用户名: 密码: 验证码:
木材超声波—真空协同干燥热质传递规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材超声波干燥是一种创新的干燥方法,本研究将超声波技术引入到木材真空干燥过程,并就超声波-真空协同干燥条件下的边界层特性、超声波发热机理、协同干燥特性及协同干燥过程中热质传递规律进行了较系统的研究,丰富了木材干燥基础理论,为木材干燥技术的创新和发展开辟了一条新的道路。论文主要成果与创新点如下:
     (1)在温度为30-90℃,绝对压强为0.02-0.1MPa条件下,对木材平衡含水率和表面热质传递规律进行研究。结果表明,木材平衡含水率随温度的升高而减小,随绝对压强的增加而增加;液体表面对流传质系数随温度的升高而减小,随绝对压强的减小而升高;液体表面对流换热系数随绝对压强的减小而减小,随温度的升高而升高;基于试验数据,建立了真空干燥过程中的木材平衡含水率模型及液体表面对流传热传质系数模型。
     (2)在温度为35℃和50℃,绝对压强为0.03MPa、0.06MPa和0.1MPa,超声波功率为60W和100W,超声波频率为20kHz和28kHz条件下对木材干燥过程中的边界层特性进行研究。结果表明,超声波协同处理试件的边界层底层温度和木材外层温度均高于对照组,其差值可分别达10.7℃和5.6℃,且超声波功率和频率对边界层温度影响显著;相比对照组,超声波协同处理可提高木材表面水分蒸发能力,最大可提高110.1%;建立了超声波-真空协同干燥过程中边界层厚度及木材表面水分蒸发模型。
     (3)在温度为20℃、40℃和60℃,绝对压强为0.03MPa、0.06MPa和0.1MPa,超声波功率为60W和100W,超声波频率为20kHz、28kHz和40kHz的条件下对超声波-真空处理过程中,木材内部发热机理进行研究。结果表明,对照组的温度均小于或等于环境温度,而超声波处理材的温度均高于环境温度,最高温度可达85℃,且木材温度与超声波功率和频率正相关,与环境压强负相关。
     (4)基于超声波-真空处理过程中,木材内部温度场和超声波传播规律,得到了协同作用下,超声波衰减系数模型、超声波声强衰减模型、超声波发热模型和木材内部温度升高模型。结果表明,超声波衰减系数与超声波功率、频率正相关,与环境压强负相关,且该模型得到的理论值与实测值吻合良好。
     (5)在不同温度、绝对压力、超声波功率和频率条件下,分别采用超声波-真空干燥,超声波预处理-真空干燥及超声波、真空预处理-真空干燥三种联合方式对木材进行干燥处理。结果表明,与对照组相比,超声波-真空干燥使得木材水分扩散系数提高23.25-40.9%;超声波预处理-真空干燥使得干燥时间缩短29.7-48.1%,超声波、真空预处理-真空干燥使得干燥时间缩短8-11%。三种协同方式均能加快木材真空干燥速率,缩短干燥时间,提高水分扩散系数。
     (6)在温度为60℃,绝对压强为0.02MPa,超声波功率为100W,频率为20kHz的条件下对木材进行超声波-真空协同干燥,并基于菲克扩散定律、热质传递规律及数学分析方法得到了协同干燥过程中,木材内部不同位置的水分分布和热量分布规律模型、木材含水率变化值与水分扩散系数和时间的关系模型。结果表明,水分扩散系数随含水率的增加呈指数形式增长,且模型得到的理论值与实际值相吻合,可用于模拟协同干燥过程中木材内部温度和水分的变化情况。
Wood ultrasound drying is a kind of innovative approaches. Ultrasound technology was taken into wood vacuum drying process. The characteristics of boundary layer at wood surface and the heating principle of ultrasound inner wood, the drying characters, and the heat and mass transfer principle were studied during ultrasound-vacuum combined drying process. This paper could enrich the basic theory of wood drying and provid a new way for wood drying. The main results and innovation point were as follows,
     (1)Wood equilibrium moisture content and the law of heat and mass transfer during vacuum drying process were studied among the temperature of30℃to90℃and the absolute pressure of0.02MPa to0.1MPa. Results showed that, wood equilibrium moisture content increased along with the decrease of temperature and increase of absolute pressure; The convection mass transfer coefficient decreased with the increase of temperature and with the decrease of absolute pressure; What's more, the convection heat transfer coefficient decreased with the decrease of absolute pressure and increase with the increase of temperature. Also, the equilibrium moisture content model and convection heat and mass transfer coefficient model were established.
     (2)The characteristics of boundary layer at wood surface was studied at the temperature of35℃and50℃, the absolute pressure of0.03MPa,0.06MPa and0.1MPa, ultrasound power of60W and100W, and ultrasound frequency of20kHz and28kHz. The results indicated that, comparing with control group, ultrasound could increase the temperature of boundary layer and wood surface, the increase of which were10.7℃and5.6℃, respectively, and ultrasound power and frequency had significant impact on boundary layer temperature. Also, ultrasound could enhance the water evaporation power, which is110.1%higher than that of control specimens. What's more, the thickness of boundary layer model and the water evaporation model at wood surface were established.
     (3)The heating principle of ultrasound inner wood was studied under the conditions that, the temperature were20℃,40℃and60℃, the absolute pressure were0.03MPa,0.06MPa and0.1MPa, the ultrasound power were60W and100W and the ultrasound frequency were20kHz,28kHz and40kHz. The results showed that, the temperature of control group was lower or equal to ambient temperature, while that for ultrasound treating group was higher than that of ambient temperature, the maximum value was85℃, and the temperature value is proportional to ultrasound power and ultrasound frequency, while is inverse proportional to absolute pressure.
     (4)Ultrasound attenuation coefficient model, ultrasound intensity attenuation law, ultrasound heating and temperature increasing models were established based on wood temperature field and ultrasound propagation law during ultrasound-vacuum combined drying process. The results indicated that ultrasound attenuation coefficient is proportional to ultrasound power, ultrasound frequency, while is inverse proportional to pressure and this model was well-matched to the actual value.
     (5)Ultrasound-vacuum drying, ultrasound pretreatment-vacuum drying, and ultrasound and vacuum combined pretreatment-vacuum drying were carried out at different temperature, absolute pressure, ultrasound power and ultrasound frequency conditions to study the impact of ultrasound on wood drying characteristics. The results indicated that, comparing with control group, the water diffusion coefficient was increased by23.25-40.9%for ultrasound-vacuum drying, the drying time was shorten by29.7-48.1%for ultrasound pretreatment-vacuum drying, the drying time was shorten by8-11%for ultrasound and vacuum combined pretreatment-vacuum drying. All in all, the three drying methods could be used to increase wood drying rate, shorten wood drying time and increase water diffusion coefficient.
     (6)Wood ultrasound-vacuum combined dying was carried out at the temperature of60℃, at the absolute pressure of0.02MPa, at the ultrasound power of100W and the frequency of20kHz. The water and heat distribution model, the relationships among wood moisture content, water diffusion coefficient and time were established based on Fick's law of diffusion, heat and mass transfer principle and mathematical analysis. The results showed that, the water diffusion coefficient is exponential growth with the moisture content. This model was well-matched to the actual value and could be used to simulate water and heat distribution during ultrasound-vacuum combined drying process.
引文
[1]蔡力平.刨花蒸汽处理提高刨花板尺寸稳定性及水分迁移模型的研究[D].哈尔滨:东北林业大学,1991.
    [2]曹晓博,王若兰.不同气流速度下小麦平衡水分研究[J]-河南工业大学学报:自然科学版,2007,28(5):1-4.
    [3]常建民.木材对流干燥过程热质传递规律及其湿迁移特性[D].哈尔滨:东北林业大学,1994.
    [4]常建民-木材对流干燥热质传递模型的研究[J].林产工业,1996,23(1):15-17.
    [5]《超声波探伤》编写组.超声波探伤[M].北京:电力工业出版社,1980:10-13.
    [6]陈锋,汪凤泉,舒光冀.超声波在声导杆中传递时的发热效应[J].工程力学,1995,12(4):102-108.
    [7]陈思忠.我国功率超声技术近况与应用进展[J].声学技术,2009,(2):46-49.
    [8]陈钟秀,顾飞燕,胡望明.化工热力学[M].北京:化学工业出版社,2008.
    [9]陈黟,吴味隆.热工学第三版[M].北京:高等教育出版社,2007.
    [10]成俊卿.木材学[M].北京:中国林业出版社,1985.
    [11]董勋.润滑理论[M].上海:上海交通大学出版社,1984.
    [12]杜国兴.论木材的干燥特性及干燥工艺[D],南京:南京林业大学,1991.
    [13]段希利,王选盈,王刚,等.超声振动对换热器管内传热和压降影响[J].石油化工设备,2004,33(1):1-4.
    [14]冯若,李化茂.声化学及其应用[M].安徽科学技术出版社,1992.
    [15]冯若,刘志滨.声化学技术用于有机合成:醇的氧化反应[J].声学技术,1993,12(1):13-14.
    [16]冯若,姚锦钟,关立勋.超声手册[M].南京:南京大学出版社,1999.
    [17]高建,廖传华,黄振仁.多孔介质喷雾干燥过程的热质传递[J].干燥技术与设备,2004,(1):17-20.
    [18]高建民,陈广元,蔡英春,等.木材干燥学[M].北京:科学出版社,2008.
    [19]高守雷,富知愚.超声波在金属凝固中的应用与发展[J].材料导报,2002,16(9):5-6.
    [20]高永慧,耿小丕.超声波清洗液温度变化规律的研究[J].承德石油高等专科学校学报,2005,7(3):39-41.
    [21]郝晓峰.人工林杉木干燥过程传热传质数值模拟[D].北京:中国林业科学研究院,2013.
    [22]何道清.传感器与传感技术[M].北京:科学出版社.2004
    [23]何正斌,李帆,伊松林,等.真空条件下木材表面水分蒸发速率模型及应用初探[J].北京林业大学学报,2010,32(6):105-108.
    [24]何正斌,赵紫剑,杨飞,等.超声波-真空协同木材干燥动力学研究,第十四次全国木材干燥学术研讨会,2013,45-50.
    [25]何正斌,赵紫剑,伊松林.木材干燥热质传递理论与数值分析[M].北京:中国林业出版社,2013.
    [26]胡爱军,丘泰球.超声波技术在在食品工业中的应用[J].综述与评论,2002,21(4):192-194,199.
    [27]胡松涛,刘国丹,廉乐明,等.干燥过程中热质传递交叉效应的研究[J].哈尔滨工业大学学报,2001,33(1):35-39.
    [28]胡松涛,李绪全,廉乐明.致密毛细多孔体干燥中热质传递过程的研究[J].南京林业大学学报,1997,21:232-235.
    [29]胡振华,汤雷,高明涛.超声波激励下混凝土裂纹发热过程的试验研究和有限元分析[J].水利与建筑工程学报,2013(2):58-61.
    [30]李大纲.马尾松木材干燥过程中水分的非稳态扩散[J].南京林业大学学报,1997,121(1):75-79.
    [31]李栋,陈振乾.超声波抑制平板表面结霜的试验研究[J].化工学报,2009,(9):2171-2176.
    [32]李帆,陈丽琼,何正斌,等.真空介质条件对木材干燥速率及缺陷程度的影响[J].干燥技术与设备,2009,7(6):253-257.
    [33]李廷盛,尹其光.超声化学[M].北京:科学技术出版社,1995.
    [34]李伟光,张金,李勇,等.消除空调滴水的超声波装置研究[J].制冷学报,2005,26(3):53-56.
    [35]李贤军,刘元,苏洪泽,等.高温炭化处理对木材平衡含水率的影响规律[J].林业实用技术,2008(10):50-51.
    [36]李贤军,张璧光,李文军,等.木材中非等温水分迁移的研究[J].北京林业大学学报,2005,27(2):97-99.
    [37]李延军,张璧光,李贤军,等.杉木木束干燥过程中水分的非稳态扩散[J].北京林业大学学报,2005,27:61-63.
    [38]李耀维,张沛生.热敏电阻温湿计法测定红枣平衡含水率[J].山西农业大学学报,1996,16(2):191-193.
    [39]李友容,曾丹苓,吴双应.多孔介质对流干燥外部传热传质的非平衡热力学理论[J].工程热物理学报,2001,22(1):5-8.
    [40]连之伟,孙德兴.热质交换原理与设备[M].北京:中国建筑工业出版社,2006.
    [41]缪鹏程,米小兵,张淑仪,等.超声红外热像检测中缺陷发热的瞬态温度场的有限元分析[J].南京大学学报:自然科学版,2005,41(1):98-104.
    [42]刘冬,彭晓峰,王补宣.微尺度沸腾的团聚过程分析与压力扰动模型[J].航空动力学报,2000,15(1):85-88.
    [43]刘岩.两种不同类型的声场与声化学产额的关系[J].物理化学学报,2001,17(11):1031-1035.
    [44]刘岩,冯若.声化学:面向未来的新学科[J].科学,1994,46(5):34-36.
    [45]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社,2004.
    [46]刘玉容.杨木真空过热蒸汽干燥规律的研究[D].硕士学位论文,北京林业大学,2008.
    [47]卢涛,沈胜强.薄层毛细多孔介质湿区干燥过程相变传热传质常压模型[J].热能动力工程,2003,18(1):50-52.
    [48]陆志,姚晔,连之伟.超声波技术在暖通空调领域的应用[J].建筑热能通风空调,2007,26(2):19-22.
    [49]马空军,黄玉代,贾殿赠,等.超声空化泡相界面逸出时相间传质的研究[J].声学技术,2008,27(4):486-491.
    [50]米小兵,张淑仪.超声波引起固体微裂纹局部发热的理论计[J].自然科学进展,2004,14(6):628-634.
    [51]苗平.马尾松木材高温干燥的水分迁移和热量传递[D].南京:南京林业大学,2000.
    [52]潘永康,王喜忠.现代干燥技术[M].北京:化学工业出版社,1998:652.
    [53]彭晓峰,王补宣.沸腾核化的异相扰动与叠加模型[J].工程热物理学报,1996,17(4):457-461.
    [54]彭晓蜂,王补宣.液体内部汽化的汽化空间与拟沸腾[J].中国科学基金,1994,8(1):7-12.
    [55]秦炜,秦炜,原永辉,等.超声场对化工分离过程的强化[J].化工进展,1995,1:1-5.
    [56]丘泰球,向英,陆海勤,等.换热设备的超声防垢机理[J].华南理工大学学报:自然科学版,2006,34(3):23-28.
    [57]若利,莫尔,舍瓦利耶,等.木材干燥:理论,实践和经济[M].中国林业出版社,1985.
    [58]申国其.超声波搅拌强化对流传热试验[J].山西农业大学学报(自然科学版),1993,4:21.
    [59]孙宝芝,姜任秋,淮秀兰,等.声空化对渗透脱水影响的实验研究[J].干燥技术与设备,2004,1:23-27.
    [60]王红强.高温处理过程中木材含水状态研究[D].中南林业科技大学,2008.
    [61]王巧霞,牛勇.声致发光法测量超声空化场的实验研究[J].陕西师范大学学报:自然科学版,2008,36(6):43-46.
    [62]王宵,高瑞清,李晓玲.木材柔性真空干燥技术的发展与应用[J].木材工业,2013,2:38-41.
    [63]王馨,施明恒,虞维平.含湿多孔介质中热质耦合现象的松弛性研究[J].应用科学学报,2001,19(4):349-352.
    [64]王育慷.超声波原理与现代应用探讨[J].贵州大学学报:自然科学版,2005,22(3):287-290.
    [65]王中明.基于微波干燥生物材料的传热传质机理研究[D].昆明:昆明理工大学,2011.
    [66]威尔特J R,威克斯C E,威尔逊R E,等,马紫峰等译.动量、热量和质量传递原理[M].北京:化学工业出版社,2005.
    [67]吴国强.管内核心流区域对流强化传热强化数值模拟[D].武汉:华中科技大学,2007.
    [68]西德工程师协会.水和水蒸气热力性质图表[M].北京:水利电力出版社,1974.
    [69]席细平,马重芳,王伟.超声波技术应用现状[J].山西化工,2007,27:25-29.
    [70]肖辉.高频真空干燥过程中木材的热质传递特性[D].哈尔滨:东北林业大学,2009.
    [71]谢拥群,陈瑞英,杨庆贤,等.木材干燥过程的热质迁移及其耦合关系[J].林业科学,2004,40(1):148-154.
    [72]许文林,何玉芳,王雅琼.超声空化气泡运动方程的求解及过程模拟[J].扬州大学学报:自然科学版,2005,8(1):55-59.
    [73]许文娜,陈载源,布岩.超声波增强多孔材料中微粒嵌入的研究[J].山东纺织科技,2007,48(2):1-3.
    [74]杨林青,牛智有.红枣平衡含水率模型的拟合研究[J].农业工程学报,1993,9(1):92-98.
    [75]杨庆贤.木材干燥过程中热质迁移交互作用的研究[J].福建林学院学报,1999,19(2):101-104.
    [76]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [77]杨玉廷.超声波预处理对污泥干燥特性的影响[D].沈阳:沈阳航空工业学院,2009.
    [78]杨运猛.超声场对铝合金凝固作用机制试验研究[D].长沙:中南大学,2009.
    [79]伊松林.木材干燥学教学改革实践与体会[J].中国林业教育,2004,22(1):62-63.
    [80]伊松林,张璧光.马尾松木材浮压干燥过程中的传质传热特性[J].北京林业大学学报,2002,24(3):7-9.
    [81]伊松林,张璧光.太阳能及热泵干燥技术[M].北京:化学工业出版社,2011.
    [82]伊松林,张璧光,常建民.木材浮压干燥的基本特性[M].中国环境科学出版社,2005.
    [83]伊松林,张璧光,常建民.木材浮压干燥过程的传热传质[D].北京:北京林业大学,2002.
    [84]伊松林,张璧光,常建民.木材真空-浮压干燥过程热质传递的数学模型[J].北京林业大学学报,2003a,25(2):68-71.
    [85]伊松林,张璧光,常建民.木材真空-浮压干燥过程中吸着水迁移特性分析[J].北京林业大学学报,2003b,25(6):60-63.
    [86]伊松林,张璧光,常建民.木材真空-浮压干燥过程中自由水迁移特性[J].北京林业大学学报,2003c,25(4):59-63.
    [87]应崇福.超声学[M].北京:科学出版社,1990.
    [88]俞昌铭.多孔材料传热传质及其数值分析[M].北京:高等教育出版社,2011.
    [89]于建芳.木材微波干燥热质转移及其数值模拟[D].呼和浩特:内蒙古农业大学,2010.
    [90]袁琼.超声波的生物物理学效应及其作用机理[J].现代物理知识,2006,18(2):23-24.
    [91]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996.
    [92]袁越锦,杨彬彬,焦阳,等.多孔介质干燥过程分形孔道网络模型与模拟:I模型建立[J].中国农业大学学报,2007a12(3):65-69.
    [93]袁越锦,杨彬彬,焦阳.多孔介质干燥过程分形孔道网络模型与模拟:II数值模拟与试验验证[J].中国农业大学学报,2007b,12(4):55-60.
    [94]约翰·F·肖著,肖亦华,滕通濂,郭焰明译.木材传热传质过程[M].北京:中国林业出版社.1989.
    [95]战剑锋,顾继友,蔡英春.落叶松板材干燥过程的结合水扩散系数[J].南京林业大学学报(自然科学版).2008,32(4):6-10.
    [96]张逢星,李珺.材料化学导论[M].西安:西北大学化学系,2006.
    [97]张璧光,高建民,伊松林,等.实用木材干燥技术[M].北京:化学工业出版社,2005.
    [98]张璧光,刘登瀛.探索我国木材干燥技术的新型发展道路[J].林产工业,2006,33(4):3-6.
    [99]张璧光,乔启宇.热工学[M].北京:中国林业出版社.1992:362.
    [100]张璧光,谢拥群.木材干燥的国内外现状与发展趋势[J].干燥技术与设备,2006,4(1):7-14.
    [101]张璧光,于志明,赵广杰,等.木材科学与技术研究进展[M].北京:中国环境科学出版社,2004.
    [102]张佳,吕友军,张西民,等.超声作用下不同粗糙度表面沸腾换热实验研究[J].工程热物理学报,2010,31(9):1524-1527.
    [103]张建华,常建民,靳洪生,等.木材对流干燥质量传递经验模型[J].东北林业大学学报,1994,22(3):101-104.
    [104]张凯,范敬辉,马艳,等.超声波化学反应器的温度场有限元模拟[J].声学技术,2007,26(4):637-641.
    [105]张荣华,聂恒敬.对流换热系数测定的一种新方法,能源研究与信息,2000,16(2):40-44.
    [106]张涛.声化学反应器中声场及空化场研究[D].西安:陕西师范大学,2004.
    [107]赵芳,陈振乾,施明恒.苹果片超声波预干燥传质过程试验研究[J].东南大学学报:自然科学版,2011,41(1):124-128.
    [108]赵镇南译.对流传热与传质[M].北京:高等教育出版社,2007.
    [109]赵之平,陈澄华.超声传质过程机理[J].化工设计,1997,(6):30-33.
    [110]曾丽芬.超声波在食品干燥中的应用[J].广东化工,2008,35(2):49-51.
    [111]周桥芳.木材对流加热干燥热质迁移规律的研究[D].哈尔滨:东北林业大学,2011.
    [112]朱政贤.我国木材干燥工业发展世纪回顾与前瞻[J].林产工业,2000,27(1):7-10.
    [113]Patra A K, Das M,黄利利,等.超声波及其在湿处理中的应用[J].国际纺织导报,2006,(4):63-64.
    [114]Mujumdar干燥过程原理与设备及新进展[M].济南:济南出版社,2002,114-137.
    [115]Apfel R E. Acoustic cavitation inception[J]. Ultrasonics,1984,22(4):167-173.
    [116]Ashokkumar M, Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles[J]. Journal of the American Chemical Society,2005, 127(15):5326-5327.
    [117]Ashokkumar M, Mason T J. Sonochemistry[J], Kirk-Othmer Encylcopedia of Chemical Technology,2007.
    [118]Aversa M, Van D V A J, De H W, et al. An experimental analysis of acoustic drying of carrots: Evaluation of heat transfer coefficients in different drying conditions [J]. Drying Technology,2011, 29(2):239-244.
    [119]Avramidis S, Zwick R L. Exploratory radio-frequency/vacuum drying of three B.C. coastal softwoods[J]. Forest Products Journal,1992,42(7/8):17-24.
    [120]Avvaru B, Patil M N, et al. Ultrasonic atomization:effect of liquid phase properties[J]. Ultrasonics, 2006,44(2):146-158.
    [121]Ayensu, A. Dehydration of food crops using a solar dryer with convective heat flow[J]. Solar Energy,1997,59(4-6):121-126.
    [122]Azoubel P M, Baima M A M, Amorim M R, et al. Effect of ultrasound on banana cv Pacovan drying kinetics[J]. Journal of food engineering,2010,97(2):194-198.
    [123]Bantle M, Eikevik T M. Parametric study of high-intensity ultrasound in the atmospheric freeze drying of peas[J]. Drying Technology,2011,29(10):1230-1239.
    [124]Bantle M, Hanssler J. Ultrasonic Convective Drying Kinetics of Clipfish During the Initial Drying Period[J]. Drying Technology,2013,31(11):1307-1316.
    [125]Barbanti D, Mastrocola D, Severini C. Air drying of plums. A comparison among twelve cultivars[J]. Sciences Des Aliments,1994,14(1):61-73.
    [126]Bennett C O, Myers J E. Momentum heat and mass transfer[M]. New York:McGraw-Hill,1982.
    [127]Berberovic A H, Milota M R. Simulation of drying using a kiln model[J]. Drying Technology, 2008,26(9):1097-1102.
    [128]Blitz J. Ultrasonics:methods and applications[M]. London:Butterworths Press,1971.
    [129]Breitbach M, Bathen D, Schmidt-Traub H. Desorption of a fixed-bed adsorber by ultrasound[J]. Ultrasonics,2002,40(1):679-682.
    [130]Brncic M, Karlovic S, Rimac Brncic S, et al. Textural properties of infra red dried apple slices as affected by high power ultrasound pre-treatment[J]. African Journal of Biotechnology,2010,9(41): 6907-6915.
    [131]Carcel J A, Benedito J, Rossello C, et al. Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution[J]. Journal of food engineering,2007,78(2):472-479.
    [132]Carcel J A, Garcia-Perez J V, Riera E, et al. Improvement of convective drying of carrot by applying power ultrasound-Influence of mass load density[J]. Drying Technology,2011,29(2): 174-182.
    [133]Carmen O, Isabel P M, Ana P, et al. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying[J]. Physics Procedia,2010,3:153-159.
    [134]Carr E J, Turner I W, Perre P. A dual-scale modeling approach for drying hygroscopic porous media[J]. Multiscale Modeling & Simulation,2013,11(1):362-384.
    [135]Chaiyo K, Rattanadecho P. Numerical analysis of heat-mass transport and pressure build-up in ID unsaturated porous medium subjected to a combined microwave and vacuum system[J]. Drying Technology,2013,31(6):684-697.
    [136]Chaiyo K, Rattanadecho P. Numerical analysis of heat-mass transport and pressure build-up of unsaturated porous medium in a rectangular waveguide subjected to a combined microwave and vacuum system[J]. International Journal of Heat and Mass Transfer,2013,65:826-844.
    [137]Chandrapala J, Oliver C M, Kentish S, et al. Use of power ultrasound to improve extraction and modify phase transitions in food processing[J]. Food Reviews International,2013,29(1):67-91.
    [138]Chen Z, Lamb F M. The concept of boiling front in vacuum drying[J]. Vacuum Drying of Wood, 1995:100-116.
    [139]Chen Z, Lamb F M. Analysis of the vacuum drying rate for red oak in a hot water vacuum drying system[J]. Drying technology,2007,25(3):497-500.
    [140]Chen Z. Primary driving force in wood vacuum drying[D]. New York:Virginia Polytechnic Institute and State University,1997.
    [141]Cohen J S, Yang T. Progress in food dehydration[J]. Trends in Food Science & Technology,1995, 6(1):20-25.
    [142]Crank J. The mathematics of diffusion[M]. Oxford:Claredon press,1975.
    [143]Crum L A. Comments on the evolving field of sonochemistry by a cavitation physicist[J]. Ultrasonics Sonochemistry,1995,2(2):147-152.
    [144]Cunningham M J, Keey R B, Kerdemelidis C. Isothermal moisture transfer coefficients in Pinus radiata above the fiber-saturation point, using the moment method[J]. Wood and fiber science, 1989,21(2):112-122.
    [145]Da Silva W P, Da Silva L D, de Oliveira Farias V S, et al. Three-dimensional numerical analysis of water transfer in wood:determination of an expression for the effective mass diffusivity[J]. Wood Science and Technology,2013,47(5):897-912.
    [146]Datta A K, Ni H. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture[J]. Journal of Food Engineering,2002,51(4):355-364.
    [147]Dedic A. Determination of coefficients in the analytical solution of coupled differential equations of heat and mass transfer during convective drying of heat-treated wood[J]. Journal of Porous Media,2012,15(1):75-82.
    [148]Dedic A D, Mujumdar A S, Voronjec D K. A three dimensional model for heat and mass transfer in convective wood drying[J]. Drying technology,2003,21(1):1-15.
    [149]Defo M, Fortin Y, Cloutier A. Modeling superheated steam vacuum drying of wood[J]. Drying technology,2004,22(10):2231-2253.
    [150]De L F B S, Riera-Franco D S E, Acosta-Aparicio V M, et al. Food drying process by power ultrasound[J]. Ultrasonics,2006,44:523-527.
    [151]Di Blasi C. Multi-phase moisture transfer in the high-temperature drying of wood particles[J]. Chemical Engineering Science,1998,53(2):353-366.
    [152]Didenko Y T, McNamara W B, Suslick K S. Hot spot conditions during cavitation in water[J]. Journal of the American Chemical Society,1999,121(24):5817-5818.
    [153]Duan X, Zhang M, Li X, et al. Ultrasonically enhanced osmotic pretreatment of sea cucumber prior to microwave freeze drying. Drying Technology,2008,26(4):420-426.
    [154]Duck F A, Baker A C, Starritt, et al. Ultrasound in medicine[M]. CRC Press,1998.
    [155]Dujmic F, Brncic M, Karlovic S, et al. Ultrasound-assisted infrared drying of pear slices:textural issues[J]. Journal of Food Process Engineering,2013,36(3):397-406.
    [156]Dushman S, Lafferty J M. Scientific foundation of vacuum technique[M]. New York:wiley,1962.
    [157]Ensminger D, Battelle. Acoustic and electroacoustic methods of dewatering and drying[J]. Drying Technology,1988,6(3):473-499.
    [158]Fand R M. The influence of acoustic vibrations on heat transfer by natural convection from a horizontal cylinder to water[J]. Journal of heat transfer,1965,87(2):309-310.
    [159]Fand R M, Kaye J. Acoustic streaming near a heated cylinder[J]. The Journal of the Acoustical Society of America,2005,32(5):579-584.
    [160]Fernandes F A N, Gallao M I, Rodrigues S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure:Melon dehydration[J]. LWT-Food Science and Technology,2008d, 41(4):604-610.
    [161]Fernandes F A N, Gallao M I, Rodrigues S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure:Melon dehydration [J]. LWT-Food Sci Technol,2008b,41(4): 604-610.
    [162]Fernandes F A N, Linhares J F E, Rodrigues S. Ultrasound as pre-treatment for drying of pineapple[J]. Ultrasonics Sonochemistry,2008a,15(6):1049-1054.
    [163]Fernandes F A N, Rodrigues S. Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits[J]. Drying Technology,2008c,26(12),1509-1516.
    [164]Fernandes F A N, Rodrigues S. Dehydration of sapota (Achras sapota L.) using ultrasound as pretreatment[J]. Drying Technology,2008e,26(10):1232-1237.
    [165]Fernandes F A N, Rodrigues S. Ultrasound as pre-treatment for drying of fruits:Dehydration of banana[J]. Journal of Food Engineering,2007,82(2):261-267.
    [166]Floros J D, Liang H. Acoustically assisted diffusion through membranes and biomaterials: Ultrasonic applications in the food industry[J]. Food Technology,1994,48(12):79-84.
    [167]Frenkel J. Kineric theory of Liquid[M]. Oxford University Press,1946.
    [168]Gallego-Juarez J A, Rodriguez-Corral G, Galvez M J C, et al. A new high-intensity ultrasonic technology for food dehydration[J]. Drying Technology,1999,17(3):597-608.
    [169]Gallego J A, Vazquez F, Yang T.S, et al. Procede et dispositif de deshydration [J]. Internacional Patent,1996, No PCT/EP9601935.
    [170]Garcia-Perez J V, Carcel J A, De la Fuente-Blanco S, et al. Ultrasonic drying of foodstuff in a fluidized bed:Parametric study [J]. Ultrasonics,2006,44:539-543.
    [171]Garci'a-Perez J V, Carcel J A, Riera, E, et al. Influence of the applied acoustic energy on the drying of carrots and lemon peel[J]. Drying Technology,2009,27,281-287.
    [172]Garcia-Perez J V, Ozuna C, Ortuno C, et al. Modeling ultrasonically assisted convective drying of eggplant[J]. Drying Technology,2011,29(13):1499-1509.
    [173]Garcia-Nogueraa J, Oliveirab F I P, Gallaob M I, et al. Ultrasound-assisted osmotic dehydration of strawberries:Effect of pretreatment time and ultrasonic frequency[J]. Drying Technology,2010, 28(2),294-303.
    [174]Garcia-Perez J V, Carcel J A, Riera E, et al. Influence of the applied acoustic energy on the drying of carrots and lemon peel[J]. Drying Technology,2009,27(2):281-287.
    [175]Garcia-Perez J V, Carcel J A, Riera E, et al. Intensification of low-temperature drying by using ultrasound[J]. Drying Technology,2012a,30(11-12):1199-1208.
    [176]Garcia-Perez J V, Carcel J A, Simal S, et al. Ultrasonic Intensification of Grape Stalk Convective Drying:Kinetic and Energy Efficiency[J]. Drying Technology,2013,31(8):942-950.
    [177]Garcia-Perez J V, Ortuno C, Puig A, et al. Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying[J]. Food and Bioprocess Technology,2012b,5(6):2256-2265.
    [178]Grant J. Kirk-Othmer encyclopedia of chemical technology[M]. John Wiley & Sons,1966:140.
    [179]Green D W, Kretschmann D E. Moisture content and the properties of clear southern pine, research paper FPL-RP-531, Forest products Laboratory, Madison, Wisconsin, USA,1994.
    [180]Green D W, Winandy J E, Kretschmann D E. Wood handbook-Wood as an engineering material[J]. General technical report FPL-GTR-113, US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI,1999.
    [181]Hamdaoui O, Djeribi R, Naffrechoux E. Desorption of metal ions from activated carbon in the presence of ultrasound[J]. Industrial & engineering chemistry research,2005a,44(13):4737-4744.
    [182]Hamdaoui O, Naffrechoux E, Suptil et al. Ultrasonic desorption of p-chlorophenol from granular activated carbon[J]. Chemical Engineering Journal,2005b,106(2):153-161.
    [183]Hansmann C, Stingl R, Prieto O G, et al. High-Frequency Energy-Assisted Vacuum Drying of Fresh Eucalyptus globulus[J]. Drying Technology,2008,26(5):611-616.
    [184]Hermawan A, Fujimoto N, Sakagami H. A Study of Vacuum-Drying Characteristics of Sugi Boxed-Heart Timber[J]. Drying Technology,2013,31(5):587-594.
    [185]He Z B, Zhao Z J, Yang F, et al. Effects of ultrasound on wood vacuum drying characteristics[J]. Pro Ligno,2013,9(4):693-699.
    [186]Hongda L, Fengxian L. Experiment and research characteristics of drying wood in vacuum high-voltage discharge field[C], Power and Energy Engineering Conference (APPEEC),2012 Asia-Pacific. IEEE,2012:1-3.
    [187]Hu H, Wu J, Li-Chan E C Y, et al. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions[J]. Food Hydrocolloids,2013,30(2):647-655.
    [188]Humphrey V F. Ultrasound and matter-Physical interactions [J]. Progress in biophysics and molecular biology,2007,93(1):195-211.
    [189]Hyun S, Lee D R, Loh B G. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations[J]. International journal of heat and mass transfer, 2005,48(3):703-718.
    [190]Iida Y, Tsutsui K. Effects of ultrasonic waves on natural convection, nucleate boiling, and film boiling heat transfer from a wire to a saturated liquid[J]. Experimental thermal and fluid science, 1992,5(1):108-115.
    [191]Ince N H, Tezcanli G, Belen R K, et al. Ultrasound as a catalyzer of aqueous reaction systems:the state of the art and environmental applications[J]. Applied Catalysis B:Environmental,2001, 29(3):167-176.
    [192]Itatani K, Iwafune K, Howell F S, et al. Preparation of various calcium-phosphate powders by ultrasonic spray freeze-drying technique[J]. Materials research bulletin,2000,35(4):575-585.
    [193]Jambrak A R, Mason T J, Paniwnyk L, et al. Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties[J]. Journal of Food Engineering,2007,81(1):88-97.
    [194]Jomaa W, Puiggali J R, Avramidis S. Multiphysics modeling of vacuum drying of wood[J]. Applied Mathematical Modelling,2011,35(10):5006-5016.
    [195]Juang R S, Lin S H, Cheng C H. Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound[J]. Ultrasonics sonochemistry,2006,13(3):251-260.
    [196]Kanagawa Y, Yasujima M. Effect of heat sources on drying time in vacuum drying of wood[J]. Vacuum drying of wood,1993.
    [197]Kardum J P, Sander A, Skansi D. Comparison of convective, vacuum, and microwave drying chlorpropamide[J]. Drying Technology,2001,19(1):167-183.
    [198]Kays W M, Crawford M E, Weigand B. Convective heat and mass transfer[J]. The Mcgraw-Hill Companies,2005.
    [199]Khmelev V N, Shalunov A V, Barsukov R V, et al. Studies of ultrasonic dehydration efficiency[J]. Journal of Zhejiang University Science A,2011,12(4):247-254.
    [200]Knorr D, Ade-Omowaye B I O, Heinz V. Nutritional improvement of plant foods by non-thermal processing[J]. Proceedings of the nutrition society,2002,61(2):311-318.
    [201]Kobayashi T, Chai X, Fujii N. Ultrasound enhanced cross-flow membrane filtration[J]. Separation and Purification Technology,1999,17(1):31-40.
    [202]Kudra T, Mujumdar A, S. Advanced drying technologies[M]. CRC Press,2010.
    [203]Kwak H Y, Lee S. Homogeneous bubble nucleation predicted by a molecular interaction model[J]. Journal of heat transfer,1991,113(3):714-721.
    [204]Leadley C, Williams A. Power ultrasound:current and potential applications for food processing[M]. Campden & Chorleywood Food Research Association Group,2002.
    [205]Ledig S F, Militzer K E. Measured gas velocity and moisture content distribution in a convective vacuum kiln[J]. Drying Technology,2000,18(8):1817-1832.
    [206]Lee C P, Wang T G. Outer acoustic streaming[J]. The Journal of the Acoustical Society of America,1990,88(5):2367-2375.
    [207]Legay M, Gondrexon N, Le Person S, et al. Enhancement of heat transfer by ultrasound:review and recent advances[J]. International Journal of Chemical Engineering,2011.
    [208]Leighton T G. An introduction to acoustic cavitation[J]. Med Sci Ser,1998:199-223.
    [209]Lienhard J H, Karimi A. Homogeneous nucleation and the spinodal line[J]. Journal of Heat Transfer,1981,103(1):61-64.
    [210]Li F, Peng Y, He Z, et al. Preliminary study on method of vacuum drying[C]. Information Science and Technology (ICIST),2011 International Conference on. IEEE,2011:1176-1178.
    [211]Li K W, Parker J D. Acoustical effects on free convective heat transfer from a horizontal wire[J]. Journal of heat transfer,1967,89(3):277-278.
    [212]Lighthill S J. Acoustic streaming[J]. Journal of Sound and Vibration.1978,61(3):391-418.
    [213]Lim J L, Okada M. Regeneration of granular activated carbon using ultrasound[J]. Ultrasonics sonochemistry,2005,12(4):277-282.
    [214]Liu H, Yang L, Cai Y, et al. Effect of EMC and air in wood on the new in-process moisture content monitoring concept under radiofrequency/vacuum (RF/V) drying[J]. Journal of wood science,2010,56(2):95-99.
    [215]Liu J, Avramidis S, Ellis S. Simulation of heat and moisture transfer in wood during drying under constant ambient conditions[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood,1994,48(3):236-240.
    [216]Liu J Y, Simpson W T, Verrill S P. An inverse moisture diffusion algorithm for the determination of diffusion coefficient[J]. Drying Technology,2001,19(8):1555-1568.
    [217]Liu T, Coumans W J. Regular regime analysis and moisture diffusivity in wood[J]. Drying technology,1993,11(5):997-1003.
    [218]Loh B G, Hyun S, Ro P I, et al. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer[J]. The Journal of the Acoustical Society of America,2002,111(2):875-883.
    [219]Lomauro C J, Bakshi A S, Labuza T P. Evaluation of food moisture sorption isotherm equations. Part I:Fruit, vegetable and meat products[J]. Lebensmittel-Wissenschaft und-Technologie,1985, 18(2):111-117.
    [220]MacLean J D. Thermal conductivity of wood[J]. Heating, piping, and air conditioning,1941, 13(6):380-391.
    [221]Marinos-Kouris D, Maroulis Z B. Transport properties in the drying of solids[J]. Handbook of industrial drying,1995,1:113-159.
    [222]Mason T J. Power ultrasound in food processing-The way[J]. Ultrasound in food processing,1998, 105.
    [223]Mason T J, Lorimer J P. Applied sonochemistry[M]. Weinheim:Wiley-vch,2002.
    [224]Mason T J, Lorimer J P. Sonochemistry:Theory, applications and use of ultrasound in chemistry[M]. Halsted Press.1998.
    [225]Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology[J]. Ultrasonics sonochemistry,1996,3(3):253-260.
    [226]McClements D J. Advances in the application of ultrasound in food analysis and processing[J]. Trends in Food Science & Technology,1995,6(9):293-299.
    [227]Mothibe K J, Zhang M, Nsor-atindana J, et al. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension[J]. Drying Technology,2011,29(14): 1611-1621.
    [228]Moutee M, Fortin Y, Fafard M. A global rheological model of wood cantilever as applied to wood drying[J]. Wood Science and Technology,2007,41(3):209-234.
    [229]Mulet A, Sanjuan N, Bon J, et al. Drying model for highly porous hemispherical bodies[J]. European Food Research and Technology,1999,210(2):80-83.
    [230]Muralidhara H S, Ensminger D, Putnam A. Acoustic dewatering and drying (low and high frequency):State of the art review[J]. Drying Technology,1985,3(4):529-566.
    [231]Muthukumaran S, Kentish S E, Ashokkumar M, et al. Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration[J]. Journal of membrane science,2005,258(1):106-114.
    [232]Nadi F, Rahimi G H, Younsi R, et al. Numerical Simulation of Vacuum Drying by Luikov's Equations[J]. Drying Technology,2012,30(2):197-206.
    [233]Nagy P B. Slow wave propagation in air-filled permeable solids[J]. The Journal of the Acoustical Society of America,1993,93(6):3224-3234.
    [234]Napprias N E. Sonoluminescence and ultrasonic cavitation[J]. Physical report,1980,61(1):160.
    [235]Neppiras E. Acoustic cavitation series:part one:Acoustic cavitation:an introduction[J]. Ultrasonics,1984,22(1):25-28.
    [236]Nomura S, Nakagawa M. Ultrasonic enhancement of heat transfer on narrow surface[J]. Heat transfer. Japanese research,1993,22(6):546-558.
    [237]Nomura S, Yamamoto A, Murakami K. Ultrasonic heat transfer enhancement using a horn-type transducer[J]. Japanese journal of applied physics,2002,41(5S):3217.
    [238]Nyborg W L. Heat generation by ultrasound in a relaxing medium[J]. The Journal of the Acoustical Society of America,1981,70(2):310-312.
    [239]Ortuno C, Perez-Munuera I, Puig A, et al. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying[J]. Physics Procedia,2010,3(1): 153-159.
    [240]Ozuna C, Carcel J A, Garcia-Perez J V, et al. Improvement of water transport mechanisms during potato drying by applying ultrasound[J]. Journal of the Science of Food and Agriculture, 2011,91(14):2511-2517.
    [241]Page G E. Factors influencing the maximum rates of air drying shelled corn in thin layers[M]. Indiana:Purdue University,1949.
    [242]Park K A, Bergles A E. Ultrasonic enhancement of saturated and subcooled pool boiling[J]. International journal of heat and mass transfer,1988,31(3):664-667.
    [243]Perre P. Multiscale modeling of drying as a powerful extension of the macroscopic approach: application to solid wood and biomass processing[J]. Drying Technology,2010,28(8):944-959.
    [244]Perre P, Remond R, Colin J, et al. Energy consumption in the convective drying of timber analyzed by a multiscale computational model[J]. Drying Technology,2012,30(11-12): 1136-1146.
    [245]Prabhanjan D G, Ramaswamy H S, Raghavan G S V. Microwave-assisted convective air drying of thin layer carrots[J]. Journal of Food engineering,1995,25(2):283-293.
    [246]Prandtl L. Uber die Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandlgn. d. Ⅲ Intern. Math. Kongr. Heidelberg.1905,8.-13
    [247]Rajan R, Pandit A B. Correlations to predict droplet size in ultrasonic atomisation[J]. Ultrasonics, 2001,39(4):235-255.
    [248]Ray C D, Gattani N, del Castillo E, et al. Identification of the relationship between equilibrium moisture content, dry bulb temperature, and relative humidity using regression analysis[J]. Wood and Fiber Science,2007,39(2):299-306.
    [249]Redman A L, McGavin R L. Accelerated Drying of Plantation Grown Eucalyptus cloeziana and Eucalyptus pellita Sawn Timber[J]. Forest Products Journal,2010,60(4).
    [250]Ressel J B. State of the art for vacuum drying in the wood working industry[C], Cost Action E. 1999,15.
    [251]Remond R, Perre P, Mougel E. Using the concept of thin dry layer to explain the evolution of thickness, temperature, and moisture content during convective drying of Norway spruce boards[J]. Drying technology,2005,23(1-2):249-271.
    [252]Riera E, Gallego Juarez J A, Rodriguez C G, et al. Application of high-power ultrasound for drying vegetables[J].2002.
    [253]Riera E, Golas Y, Blanco A, et al. Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound[J]. Ultrasonics Sonochemistry,2004,11(3):241-244.
    [254]Riley N. Acoustic streaming[J]. Theoretical and computational fluid dynamics,1998,10(1-4): 349-356.
    [255]Rodrigues S, Fernandes F A N. Use of ultrasound as pretreatment for dehydration of melons[J]. Drying Technology,2007,25(10):1791-1796.
    [256]Rolt K D, Schmidt H. Parametric ultrasound heating:Theory and modeling[J]. The Journal of the Acoustical Society of America,1992,91(4):2353-2353.
    [257]Salinas C, Ananias R, Ruminot P. Phenomenological modeling of high temperature drying curves of radiata pine[J]. Maderas-Ciencia Y Tecnologia,2008,10(3):207-217.
    [258]Salin J G. Drying of liquid water in wood as influenced by the capillary fiber network[J]. Drying Technology,2008,26(5):560-567.
    [259]Sandoval-Torres S, Jomaa W, Marc F, et al. Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh) during plain vacuum drying[J]. Wood science and technology,2012, 46(1-3):177-191.
    [260]Sandoval-Torres S, Rodriguez-Ramirez J, Mendez-Lagunas L L. Modeling plain vacuum drying by considering a dynamic capillary pressure[J]. Chemical and Biochemical Engineering Quarterly, 2011,25(3):327-334.
    [261]Schossler K, Jager H, Knorr D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper[J]. Journal of Food Engineering,2012,108(1):103-110.
    [262]Shamaei S, Emam-Djomeh Z, Moini S. Ultrasound-assisted osmotic dehydration of cranberries: effect of finish drying methods and ultrasonic frequency on textural properties[J]. Journal of Texture Studies,2012,43(2):133-141.
    [263]Sharma G P, Prasad S. Drying of garlic (Allium sativum) cloves by microwave-hot air combination[J]. Journal of Food Engineering,2001,50(2):99-105.
    [264]Shutilov V A. Fundamental physics of ultrasound[M]. CRC Press,1988.
    [265]Siau J F. Transport process in wood[M]. New York:Springer-Verlag,1984.
    [266]Simpson W T. Drying Wood:A Review-Part I[J]. Drying Technology,1983,2(2):235-264.
    [267]Simpson W T. Drying wood:A review-Part II[J]. Drying Technology,1983,2(3):353-368.
    [268]Simpson W T. Equilibrium moisture content of wood in outdoor locations in the United States and worldwide[M]. US Dept. of Agriculture, Forest Service, Forest Products Laboratory,1998.
    [269]Simpson W T. Predicting equilibrium moisture content of wood by mathematical models[J]. Wood and fiber science,1973,5(1):41-49.
    [270]Simpson W T, Liu J Y. Dependence of the water vapor diffusion coefficient of aspen (Populus spec.) on moisture content[J]. Wood Science and Technology,1991,26(1):9-21.
    [271]Skaar C. Water in wood[M]. Syracuse:Syracuse Univ Press,1972,218.
    [272]Skripov V P. Metastable Liquid[M]. New Yoke:Wiley Press,1974.
    [273]Stamm A J, Loughborough W K. Thermodynamics of the Sweeling of Wood[J]. The Journal of Physical Chemistry,1935,39(1):121-132.
    [274]Sun L P, Li Z H, Cao W H. Design of Fuzzy Controller for Microwave-Vacuum Wood Drying[C]//Intelligent Systems,2009. GCIS'09. WRI Global Congress on. IEEE,2009,1: 447-450.
    [275]Suslick K S. The chemical effects of ultrasound[J]. Scientific American,1989,260(2):80-86.
    [276]Taiwo K A, Eshtiaghi M N, Ade-Omowaye B I O, et al. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics[J]. International journal of food science & technology,2003,38(6):693-707.
    [277]Tarleton E S. The role of field-assisted techniques in solid/liquid separation[J]. Filtration& separation,1992,29(3):246-238.
    [278]Tarleton E S, Wakeman R J. Ultrasonically assisted separation process[J], Ultrasounds in Food Processing,1998:193.
    [279]Thomas H R, Lewis R W, Morgan K. An application of the finite element method to the drying of timber[J]. Wood and Fiber Science,1980,11(4):237-243.
    [280]Trcala M. A 3D transient nonlinear modelling of coupled heat, mass and deformation fields in anisotropic material[J]. International Journal of Heat and Mass Transfer,2012a,55(17): 4588-4596.
    [281]Trcala M, Konas P. Transformation relations and matrix implementation of multiphysics model for temperature and moisture fields in wood[J]. Wood Research,2012b,57(1):79-90.
    [282]Tremblay C, Cloutier A, Fortin Y. Experimental determination of the convective heat and mass transfer coefficients for wood drying[J]. Wood Science and Technology,2000,34(3):253-276.
    [283]Tremblay C, Fortin Y. Modeling the conventional kiln drying process and comparison with experimental results[C]. Conference on Quality Drying-The Key to Profitable Manufacturing, 2002:105-110.
    [284]Thomas H R, Lewis R W, Morgan K. An application of the finite element method to the drying of timber[J]. Wood and Fiber Science,1980,11(4):237-243.
    [285]Turner I W. A two-dimensional orthotropic model for simulating wood drying processes[J]. Applied Mathematical Modelling,1996,20(1):60-81.
    [286]Turner I W, Ferguson W J. A study of the power density distribution generated during the combined microwave and convective drying of softwood [J]. Drying technology,1995b,13(5-7): 1411-1430.
    [287]Tumer I W, Perre P. A comparison of the drying simulation codes transpore and wood 2D which are used for the modelling of two-dimensional wood drying processes[J]. Drying Technology, 1995a,13(3):695-735.
    [288]Voigt H, Krischer O U, Schauss H. Special technique for wood drying[J]. Holz als Roh-Werkstoff. 1940,11(9):364-375.
    [289]Walton A J, Reynolds G T. Sonoluminescence[J]. Advances in Physics,1984,33(6):595-660.
    [290]Wang J, Han J T, Zhang Y. The application of ultrasound technology in chemical production[J]. Contemporary Chemical Industry,2002,12(4):187-189.
    [291]Wang W, Chen W, Lu M, et al. Bubble oscillations driven by aspherical ultrasound in liquid[J]. The Journal of the Acoustical Society of America,2003,114(4):1898-1904.
    [292]Welling J. Superheated steam vacuum drying of timber-range of application and advantages[C].4 th IUFRO International Wood Drying Conference, Rotorua.1994:460-461.
    [293]Weres J, Olek W. Inverse finite element analysis of technological processes of heat and mass transport in agricultural and forest products[J]. Drying technology,2005,23(8):1737-1750.
    [294]Wong S W, Chon W Y. Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling[J]. AIChE Journal,1969,15(2):281-288.
    [295]Xiao H, Cai Y. Factors affecting relative humidity during wood vacuum drying[J]. Journal of Forestry Research,2009,20(2):165-167.
    [296]Xu H S, Zhang M, Duan X, et al. Effect of power ultrasound pretreatment on edamame prior to freeze drying[J]. Drying Technology,2009,27(2):186-193.
    [297]Yamsaengsung R, Sattho T. Superheated steam vacuum drying of rubberwood[J]. Drying Technology,2008,26(6):798-805.
    [298]Yao Y. Using power ultrasound for the regeneration of dehumidizers in desiccant air-conditioning systems:A review of prospective studies and unexplored issues[J]. Renewable and Sustainable Energy Reviews,2010,14(7):1860-1873.
    [299]Yi S, Zhou Y, Liu Y, et al. Experimental equilibrium moisture content of wood under vacuum[J]. Wood and Fiber Science,2008,40(3):321-324.
    [300]Zhang B G. Study on drying lumber with solar energy[C].12th international drying symposium, netherland,2000,10c:65-71.
    [301]Zhang K, You C. Experimental and numerical investigation of convective drying of single coarse lignite particles[J]. Energy & Fuels,2010,24(12):6428-6436.
    [302]Zhao F, Chen Z. Numerical study on moisture transfer in ultrasound-assisted convective drying process of sludge[J]. Drying Technology,2011,29(12):1404-1415.
    [303]Zhou D W, Liu D Y, Hu X G, et al. Effect of acoustic cavitation on boiling heat transfer[J]. Experimental thermal and fluid science,2002,26(8):931-938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700