provide inhibition effects on microorganism activities. More than 90% of HNCs was found to be removed during the aerobic stage of coking wastewater treatment process, which indicates activated sludge domesticated by the complex pollutants in coking wastewater may contain diverse bacteria with versatile degrading characteristis. The obtainment and investigation of versatile degrading bacteria will contribute to improve the removal efficiencies of NHCs from wastewater in biological treatment, and decrease environmental pollution of NHCs. In the present work, using pyridine and quinoline as model componds of NHCs, the NHCs-degrading bacteria were isolated from the activated slude of a coking wastewater treatment. The degradation characterstics under various growth and nutrition condition, the growth kinetics and metabolic pathways of the isolated were investigated. The quantitative structure biodegradation relationships (QSBR) of NHCs were also studied. The conculsions are as follows:
     (1) A pyridine-degading bacterium species (named as DN-06) was novely isolated from the aerobic activated sludge in coking wastewater treatment plant. DN-06 was identif ied as Achromobacter sp. using 16S rDNA sequence analysis. The optimal growth conditions are: pH 7-8, 30-35°C and shaing speed 150-170 r/min. The effects of different nutiution condition including various metal ions, nitrogen and carbon source on pyridine biodegradation by DN-06 were investagted. (I) Fe~(3+), Mn~(2+) and Zn~(2+) facilitate pyridine degradation, while Mo(VI) and Cu~(2+) provide inhibition effect. (II) Urea (< 36 mg/L) and ammonia (< 200 mg/L) do not affect pyridine degradation. Nitrite inhibites distinctly pyridine degradation by DN-06. Low concentration of nitrate (< 30 mg/L) has negligible effect on pyridine degradation, but high concentration of nitrate (50-80 mg/L) will inhibit pyridine degradation. (III) Low concentration of glucose can accelerate DN-06 growth and pyridine degradation. DN-06 can utilize both substrates in the double-substrate experiments, such as phenol+pyridine, and pyridine+quinoline. Antagonistic effect was found between the substrates, and the effects on pyridine by phenol and quinoline are larger than effects from pyridine.
     (2) The growth kinetics of DN-06 follows inhibition kinetic quation. DN-06 utilizes pyridine in a wide concentratin from 50-4300 mg/L. As pyridine concentration increases, the lag period is prolong and the specific growth rate (μ) increases first and then edcreases. Five models (i.e. Haldane, Yano, Aiba, Webb and monod model) were used to fitted by non-linear regression on S0 andμ. Rusults indicate that Haldane and Yano kinetic models are more suitable models for full substrate concentration range with the highest R2 values of 0.929. R2 = 0.929. The growth of Achromobacter sp. DN-06 follows substrate inhibition kinetic model. The kinetic parameters ofμmax, Ks and Ki in Haldane model are 0.161 h~(- 1), 142.6 mg /L and 4234.5 mg /L, respectively. The high values ofμmax and Ks indicate that Achromobacter sp. DN-06 has a good tolerance against high pyridine concentrations.
     (3) The metabolic pathways of pyridine and quinoline by DN-06 were investigated using intermediary metabolite detection by UV spectroscopy, HPLC and GC/MS, and assays of enzyme activities. The metabolic pathways of pyridine in Achromobacter sp. DN-06 likely involve the direct cleavages of the ring via both the N-C2 and C2-C3 cleavage pathways. The metabolic pathway of quinoline by DN-06 was proposed, that is, via 8-hydroxycoumarin pathway, since metabolic intermediates were identified, including 2-hydroxyquinoline, 2,3-dihydroxyphenylpropione and 8-hydroxycoumarin. Achromobacter sp.DN-06 is the newly reported pyridine and quinoline-degraing bacterium. The metabolic pathways of pyridine and quinoline provide a supplement for NHCs degradation.
     (4) A tri-wavelength UV/Vis spectrophotometric method for rapid determination of quinoline (Q) and 2-hydroxyquinoline (HQ) during Q biodegradation was developed on the base of the spectral measurements at 289 (the isosbestic point of Q and HQ), 326, and 380 nm(EPS). The spectral interference of extracellular polymeric substances (EPS) in the process samples could be minimized, and the amounts of Q and HQ could be simultaneously quantified.The present method is simple, rapid, and suitable for the investigation in Q biodegradation processes.
     (5) A correlation between chemical structures of NHCs and their biodegradation activities was found. Mainly based on some quantum chemical descriptors computed at the B3LYP/6-311+G(d) level with Gaussian software, and the manually calculated molecular connectivity indexes(MCI), by the use of least squares analysis, a quantitative structure-biodegradation relationship (QSBR) model for biodegradation rates of selected 7 NHCs were obtained.The correlation coefficients of the obtained models are significant. The results showed that the eigenvalue of the highest occupied molecular orbital(ELUMO–EHOMO), mulliken atomic charges on the most negative hydrogen atom(Q_H~–), and trialence MCI(~4X~V_P ) play an important role in governing the biodegradation of NHCs.
     The results indicate that bacteria can obtain specific degradation characteristics under pollutants pressure and long-term domestication in coking wastewater, and the activated sludge in coking wastewater treatment opens the door for the source of functional bacteria.
引文
[1] Padoley K V, Mudliar S N, Pandey R A. Heterocyclic nitrogenous pollutants in the environment and their treatment options - An overview[J]. Bioresource Technology. 2008, 99(10): 4029-4043.
    [2] Engwall M A, Pignatello J P, Grasso D. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-fenton reaction[J]. Water Research. 1999, 33(5): 1151-1158.
    [3] Bhartiyagram J P, Nagar U. Feasibility studies on treatment of wastewater containing pyridine generated at M/s Jubilant Organosys Limited (JOL)[J]. Technical Report, National Environmental Engineering Research Institute (NEERI). 2004.
    [4] Waki K, Zhao J, Horikoshi S, et al. Photooxidation mechanism of nitrogen-containing compounds at TiO2/H2O interfaces: an experimental and theoretical examination of hydrazine derivatives[J]. Chemosphere. 2000, 41(337-343).
    [5]陈建新.医用化学[M].北京市:科学出版社, 2006.
    [6]张生勇主编.高等院校教材有机化学[M].北京:科学出版社, 2001.
    [7]任大军.白腐菌对氮杂环化合物的降解及机理研究[Z].武汉:华中科技大学, 2006:博士学位论文.
    [8]高培基,许平.资源环境微生物技术[M].北京市:化学工业出版社, 2004: 333-337.
    [9] Stuermer D H, Ng D J, Morris C J. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming[J]. Environmental Science & Technology. 1982, 16(9): 582-587.
    [10] Johansen S S, Hansen A B, Mosb?k H, et al. Identification of Heteroaromatic and other Organic Compounds in Ground Water at Creosote-Contaminated Sites in Denmark[J]. Ground Water Monitoring & Remediation. 1997, 17(2): 106-115.
    [11] Mueller J G, Chapman P J, Pritchard P H. Creosote-contaminated sites. Their potential for bioremediation[J]. Environmental Science & Technology. 1989, 23(10): 1197-1201.
    [12]何苗,张晓健,雷晓玲,等.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水. 1997(06).
    [13] Damani L A, Crooks P A, Shaker M S, et al. Species differences in the metabolic C- and Noxidation and N-methylation of [14C] pyridine in vivo[J]. Xenobiotica. 1982, 12: 527.
    [14] Occupational Health Guideline for Pyridine[J]. Sidentification, Pelpel - 198.246.98.21, USA.
    [15] Richards D J, Shieh W K. Biological fate of organic priority pollutants in the aquatic environment[J]. Water Research. 1986, 20(9): 1077-1090.
    [16] Noor Mohammad S, Hopfinger A J, Bickers D R. Intrinsic mutagenicity of polycyclic aromatic hydrocarbons: A quantitative structure activity study based upon molecular shape analysis[J]. Journal of Theoretical Biology. 1983, 102(2): 323-331.
    [17] Niosh. In: Registry of Toxic Effects of Chemical Substances, vol. II. National Institute of Occupational Safety and Health,[J]. Cincinnati, OH. 1977(796).
    [18] Reinhardt C F, Brittelli M R. Patty’s Industrial Hygiene and Toxicology[M]. New York: vol. 2A John Wiley and Sons, 1981: 2727-2732.
    [19] Tice R, Brevard B. 3-Picoline, Review Of Toxicological Literature: National Institute Of Environmental Health Sciences[Z]. North Carolina: 1999.
    [20] Sims G K, O'Loughlin E J. Degradation of pyridines in the environment[J]. CRC Critical Reviews in Environmental Control.1989, 19(4): 309-340.
    [21] Rao T K, Epler J L, Guerin M R, et al. Mutagenicity of nitrogen compounds from synthetic crude oils: collection, separation and biological testing[J]. Environment Research. 1981, 22: 243.
    [22] Millemann R E, Ehrenberga D S. Chronic toxicity of the azaarene quinoline, a synthetic fuel component, to the pond snail Physagyrina[J]. Environmental Technology. 1982, 3(1 & 11): 193-198.
    [23]何苗,张晓健.杂环化合物好氧生物降解性能的研究[J].中国环境科学. 1997, 17(6): 481-484.
    [24] Lee S T, Rhee S K, Lee G M. Biodegradation of pyridine by freely suspended and immobilized pimelobacter species[J]. Applied Microbiology and Biotechnology. 1994, 41: 652-657.
    [25]熊瑞林,陈吕军,刘江江.脱氮副球菌W12降解吡啶的影响因素及其赋存质粒特性[J].环境科学学报. 2009, 29(2): 252-258.
    [26] Agapova SR, Andreeva AL, Starovo(?)tov II, et al. Plasmids for biodegradation of 2, 6-dimethylpyridine, 2 4-dimethylpyridine and pyridine in strains of Arthrobacter[J]. Mol Gen Mikrobiol Virusol. 1992, 5-6: 10-13.
    [27] Padoley K V, Rajvaidya A S, Subbarao T V, et al. Biodegradation of pyridine in a completely mixed activated sludge process[J]. Bioresource Technology. 2006, 97(10): 1225-1236.
    [28] Rhee S K, Lee G M, Yoon J H, et al. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium[J]. Applied and Environmental Microbiology. 1997, 63(7): 2578-2585.
    [29] Bai Y, Sun Q, Zhao C, et al. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001[J]. Biodegradation. 2008(19): 915-926.
    [30]孙庆华,柏耀辉,赵翠,等. Shinella zoogloeoides BC026对吡啶的降解特性研究[J].环境科学. 2008, 29(10): 2938-2943.
    [31] Uma T S, Sandhya S, Sathyanarayana S, et al. Biodegradation of pyridine from pharmaceutical wastewater using Bacillus consortia[J]. J. Ind. Assoc. Envt. Mgmt. 2002, 29: 76-80.
    [32] Shukla O P, Kaul S M. Microbiological transformation of pyridine N-oxide and pyridine by Nocardia sp. [J]. Canadian Journal of Microbiology. 1986, 32(4): 330-341.
    [33] Mathew C D, Nagasawa T, Kobayashi M, et al. Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1.[J]. Applied and Environmental Microbiology. 1988, 54(4): 1030-1032.
    [34] Houghton C, Cain R B. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by micro-organisms[J]. Biochemical Journal. 1972(130): 879-893.
    [35] Korosteleva L A, Kost A N, Vorrob'Eva L I, et al. Microbiological degradation of pyridine and 3-methylpyridine [J]. Applied Biochemistry Microbiology. 1981, 17: 276.
    [36] Lee J J, Rhee S, Lee S. Degradation of 3-Methylpyridine and 3-Ethylpyridine by Gordonia nitida LE31[J]. Applied and Environmental Microbiology. 2001, 67(9): 4342-4345.
    [37] Sims G K, Sommers L E, Konopka A. degradation of pyridine and 4-methylpyridine by Micrococcus[J]. Applied and environmental microbiology. 1986, 51(5): 963-968.
    [38] Sims G K, Sommers L E. Degradation of pyridine derivatives in soil[J]. Journal of Environmental Quality. 1985, 14: 580-584.
    [39] Modyanova L V, Vorob'Eva L I, Shibilkina O K, et al. Microbiological transformations of nitrogen-containing heterocyclic compounds. I. Hydroxylation of isomeric methyl- and dimethylpyridines by certain microscopic fungi[J]. Soviet biotechnology. 1990, 3: 36-39.
    [40] Watson G K, Cain R B. Microbial metabolism of the pyridine ring. metabolic pathways of pyridine biodegradation by soil bacteria[J]. Biochemical Journal. 1975, 146: 157-172.
    [41] Shukla O P, Kaul S M. A constitutive pyridine degrading system in Corynebacterium sp.[J]. Indian Journal of Biochemistry Biophysics. 1974, 11(3): 201-207.
    [42] Shukla O P. Microbial decomposition of pyridine[J]. Indian journal of experimental biology. 1973, 11(5): 463-465.
    [43] Zefirov N S, Agapova S R, Terentiev P B, et al. Degradation of pyridine by Arthrobacter crystallopoietes and Rhodococcus opocus strains[J]. FEMS Microbiology Letters. 1994, 118(1-2): 71-74.
    [44]李培睿,李宗义,秦广雍.吡啶及其衍生物微生物降解研究进展[J].生物技术. 2007, 17(04): 96-98.
    [45] Kaiser J, Bollag J. Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives[J]. Soil Biology and Biochemistry. 1991, 24(4): 351-357.
    [46] Hunt A L, Hughes D E, Lowenstein J M. The hydroxylation of nicotinic acid by Pseudomonas fluorescens[J]. Biochemistry Journal. 1958, 69(2): 170-173.
    [47] Cain R B, Houghton R C, Wright K A. Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp[J]. Biochemical Journal. 1974, 140: 293-300.
    [48] Holcenberg J S, Stadtman E R. Nicotinic Acid Metabolism III. Purification and properties of a nicotinic acid hydroxylase[J]. The Journal of Biological Chemistry. 1969, 244: 1194-1203.
    [49] Liu S M, Jones W J, Rogers J E. Influence of redox potential on the anaerobic biotransformation of nitrogen heterocyclic compounds in anoxic freshwater sediments[J]. Applied Microbiology and Biotechnology. 1994, 41(6): 717-724.
    [50]朱顺妮,刘冬启,樊丽,等.喹啉降解菌Rhodococcus sp.QL2的分离鉴定及降解特性[J].环境科学. 2008, 29(2): 488-493.
    [51]崔明超.喹啉及其甲基化衍生物的微生物降解研究[Z].广州:中国科学院广州地球化学研究所, 2003:博士学位论文.
    [52]韩力平,王建龙,刘恒,等.固定化及游离态皮氏伯克霍尔德氏菌(Burkholderia pickettii)降解喹啉的试验研究[J].环境科学学报. 2000, 20(03): 379-381.
    [53] Miethling R, Hecht V, Deckwer W D. Microbial degradation of quinoline: Kinetic studies with Comamonas acidovorans DSM 6426[J]. Biotechnology and Bioengineering. 1993, 42(5): 589-595.
    [54] Schach S, Schwarz G, Fetzner S, et al. Microbial Metabolism of Quinoline and Related Compounds. XVII. Degradation of 3-Methylquinoline by Comamonas testosteroni 63[J]. Biological Chemistry Hoppe-Seyler. 1993, 374(1-6): 175-182.
    [55] Johansen S S, Licht D, Arvin E, et al. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383)[J]. Applied Microbiology and Biotechnology. 1997, 47(3): 292-300.
    [56] Grant DJ, Al-Najjar TR. Degradation of quinoline by a soil bacterium [J]. Microbios. 1976, 15(61-62): 177-189.
    [57] Ii J J K, Ranganathan R, Cleveland L, et al. Selective Removal of Nitrogen from Quinoline and Petroleum by Pseudomonas ayucida IGTN9m[J]. Appllied Environmental Microbiology. 2000, 66: 688-693.
    [58] Aislabie J, Bej A K, Hurst H, et al. Microbial degradation of quinoline and methylquinolines[J]. Applied Environmental Microbiology. 1990, 56(2): 345-351.
    [59] Zhu S N, Liu D Q, Fan L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge.[J]. Journal of Hazardous Materials. 2008, 160(2-3): 289-294.
    [60]张秀霞,吴伟林,单宝来,等.固定化降解菌Q5降解喹啉动力学[J].石油学报(石油加工). 2009, 25(3): 442-446.
    [61] Hund H, de Beyer A, Lingens F. Microbial metabolism of quinoline and related compounds. VI. Degradation of quinaldine by Arthrobacter sp.[J]. Biol Chem Hoppe Seyler. 1990, 371(10): 1005-1008.
    [62] Ruger A, Schwarz G, Lingens F. Microbial metabolism of quinoline and related compounds. XIX. Degradation of 4-methylquinoline and quinoline by Pseudomonas putida K1.[J]. Biol Chem Hoppe Seyler. 1993, 374(7): 479-488.
    [63] Bott G, Lingens F. Microbial metabolism of quinoline and related compounds. IX. Degradation of 6-hydroxyquinoline and quinoline by Pseudomonas diminuta 31/1 Fa1 and Bacillus circulans 31/2 A1.[J]. Biol Chem Hoppe Seyler. 1991, 372(6): 381-383.
    [64] Schmidt M, Roger P, Lingens F. Microbial metabolism of quinoline and related compounds. XI. Degradation of quinoline-4-carboxylic acid by Microbacterium sp. H2, Agrobacterium sp. 1B and Pimelobacter simplex 4B and 5B.[J]. Biol Chem Hoppe Seyler. 1991, 372(11): 1015-1020.
    [65] Grant D J, Al-Najjar T R. Degradation of quinoline by a soil bacterium[J]. Microbios. 1976, 15(61-62): 177-189.
    [66] Schwarz G, Bauder R, Speer M, et al. Microbial metabolism of quinoline and related compounds. II. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86 and Rhodococcus spec. B1.[J]. Biol Chem Hoppe Seyler. 1989, 370(11): 1183-1189.
    [67] Liu S, Jones W J, Rogers J E. Biotransformation of quinoline and methylquinolines in anoxic freshwater sediment[J]. Biodegradation. 1994, 5(2): 113.
    [68] Adav S S, Lee D, Ren N Q. Biodegradation of pyridine using aerobic granules in the presence of phenol[J]. Water Research. 2007, 41(13): 2903-2910.
    [69]李济吾,蔡晶晶.链霉菌(Streptomyces sp.)对吡啶的降解特性[J].化工环保. 2008, 28(1): 8-11.
    [70] Padoley K V, Mudliar S N, Pandey R A. Microbial degradation of pyridine and a-picoline using a strain of the genera Pseudomonas and Nocardia sp.[J]. Bioprocess Biosystem Engineering. 2009, 32(4): 501-510.
    [71] Mathur A K, Majumderb C B, Chatterjeec S, et al. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus[J]. Journal of Hazardous Materials. 2008, 157: 335-343.
    [72]韩力平,王建龙,施汉昌,等.皮氏伯克霍尔德氏菌(Burkholderiapickettii)降解喹啉动力学的研究[J].环境科学学报. 2000, 20(S1): 107-109.
    [73]张晓健,雷晓玲.焦化废水中几种难降解有机物的厌氧生物降解特性[J].环境工程. 1996, 14(1): 10-13.
    [74]李咏梅,顾国维,赵建夫.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报. 2001, 29(6): 720-723.
    [75]李咏梅,顾国雄.焦化废水中几种含氮杂环有机物在A1-A2-O系统中的降解特性研究[J].环境科学学报. 2002, 22(1): 34-39.
    [76]马娜,李咏梅,顾国维.含氮杂环化合物吲哚的缺氧降解性能研究[J].上海环境科学. 2003, 22(11): 734-737.
    [77] Hongwei Y, Zhanpeng J, Shaoqi S. Anaerobic biodegradability of aliphatic compounds and their quantitative structure biodegradability relationship[J]. Science of The Total Environment. 2004, 322(1-3): 209-219.
    [78]邵敏赵美萍.环境化学[M].北京市:北京大学出版社, 2005.
    [79]蔡晶,柴社立,芮铭先,等.共代谢在难生物降解污水处理中的应用[J].环境保护. 2005(10): 56-59.
    [80]李惠娣,杨琦,尚海涛.甲醇为共代谢基质时四氯乙烯的厌氧生物降解[J].环境科学. 2004, 25(3): 84-88.
    [81]马娜.几种含氮杂环化合物生物降解研究[Z].上海:同济大学, 2003:工程硕士学位论文.
    [82]郑广宏.含氮杂环有机化合物缺氧生物降解特性及机理研究[Z].上海:同济大学, 2003:博士学位论文.
    [83]李萍,刘俊新.废水中难降解性有机污染物的共代谢降解[J].环境污染治理技术与设备. 2002(11): 43-46.
    [84]姚珺,赵野,何苗.共代谢对难降解有机物生物降解性能的影响[J].环境科学与技术. 2006, 29(3): 11-12.
    [85]任大军,颜克亮,张晓昱.共基质下白腐菌降解含氮杂环类物质的研究[J].环境保护科学. 2008, 30(8): 32-35, 40.
    [86]陈刚.定量结构与生物降解性能关系的研究及应用[J].武汉理工大学学报:交通科学与工程版. 2004, 28(3): 459-462.
    [87] Sims G K, Sommers L E, Konopka A. Degradation of Pyridine by Micrococcus luteus Isolated from Soil.[J]. Appl Environ Microbiol. 1986, 51(5): 963-968.
    [88] Bundy J G, Morriss A W J, Durham D G, et al. Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocylic compounds[J]. Chemosphere. 2001, 42(8): 885-892.
    [89] Hongwei Y, Zhanpeng J, Shaoqi S. Biodegradability of nitrogenous compounds under anaerobic conditions and its estimation[J]. Ecotoxicology and Environmental Safety. 2006, 63(2): 299-305.
    [90]何苗,姚君,周国强.多环芳烃和杂环化合物生物降解性能的研究[J].天津职业大学学报. 1999, 8(3): 34-46.
    [91]廖宜勇.取代苯类及部分氮杂环类化合物的QSAR研究[Z].南京:南京大学, 1996:博士学位论文.
    [92] J萨姆布鲁克Sambrook J Dw拉塞尔Davidw Russell.分子克隆实验指南[M].第3版.北京:科学出版社, 2005.
    [93]朱顺妮,樊丽,倪晋仁.两株喹啉降解菌代谢途径的分析[J].中国环境科学. 2008, 28(5): 456-460.
    [94]柏耀辉,赵翠,肖亚娜,等.降解喹啉的假单胞菌BW003菌株的分离、鉴定和降解特性[J].环境科学. 2008, 29(12): 3546-3553.
    [95]吴锦华,韦朝海,李平.金属离子及盐度对硝基苯厌氧生物降解过程的影响[J].环境科学研究. 2009, 22(1): 99-102.
    [96]王夔.生命科学国的微量元素[M].北京:中国计量出版社, 1996.
    [97]高俊发,乔华.污水生物处理活化剂的研制与开发[J].陕西环境. 2000, 7 (3): 41-43.
    [98] Criteria for Nutrient-Balanced Operation of Activated Sludge Process [J]. Water Science & Technology., 24(3-4): 251-258.
    [99]吴锦华,韦朝海,平李.金属离子及盐分对苯胺好氧生物降解过程的影响[J].安全与环境学报. 2008, 8(5): 48-51.
    [100]任源,韦朝海,吴超飞,等.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报. 2007, 27(7): 1094-1100.
    [101]赵宗升,冯娟.高铵氮废水生物硝化过程抑制现象初探[J].环境科学学报. 2007, 27(8): 1238-1244.
    [102]何苗,张晓健,瞿福平,等.焦化废水中有机物在活性污泥法处理中的去除特性[J].给水排水. 1996, 22(10): 28-30.
    [103] Leadbetter ER, Foster JW.. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica[J]. Arch Biochem Biophys. 1959, 82(2): 491-492.
    [104]胡洪营.环境工程原理[M].北京市:高等教育出版社, 2005.
    [105] Yano T, Nakahara T, Kamiyama S, et al. Kinetic studies on microbial activities in concentrated solutions. I. Effect of excess sugars on oxygen uptake rate of a cell-freerespiratory system[J]. Agricultural Biology and Chemistry. 1966, 30: 42-48.
    [106] Webb J L. Enzyme and Metabolic Inhibitors[M]. Boston, USA: Academic Press, 1963.
    [107] Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcohol fermentation[J]. Biotechnology and Bioengineering. 2000, 67 (6): 671-690.
    [108] Monod J. The Growth of Bacterial Cultures[J]. Annual Review of Microbiology. 1949, 3: 371-394.
    [109] Grady C, Daigger G, Lin H. Biological Wastewater Treatment Second Edition, Revised and Expanded [M]. New York: Marcel Dekker Inc., 1999.
    [110] Rhee S K, Lee G M, Yoon J H, et al. Anaerobic and Aerobic Degradation of Pyridine by a Newly Isolated Denitrifying Bacterium[J]. Applied and environmental microbiology. 1997, 63(7): 2578-2585.
    [111] Lodha B, Bhadane R, Patel B, et al. Biodegradation of pyridine by an isolated bacterial consortium/strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation [J]. Biodegradation. 2008, 19: 717-723.
    [112] Mathur A K, Majumder C B, Chatterjee S, et al. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus[J]. Journal of Hazardous Materials. 2008, 157(2-3): 335-343.
    [113]邱凌峰,吴芳芳,尧姚.丝孢酵母TX1降酚动力学研究及过程优化[J].环境工程学报. 2011, 5(3): 537-542.
    [114] Singh R K, Kumar S, Kumar S, et al. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869[J]. Biochemical Engineering Journal. 2008, 40(2): 293-303.
    [115] Onysko K A, Budman H M, Robinson C W. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5[J]. Biotechnology and Bioengineering. 2000, 70(3): 291-299.
    [116]姚珺,赵野,何苗.共代谢对难降解有机物生物降解性能的影响[J].环境科学与技术. 2006, 29(3): 11-12.
    [117]熊瑞林,陈吕军,刘江江.共基质条件下脱氮副球菌W 12对吡啶的降解[J]. 2009. 2009, 49(6): 842-845.
    [118]柏耀辉,孙庆华,温东辉,等.假单胞杆菌BC001对吡啶和喹啉的生物去除[J].北京大学学报(自然科学版). 2008, 44(02): 237-242.
    [119] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folinphenol reagent[J]. Journal of Biology Chemistry. 1951, 193: 265-275.
    [120] Vázquez I, Rodríguez J, Maraón E, et al. Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation[J]. Journal of Hazardous Materials. 2006, 137(3): 1773-1780.
    [121] Muraki T, Taki M, Hasegawa Y, et al. Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate- 6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7[J]. Applied and Environmental Microbiology. 2003, 69(3): 1564-1572.
    [122] Loh K, Chua S. Ortho pathway of benzoate degradation in Pseudomonas putida: induction of meta pathway at high substrate concentrations[J]. Enzyme and Microbial Technology. 2002, 30(5): 620-626.
    [123] O'Loughlin E J, Kehrmeyer S R, Sims G K. Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium[J]. International Biodeterioration & Biodegradation. 1996, 38(2): 107-118.
    [124] Fetzner S. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions[J]. Appl Microbiol Biotechnol. 1998, 49(3): 237-250.
    [125] Pereira W E, Rostad C E, Leiker T J, et al. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water[J]. Appl Environ Microbiol. 1988, 54(3): 827-829.
    [126] Peschke B, Lingens F. Microbial metabolism of quinoline and related compounds. XII. Isolation and characterization of the quinoline oxidoreductase from Rhodococcus spec. B1 compared with the quinoline oxidoreductase from Pseudomonas putida 86.[J]. Biol Chem Hoppe Seyler. 1991, 372(12): 1081-1088.
    [127] Kilbane J J, Ranganathan R, Cleveland L, et al. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m[J]. Applied and Environmental Microbiology. 2000, 66(2): 688-693.
    [128] Julia J.G., Roman P.J, Stephan S, et al. Xenobiotic Reductase A in the Degradation of Quinoline by Pseudomonas putida 86: Physiological Function, Structure and Mechanism of 8-Hydroxycoumarin Reduction[J]. Journal of Molecular Biology. 2006, 361: 140-152.
    [129] Shukla O P. Microbial transformation of quinoline by a Pseudomonas sp. [J]. Appllied Environmental Microbiology. 1986, 51(6): 1332-1342.
    [130] Shukla O P. Microbial transformation of quinoline by a Pseudomonas sp.[J]. Applied Environmental Microbiology. 1986, 51(6): 1332-1342.
    [131] Bai Y H, Sun Q H, Zhao C, et al. Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp strain[J]. Biodegradation. 2010, 21(3): 335-344.
    [132] Wang J, Wu W, Zhao X. Microbial degradation of quinoline: kinetics study with Burkholderia picekttii.[J]. Biomed Environ Sci. 2004, 17(1): 21-26.
    [133] Thomsen A B, Kilen H H. Wet oxidation of quinoline: intermediates and by-product toxicity[J]. Water Research. 1998, 32(11): 3353-3361.
    [134] Saha S, Mistri R, Ray B C. Determination of pyridine, 2-picoline, 4-picoline and quinoline from mainstream cigarette smoke by solid-phase extraction liquid chromatography/electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A. 2010, 1217(3): 307-311.
    [135] Reineke A, G?en T, Preiss A, et al. Quinoline and Derivatives at a Tar Oil Contaminated Site: Hydroxylated Products as Indicator for Natural Attenuation?[J]. Environmental Science & Technology. 2007, 41(15): 5314-5322.
    [136] Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology. 2002, 95: 249-256.
    [137] Ying W, Yang F, Bick A, et al. Extracellular Polymeric Substances (EPS) in a Hybrid Growth Membrane Bioreactor (HG-MBR): Viscoelastic and Adherence Characteristics[J]. Environ. Sci. Technol. 2010, 44 (22): 8636-8643.
    [138] Cetin S, Erdincler A. The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges[J]. Water Sci Technol. 2004, 50(9): 49-56.
    [139] Wang Z, Liu L, Yao J, et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J]. Chemosphere. 2006, 63(10): 1728-1735.
    [140]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J].中国安全科学学报. 2003, 13(9): 31-34.
    [141] Sunil S Adav, Duu-Jong Lee. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure[J]. Journal of Hazardous Materials. 2008, 154: 1120-1126.
    [142] Subramanian S B, Yan S, Tyagi R D, et al. Extracellular polymeric substances (EPS)producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering[J]. Water Research. 2010, 44: 2253-2266.
    [143]卢桂宁,党志,陶雪琴,等.多环芳烃光解活性的量子化学研究[J].环境化学. 2005, 24(4): 459-462.
    [144] Veith G D, Mekenyan O G, Ankley G T, et al. A QSAR analysis of substituent effects on the photoinduced acute toxicity of PAHs[J]. Chemosphere. 1995, 30(11): 2129-2142.
    [145] Sverdrup L E, Nielsen T, Krogh P H. Soil Ecotoxicity of Polycyclic Aromatic Hydrocarbons in Relation to Soil Sorption, Lipophilicity, and Water Solubility[J]. Environmental Science Technology. 2002, 36(11): 2429-2435.
    [146] Cronin M T D, Aptula A O, Duffy J C, et al. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis[J]. Chemosphere. 2002, 49(10): 1201-1221.
    [147]赵丽,刘征涛,冯流,等.单歧藻对烷基酚类化合物的生物降解性及QSBR研究[J].环境科学研究. 2005, 18(1): 23-26.
    [148]赵元慧,杨绍贵.松花江中取代苯酚和苯胺类的生物降解性QSBR研究[J].环境科学学报. 2002, 22(1): 45-50.
    [149]陈学勇,邓秀琼,朱家亮,等.氟化酚对梨形四膜虫毒性的定量构效关系解析[J].环境化学. 2010, 29(4).
    [150]陈景文,马逊凤.部分硝基芳烃对鲤鱼的急性毒性及定量构效关系[J].环境化学. 1996, 15(4): 332-336.
    [151]秦正龙.卤代芳烃对水生生物急性毒性的定量构效关系研究[J].环境污染治理技术与设备. 2005, 6(1): 50-53.
    [152]瞿福平,杨义燕.定量结构—生物降解性能关系(QSBR)研究原理及进展[J].中国环境科学. 1999, 19(1): 18-21.
    [153] B P, Hoff M, Germa F, et al. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: A complementary approach to predict biodegradability[J]. Environmental Science & Technology. 2007, 41(4): 1390-1398.
    [154]余训氏,张旭.含氮杂环化合物环境参数及生物活性的QSAR研究[J].安全与环境学报. 2003, 3(4): 30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700