用户名: 密码: 验证码:
内外表面熔焊管强化凝结传热实验研究与机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽冷凝换热器是工程中的蒸汽动力装置以及汽动循环系统中必不可少的组成部分,其运行寿命和工作效率是整个热力系统安全经济运行的重要保障。多数蒸汽冷凝换热器内部主要的工作元件是各式各样的换热管,它们的传热系数直接决定了换热器的性能。因此研究蒸汽凝结换热管的强化传热技术具有十分重要的理论价值和现实意义。
     水蒸气的冷凝换热作为传热学研究和应用的一个重要领域受到了越来越多的专家学者的重视,随着对冷凝过程机理的认识和了解,出现了大量对凝结模型的计算和研究,对凝结过程做出了定性和定量的描述。但是其中对于水蒸气凝结过程的强化换热研究的着眼点大多在管外凝结方面,对水蒸气的管内凝结换热特性的探索涉及较少;在强化传热措施方面,国内外多数研究采用的是管材的物理改造方法和一些外部扰流方法,其投入应用的难度较大,与工程实践的结合不够紧密。而对凝结表面采取改性处理(尤其是管内表面改性)的方法以达到强化换热的效果的系统的研究和报道并不多见。
     鉴于此,本文采用基于炉内高温熔焊工艺的表面改性处理技术,对普通碳钢管的内外表面进行改性处理,构造了新型蒸汽凝结换热元件——表面熔焊管。本文从单管的管内外凝结实验,管束的外部凝结换热实验,数值计算及强化传热机理分析等几个方面入手,研究了熔焊表面对管材的凝结换热性能的提升效果。进行的主要工作及得出的相应结论如下:
     (1)建立了表面熔焊管的管外凝结实验台,进行了表面熔焊管和普通钢管的管外凝结换热对比实验。分别以单管和管组的形式构建实验段,以管内循环水作为冷源,让水蒸气(以下简称蒸汽)分别在两种管材的外壁面发生凝结,通过对实验数据的计算得出表面熔焊管和普通钢管的总体换热系数及管外凝结换热系数并加以比较分析,得到了实验段总换热系数k与管内循环水流速(0.6-1.3m/s)变化的关系曲线,发现由表面熔焊管构成的实验段其换热系数比普通钢管的高出20%以上,且随着管内循环冷却水流量的增大,这一比值还有增大的趋势;通过计算发现实验中表面熔焊管的管外凝结换热系数ho约为普通钢管的3倍,说明其对凝结换热的强化作用十分显著;通过焊接热电偶测量壁温的方法,得到了管子沿周向和管长方向的壁温分布曲线,通过分析得出熔焊管的表面热流密度更高,且能够更均匀的承受热负荷。
     (2)建立了管束凝结换热实验台,分别以四种不同换热管材(含表面熔焊管)构造管束进行真空状态下的管外凝结换热实验,得到了典型Re数下不同管束总体换热系数U和随真空度σ的变化曲线,发现了真空度越高,管束的换热性能越好,且相同工况下表面熔焊管束的换热性能要明显好于不锈钢管束,这一结论表明,作为换热元件,表面熔焊管有代替各种普通不锈钢管投入工程应用的潜力和价值。
     (3)结合威尔逊图解法对管束实验的数据进行计算,得到了各管束的管外凝结换热系数α。随实验段真空度σ的变化规律,发现了高真空度能够强化换热的根源是真空的提升使得管束的凝结换热系数提高,这是因为真空度的提高使得蒸汽流动更为均匀,流速更快,汽流对冷凝液产生冲刷作用,令其更快脱离壁面,变相增大了凝结表面积;而且真空度越高,实验段内的不凝结气体含量越少,这样能够有效的降低界面的气膜热阻,增强凝结换热。
     (4)采用套管式逆流换热机制建立了基于表面熔焊技术的管内凝结实验台。将高温熔焊工艺拓展至管内表面的改性处理,构造了内表面熔焊管,对蒸汽在其内部的凝结换热特性进行了实验研究,并与普通钢管的管内蒸汽凝结进行对比分析。分别得到了管内蒸汽为负压(0.064MPa)、常压(0.105MPa)和高于大气压(0.185MPa)时,套管环隙循环冷却水Re数对两种管材总体换热系数k的影响规律。实验发现,入口蒸汽为负压状态时,内表面熔焊管实验段的k值最多可高出普通钢管26%;当蒸汽入口压力接近大气压和高于大气压时,总体换热的强化幅度分别为30%和34%;实验还得到了内表面熔焊管和普通钢管的管内凝结换热系数hi的对比曲线,发现当入口蒸汽为负压(0.064MPa)状态时,内表面熔焊管的管内蒸汽凝结换热系数hi最高,随着蒸汽参数的升高,这一强化作用有所削弱,也就是说,当换热管内处于真空状态时,内表面熔焊管对管内蒸汽凝结换热效果的提升能力最为明显。结果表明,针对蒸汽在管内凝结的换热场合,将换热管材的内表面进行熔焊改性处理,也能够起到强化传热的作用。
     (5)对管内凝结换热实验数据进行了回归分析,得到了热流密度q,范围(40-180kW/m2)下的普通钢管管内凝结换热系数实验关联式;得到了热流密度qi范围(40-230kW/m2)下的内表面熔焊管的管内凝结换热系数实验关联式,并进行了误差分析。
     (6)通过管材表面的金相组织实验和能谱实验,分析了熔焊表面的微观结构和具体元素成分,结果表明,采用熔焊工艺可以在母管的钢表面植入含Ni、P、及少量Cr元素的合金固溶体化合层(厚度0.013-0.016mm),这一化合层致密,光洁,显微硬度高,这些特点正是表面熔焊管具有良好力学强度、抗腐蚀能力的根源。同时,熔焊表面的紧致和光洁使其可持久保存而不易脱落,保证了凝结水拥有较好的品质。
     (7)通过对蒸汽凝结界面的能量平衡分析,得到了凝结液接触角θ与表面自由能的关系。进而结合金相和元素分析的结果,发现熔焊管表面的植入元素能够降低其表面自由能,增强凝结换热效果;将表面熔焊管的高光洁度和无序的表面非晶态结构等因素代入以临界液膜分裂厚度δc,表面不平整高度Hz和液膜平均厚度δl三者关系为过程判据的珠膜共存凝结模型,发现熔焊表面的上述特质使其更容易满足δ>δl+Hz的近珠状凝结判据,进一步解释了实验中能在熔焊改性处理的表面获得高凝结换热系数的原因。
     (8)基于数值计算的相关理论方法,利用雷诺时均N-S方程描述套管管内水蒸气的流动,标准k-ε两方程湍流模型(Standard κ-ε Model)对水蒸气运动控制方程的雷诺应力项进行湍流封闭,采用标准壁面函数法进行近壁区处理,依据管内冷凝实验数据得到水蒸气在不同圆管管内的冷凝模型,建立了管内冷凝换热的数值计算模型。利用实验工况验证了所建数值计算模型的准确性,并对模拟结果进行了网格无关性考核。对于内表面熔焊管的速度温度及压力分布进行了分析,管内冷凝现象的传热及流动规律为:蒸汽侧参数沿着管中心线呈轴对称分布,横截面内的参数沿着流速方向越来越缓和;对比了相同时间段内普通钢管及内表面熔焊管的凝结量及压力梯度,说明了内表面熔焊管优越的冷凝能力;进一步研究了循环水雷诺数及蒸汽进口压力变化时的管内冷凝规律。
     总体来讲,本文的研究揭示了表面熔焊技术强化管内外凝结换热的机理;通过对换热特性规律的研究,进一步完善了表面熔焊管的性能评价体系。为表面熔焊管全面投入工程应用提供了理论基础和现实指导。
Steam condensing heat exchanger is an indispensable part of the steam circulation system and the steam power plant, whose service life as well as the work efficiency is of great importance to the reliable and economic operation of the thermal system. Kinds of tubes for heat transfer assembled the main component of the steam condensing heat exchanger, its operating performance directly determined by heat transfer coefficient. It means that research on heat transfer enhancement of steam condensation tube has great theoretical value and practical significance.
     Nowadays, the study on heat transfer of water vapor condensation as an important field of research and application of the heat transfer has got more and more attention of the experts and scholars. With deeper knowledge and understanding of the mechanism for condensation process, plenty of calculation and research on condensation model which made a qualitative and quantitative description of the process of condensation have been brought out. However, most study on enhancing heat transfer in condensation process of steam is confined in the tube outside condensation, while research on in-tube heat transfer characteristics is much less. In terms of heat transfer enhancement measure, most of the researches at home and abroad apply methods of physical modification or external disturbing of the tube, which are difficult in application of engineering practice and thus have few examples for engineering. Until today, systematic study and report on modifying condensation surface (especially the nner surface of the tube) to enhance heat transfer has not much conducted。
     In view of this, surface modified technique based on the technology of high temperature fusion welding inside furnace is adopted in this article to modify the inner and outer surface of ordinary carbon steel tube and a new type of steam condensation heat transfer element, surface fusion welding tube, is constructed. In this article, the promotion of tube condensation heat transfer performance by fusion welding surface is researched in terms of condensation experiment of inner and outer surface of signal tube and tube bundle, numerical calculation and mechanism analysis of heat transfer enhancement. The main work and the corresponding conclusions are as follows:
     (1) The outer surface condensation experimental platform of surface fusion welding tube was set up, and the outer surface condensation heat transfer contrast experiment between the surface fusion welding tube and ordinary steel tube was conducted. In the experiment, experimental section of signal tube and tube bundle were built respectively, with the circulating water in the tube as cold source, the water vapor (hereinafter referred to as steam) condensed on the outer surface of two kinds of tubes respectively. Through the calculation of experimental data, the overall heat transfer coefficient and outer surface condensation heat transfer coefficient of surface fusion welding tube and ordinary steel tube is got, and the relation curve of overall heat transfer coefficient k and flow rate of circulating water (0.6-1.3m/s) in tube is obtained, which shows that the overall heat transfer coefficient of surface fusion welding tube is over20%higher than that of ordinary steel tube, the value having a tendency to increase with the increase of flow rate of circulating water. The calculation results also shows that the outer surface condensation heat transfer coefficient h0of surface fusion welding tube is3times of ordinary steel tube, showing the surface fusion welding tube has a significant enhanced effect to the performance of condensation heat transfer. The wall temperature distribution curve of circumferential and length direction of tube is obtained through the method of measuring the wall temperature by welding the thermocouple. The analysis of the curve shows that the surface fusion welding tube has a higher surface heat flux density and is able to withstand the heat load more evenly.
     (2) The condensation heat transfer experimental platform of tube bundles was set up, the tube bundles was constructed for establishing the condensation heat transfer experiment outside the tube under the vacuum level in four kinds of tube respectively (including the surface fusion welding tube), and the curves of the overall heat transfer coefficient U with the vacuum level in typical Re of different kinds of tubes are established. It is discovered that the heat transfer characteristic of the tube becomes better as the vacuum level gets higher, and the surface fusion welding tube's heat transfer characteristic is much better than that of the stainless steel tube. The conclusion indicates that it is very potential and worthwhile for the surface fusion welding tube to supersede the various ordinary stainless tube in engineering practice.
     (3) By combing the experimental data with calculation in the way of Wilson plot technique the change law of the condensation heat transfer coefficient outside the tube with the vacuum level is obtained of the experimental section, finding that the high vacuum level can enhance the heat transfer is the condensation heat transfer coefficient will be improved as the vacuum level improves. This is because the high vacuum level can make the steam gain a faster velocity and flow more homogeneously. Detachment from the tube wall of the condensate is more frequently as it is sourced by the steam, making the condensation surface area become larger. Besides that, the higher vacuum level it is, the less content of the incondensable gas there will be in the experimental section, which can reduce the film resistance of the surface efficiently and enhance the condensation heat transfer.
     (4) The in-tube condensation experimental platform based on the surface of fusion welding technology was set up by using the mechanism of double tube type counter flow heat exchange. Through modifying inner-surface of tube by high temperature fusion welding craft to construct inner-surface fusion welding tube, the experimental study is carried out on inner condensation heat transfer characteristic of the steam, and comparing with that of the inner condensation steam in ordinary steel tubes, the regularity is obtained that how the Re of circulating cooling water in casing ring gap influences the overall heat transfer coefficient k of two kind of tubes under different inner steam pressure:at negative pressure (0.064MPa), at atmospheric pressure(0.105MPa) and at higher atmospheric pressure (0.185MPa). It is found that the k of the inner-surface fusion welding tube is26percent higher than that of ordinary tube when the inlet steam is of negative pressure, and the strengthening amplitude of overall heat exchange are30and34percent respectively when the pressure of inlet steam closes to and higher than the atmospheric pressure. At the same time, the contrast curve of inner condensation heat transfer coefficient.hi of an inner-surface fusion welding tube and that in an ordinary tube is obtained, showing that the inner condensation heat transfer coefficient hi of an inner-surface fusion welding tube is highest under negative pressure (0.064MPa), and also showing that the enhancing impact is weaken in some degree along with the increase of steam parameters. That is to say, when the heat exchange tube is in vacuum state, the inner-surface fusion welding tube is the best one in promoting the effect of in-tube steam condensation and heat transfer. The result indicates that in the heat transfer situation of in-tube steam condensation, modifying the inner-surface of the heat exchange tube by fusion welding craft can take effect in enhancing heat transfer.
     (5) Experimental correlative of condensation heat transfer coefficient in ordinary steel tube under the heat flux density qi range of160-430kW/m2and that of condensation heat transfer coefficient in inner-surface fusion welding tube under the heat flux density qi range of180-540kW/m2are derived from regression analysis based on experimental data of in-tube condensation heat transfer experiment, and Simultaneously error analysis was conducted.
     (6) Microstructure and specific elemental composition of fusion welding surface were studied by metallographic structure experiment and EDS experiment of tube surface. The results indicate that alloy solid solution combination layer (thickness between0.013mm and0.016mm) containing Ni, P, and few Cr element can be implanted to steel surface of main pipe by fusion welding technology. This combination layer is tight, smooth, and its micro hardness is high. These features make the surface fusion welding tube possess good mechanical strength and resistance to corrosion. In addition, because of the compact and smooth cheek of fusion welding surface, the combination layer can be persisted and not easily fall off, by which the high quality of condensate can be guaranteed.
     (7) The relation between the contact angle9and surface free energy was obtained through energy balance analysis of the steam condensation interface. And then, by combining the results of metallurgical and elemental analysis, it was found that implanted elements of fusion welding surface can reduce the free energy to enhance condensation heat transfer effect. Owing to the high degree of finish and disordered amorphous surface structure of fusion welding tube, the δc>δi,+Hz approximate dropwise condensation criterion of film-dropwise coexisting model which determined by critical film split thickness δc, surface uneven height H2, and average film thickness δi, is satisfied. As a result, further explantation is obtained for the reason why the fusion welding surface has better performance on condensation heat transfer in the experiment.
     (8) Numerical calculation model of inner surface condensation heat transfer was built based on relevant theoretical methods of numerical computation, whose accuracy is verified with the experiment conditions.. Reynolds averaged Navier-Stokes equation (RNS) is used to describe the flow of steam in the double tube, standard k-ε model to enclose the Reynolds stress term of the governing equation of steam motion, and standard wall functions to handle the near wall. Condensation model of steam in different tube was got based on the experiment data, meanwhile, the grid independence of the simulated results has been checked. The distribution of velocity, temperature and pressure of inner-surface fusion welding tube were analyzed. The heat transfer law and flow regularity of inner-surface condensation shows that:the parameters of steam is axially symmetrical distribution through the centerline of the tube, and that of the cross section become relaxer along the flow direction; the condensation quantity and pressure gradient of ordinary steel tube and inner-surface fusion welding tube are contrasted at the same time, which shows the superior condensation capacity of inner-surface fusion welding tube; the inner-surface condensation law is further researched with the changes of Re of circulating water and inlet pressure of steam.
     Overall, this dissertation revealed the condensation heat transfer enhancing mechanism of surface fusion welding technology by tube externally and internally research. Performance evaluation system of surface fusion welding tube is further consummated by study of heat transfer characteristic, and all the work have provided theoretical basis and practical guidance for comprehensive engineering application of surface fusion welding tube.
引文
[1]杨善让.汽轮机凝汽设备及运行管理[M].北京:水利电力出版社,1993:1-7.
    [2]赵之东,杨丰利.直接空冷凝汽器的发展和现状[J].华北电力技术,2004,5:44-50.
    [3]Yilbas B S, Altuntop N. Condensation Heat Transfer of Freon-21 on Plain Horizontal Tubes[J]. Indian Journal of Technology,1990,28:100-106.
    [4]Belghazi M, Bontemps A, Sigce J. C, et al. Condensation Heat Transfer of a Pure Fluid and Binary Mixture Outside a Bundle of Smooth Horizontal Tubes[J]. Int. J. Re frig,2001,24: 841-855.
    [5]Kumar R, Varma H K, Mohanty B. Prediction of Heat Transfer Coefficient During Condensation of Water and R-134a on Single Horizontal Integral-fin Tubes[J]. Int. J. Re frig, 2002,25:111-126.
    [6]Gstoehl D, Thome J R. Film Condensation of R-134a on Tube Array with Plain and Enhanced Surfaces:Part I-Experimental Heat Transfer Coefficients[J]. ASME Journal of Heat Transfer,2006,128:21-32
    [7]Gstoehl D, Thome J R. Film Condensation of R-134a on Tube Array with Plain and Enhanced Surfaces:Part II-Empirical Prediction of Inundation Effects[J]. ASME Journal of Heat Transfer,2006,128:33-43.
    [8]Sukhatme S. P, Jagadish B S, Prabhakaran P. Film Condensation of R11 Vapour on Single Horizontal Enhanced Condenser Tubes[J]. ASME Journal of Heat Transfer,1990,112: 29-34.
    [9]Kumar R, Gupta A, Vishvakarma S. Condensation of R-134a Vapour over Single Horizontal Integral-fin Tubes:Effect of Fin Height[J]. Int J Re frig,2005.28:428-435.
    [10]Zhang D C, Ji W T, Tao W Q. Condensation Heat Transfer of HFC 134a on Horizontal Low Thermal Conductivity Tubes[J]. International Communications in Heat and Mass Transfer, 2007,34:917-923.
    [11]Seara J F, Uhia F J, Diz R. Experimental Analysis of Ammonia Condensation on Smooth and Integral Titanium Tubes[J]. Int. J. Re frig,2009,32:1140-1148.
    [12]Jakob M, Hawkins G A. Elements of Heat Transfer and Insulation[M]. New York:John Wiley,1942,658-696.
    [13]Huebsch W W, Pate M B. A Comparative Study of Shell-Side Condensation on Integral-Fin Tubes with R114 and R236ea[J]. AHSRAE Transaction:Research,2004,40-52.
    [14]Mitrovic J. Effect of Vapor Superheat and Condensate Subcooling on Laminar Film Condensation[J]. ASME Journal of Heat Transfer,2000,122:192-196.
    [15]Zhang L, Yang S, Xu H. Experimental Study on Condensation Heat Transfer Characteristics of Steam on Horizontal Twisted Elliptical Tubes[J]. Applied Energy,2012,97:881-887.
    [16]Grooten M H M, vander Geld C W M. Surface Property Effects on Dropwise Condensation Heat Transfer from Flowing Air-steam Mixtures to Promote Drainage[J]. International Journal of Thermal Sciences,2012,54:220-229.
    [17]Lan Z, Ma X H, Wang S, et al. Effects of Surface Free Energy and Nanostructures on Dropwise Condensation[J]. Chemical Engineering Journal,2010,156:546-552.
    [18]Li J D, Saraireh M, Thorpe G. Condensation of Vapor in the Presence of Non-condensable Gas in Condensers[J]. International Journal of Heat and Mass Transfer,2011,54:4078-4089.
    [19]Omidvarborna H, Mehrabani-Zeinabad A, Esfahany M N. Effect of Electrodynamic (EHD) on Condensation of R-134a in Presence of Non-condensable Gas[J]. International Communications in Heat and Mass Transfer,2009,36:286-291.
    [20]Nusselt W. Die Oberflachenkondensation Des Wasserdampfes[J]. Z. Vereines Deutsch. Ing, 1916,60:541-546,569-575.
    [21]Hu X, Jacobi A M. The Intertube Falling Film:Partl-Flow Characteristics, Mode Transitions, and Hysteresis[J]. ASME Journal of Heat Transfer,1996,118:616-625.
    [22]Kutateladze S S. Fundamentals of Heat Transfer[M]. New York:Academic Press,1963.
    [23]Labuntsov D A. Heat Transfer in Film Condensation of Steam on a Vertical Surface and Horizontal Tubes [J]. Intergenerational,1957, (47):72-80.
    [24]张兵.R22在水平C-S管外凝结换热分析及实验研究[D].武汉:华中科技大学,2006.
    [25]王书中.水平管束降膜动力学与界面吸收性能实验研究[D].天津:天津大学,2007.
    [26]林宗虎,汪军,李瑞阳等.强化传热技术[M].北京:化学工业出版社,2007.
    [27]张正国,王世平等.强化冷凝传热管的开发研究[J].现代化工,1997,12:13-15.
    [28]张正国,林培森,王世平.花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究[J].石油化工设备,1996(03):3-6.
    [29]史维秀,李惟毅等.机械加工表面强化管管外全凝与部分凝结换热实验[J].天津大学学报,2011,6:529-534.
    [30]Katz D L, Beatty K O, Foust A S. Heat Transfer Through Tubes with Integral Spiral Fins[J]. Trans. AMSE,1945,70:907-914.
    [31]Katz D L, Hope R E, Datsko S C, et. al. Condensation of Freon-12 with Finned Tubes. Part I. Single Horizontal Tubes[J]. J. AM. Soc. Refrigerating Engineers,1947,53:211-217.
    [32]Gregorig R. Film Condensation on Finely Rippled Surfaces with Consideration of Surface Tension[J]. Zeitschrift fur Angewandte Mathmatic and Physik,1954,5:36-49.
    [33]Karkhu V A, Borovkov V P. Film Condensation of Vapour at Finely-Finned Horizontal Tubes[J], Heat Transfer-Soviet Research,1971,3:183-191.
    [34]Adamek T, Webb R L. Prediction of film condensation on horizontal integral finned tubes[J]. International Journal of Heat and Mass Transfer,1990,33(3):1721-1735.
    [35]Webb R L, Keswan S T, Rudy T M. Investigation of Surface Tension and Gravity Effect in Film Condensation[C]//Proc.7th Int. Heat Transfer Conference.1982,5:175-180.
    [36]Webb R L, Rudy T M, Keswan S T. Prediction of the Condensation Coefficient on Horizontal Integral-fin Tube[J]. ASME Journal of Heat Transfer,1985,107:369-376.
    [37]Rose J W. An Approximate Equation for the Vapour-side Heat Transfer Coefficient for Condensation on Low-finned Tubes[J]. International Journal of Heat and Mass Transfer, 1994,37:865-875.
    [38]Rudy T M, Webb R L. Condensate Retention on Horizontal Integral-Fin Tubing[J]. Advance in Heat Transfer, ASME HTD-18,1981:35-41.
    [39]Honda H, Nozu S, Mitsumori K. Augmentation of Condensation on Horizontal Tubes by Attaching a Porous Drainage Plate[C]//Proc. Thermal Engng. ASME-ASCE. Joint Conference,1983,3:289-296.
    [40]Briggs A, Rose J W. Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal Integral-fin Tube[J]. International Journal of Heat and Mass Transfer,1994, 37(1):457-463.
    [41]Rudy T M, Webb R L. An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tube[J]. ASME Journal of Heat Transfer,1985,107:361-368.
    [42]Masuda H, Rose J W, An Experimental Study of Condensation of Refrigerant113 on Low Integral-Fin Tubes. Heat Transfer Science and Technology[M]. New York:Hemisphere, 1987:480-487.
    [43]Smirnov G F, Lukanov 11. Study of Heat Transfer from Freon-11 Condensing on a Bundle of Finned Tubes[J]. Heat Transfer-Soviet Research,1972,4:51-56.
    [44]Kulis F, Compingt A, Mercier P, et al. Design Method for Shell and Tube Condensers in Refrigeration Units[C]//Heat Transfer in Condensation, Euroherm Seminar47. Paris: Elsevierl,1996:133-138.
    [45]Rudy T M, Webb R L. Theoretical Model for Condensation on Horizontal Integral-fin tubes[J]. AIChe Symp. Ser,1983,79:11-18.
    [46]Honda H, Nozu S A Prediction Method for Heat Transfer during Film Condensation on Horizontal Low Integral-fin Tubes[J]. ASME Journal of Heat Transfer,1987,109:218-225.
    [47]Honda H, Nozu S, Uchima B A Generalized Prediction Method for Heat Transfer during Film Condensation on a Horizontal Low Finned Tube[C]//ASME-JSME Thermal Engineering Joint Conference,1987,4:385-392.
    [48]Honda H, Takamatsu H, Takada N. Condensation of HCFC123 in Bundles of Horizontal Finned Tubes:Effects of Finned Geometry and Tube Arrangement[J]. Int. J. Re frig,1996, 19:1-9.
    [49]Sreepathi L K, Bapat S L, Sukhatme S P. Heat Transfer during Film Condensation of R-123 Vapour on Horizontal Integral-Fin Tubes[J]. J. Enhanced Heat Transfer,1996,3:147-164.
    [50]Cavallini A, Censi G, Col D D, et al. Condensation Inside and Outside Smooth and Enhanced Tubes-A Review of Recent Research[J]. Int. J. Re frig,2003,26:373-392.
    [51]Randall D L, Eckels S J. Effect of Inundation upon Condensation Heat Transfer Performance of R-134a:Part II-Results[J]. Int. J. HVAC&R Research,2005,11(4):543-562.
    [52]西安交通大学热工教研室.氟利昂12在肋管外的冷凝放热试验研究[J].西安交通大学学报,1977,(2):35-48.
    [53]吴沛宜.氟利昂12、113在在水平肋管外冷凝放热的准则方程[J].西安交通大学学报,1979,1(3):1-10.
    [54]Belghazi M, Bontemps A, Marvillet C. Condensation Heat Transfer on Enhanced Surface Tubes:Experimental Results and Predictive Theory[J]. ASME Journal of Heat Transfer, 2002,124:754-761.
    [55]Belghazi M, Bontemps A, Marvillet C. Condensation Heat Transfer on Enhanced Surface Tubes:Experimental Results and Predictive Theory[J]. ASME Journal of Heat Transfer, 2002,124:754-761.
    [56]Nguyen T N, Orozco J A. Condensation of CFC113 on Enhanced Surfaces[J]. ASHRAE Transaction,1994,100(1):736-743.
    [57]Yun R, Heo J, Kim Y. Film Condensation Heat Transfer Characteristics of R134a on Horizontal Stainless Steel Integral-Fin Tubes at Low Heat Transfer Rate[J]. Int. J. Refrig, 2009,32:865-873.
    [58]Zhang D C, Zhao A L, Du J D, et al. Experimental investigations on condensation heat transfer outside enhanced tubes Effect of tube types[C]//Proceedings2011 International Conference on Materials for Renewable Energy and Environment, Shanghai, IEEE Computer Society,2011,2:1338-1342.
    [59]Ali H M, Briggs A. Enhanced Condensation of Ethylene Glycol on Single Pin-Fin Tubes-Effect of pin geometry [J]. ASME Journal of Heat Transfer,2012,134:1-7.
    [60]王世平,廖西汀,邓颂久,等.锯齿形翅片管强化冷凝给热的实验研究及其准则方程[J].工程热物理学报,1984,5(4):374-377.
    [61]王欣.水平螺旋槽管壁面液膜特性的研究[D].青岛:中国海洋大学,2003.
    [62]左建国.水平环肋管外TFE的凝结传热研究[D].大连:大连理工大学,2003.
    [63]王宏,廖强,朱恂.梯度表面能材料及液滴运动特性实验.重庆大学学报.2005.28(8):35-38.
    [64]廖强,王宏,朱恂,顾扬彪.梯度表面能材料上液滴运动特性实验[J].工程热物理学报. 2007.28(1):134-136.
    [65]王宏,廖强,朱恂.梯度表面能材料上液滴运动机理[J].化工学报.2007.58(9):313-2320.
    [66]廖强,王宏,朱恂,李明伟.水平梯度表面能材料表面上的液滴运动[J].中国科学E辑.2007.37(3):402-408.
    [67]Liao Qiang, Wang Hong, Zhu Xun, Li Mingwei. Liquid droplet movement on horizontal surface with gradient surface energy[J]. Science in China, Series E.2006 49(6):733-741.
    [68]廖强,顾扬彪,朱恂,王宏.梯度表面能材料表面上滴状凝结换热[J].化工学报.2007.58(3):567-574.
    [69]廖强,邢淑敏,王宏.水平均质表面上液滴聚合过程的可视化实验研究[J].工程热物理学报.2006.27(2):319-321.
    [70]邢淑敏,廖强,朱恂,王宏.倾斜均质表面上非等径液滴的聚合特性[J].工程热物理学报.2008.29(1):142-144.
    [71]廖强,邢淑敏,朱恂,王宏.水平均质表面非等径水滴聚合的可视化实验[J].热科学技术.2006.5(3):211-215.
    [72]Liao Qiang, Gu Yangbiao, Zhu Xun, Wang Hong, Xin Mingdao. Experimental Investigation of Dropwise Condensation Heat Transfer on the Surface with a Surface Energy Gradient[J]. J. Enhanced Heat Transfer.2007.14(3):243-256.
    [73]廖强,王宏等.液滴在梯度表面能材料上的运动特性研究[C].中国工程热物理学会.第十一届学术会议.2005.
    [74]顾扬彪.梯度表面能材料表面的凝结换热实验及理论模型[D].重庆:重庆大学,2006.
    [75]廖强,顾扬彪,朱恂,王宏.梯度表面能材料表面上滴状凝结换热实验[J],化工学报,2007.
    [76]顾扬彪,廖强,朱恂,王宏.圆形径向梯度表面能材料表面上的滴状凝结换热系数[J],重大学报,2006,Vol29,No.5,pp24-27
    [77]顾扬彪,廖强,朱恂,王宏.水平梯度表面能材料表面上的滴状凝结换热系数[J],工程热物理学报,2005,Vol.26,No.5,pp820-822
    [78]廖强,顾扬彪,朱恂,王宏.水平梯度表面能材料表面滴状凝结换热的实验研究[J],中 国工程热物理学会第十一届年会论文集传热传质学(上册),pp315-318
    [79]Q Liao, Y B Gu, X Zhu, H Wang, and M D Xin. The Experiment of Dropwise Condensation on the Surface with Gradient Surface Energy[C],] 3th international heat transfer conferences, Sydney, Australia,2006,8.
    [80]陈佳.凝汽器汽相流动与传热特性的数值模拟[D].哈尔滨:哈尔滨工程大学,2008.
    [81]黄正余.水平管外珠状冷凝传热研究[D].哈尔滨:哈尔滨工程大学,1990.
    [82]黄渭堂,刘锋等.波槽管管外珠状凝结换热的实验探讨[J].热能动力工程,2005,20(06):587-590.
    [83]周慧,黄护林.不同基底材料对珠状凝结换热性能的影响[C].中国工程热物理学会,传热传质学学术会议论文集,上海,2010.
    [84]周慧.水蒸汽珠状凝结换热影响因素的研究[D].南京:南京航空航天大学,2012.
    [85]崔辉.凝汽器汽侧流场的三维数值模拟及强化传热研究[D].济南:山东大学,2002.
    [86]李瑞卿,彭如恕等.激光表面改性促进水蒸气滴状冷凝传热的实验研究[J].材料热处理技术,2012,10:133-135.
    [87]Roques J. F, Dupont V, Thome J R. Falling Film Transitions on Plain and Enhanced Tubes[J]. ASME Journal of Heat Transfer.2002,124(6):491-499.
    [88]Ma Zhixian, Zhang Jili, Sun Dexing. New experimental method for inundation effect of film condensation on horizontal tube bundle[J]. Sci China Ser E-Tech Sci,2012 (SCI 源, DOI:10. 1007/s11431-012-4919-1).
    [89]马志先,张吉礼,孙德兴.V型导液槽对HFC245fa水平管束外冷凝换热影响[J].化工学报,2011,62(1):32-40.(E1:20110613651394).
    [90]马志先,张吉礼,孙德兴HFC245fa水平光管与强化管管束外冷凝换热试验研究[J].化工学报,2010,61(5):1097-1106.(E1:20102413003463).
    [91]马志先,张吉礼,孙德兴.水平一维与二维单管外层流膜状凝结理论发展[J].哈尔滨工业大学学报,2011,43(8):80-93.(EI:20114114415166).
    [92]马志先.水平管束外膜状凝结换热试验与理论研究[D].哈尔滨:哈尔滨工业大学,2012.
    [93]张正国,王世平,耿建军,林培森.强制对流冷凝传热强化[J].化学工程.1998(03): 18-20.
    [94]张正国,王世平,耿建军.非共沸混合工质在水平管束上轴向流动冷凝传热强化的研究[J].化工机械,1998,25(1):7-12.
    [95]董彬,赵军等.氨的添加引发水蒸气凝结换热强化的实验研究[J].制冷技术,2012.11:37-40.
    [96]A Paquet, A Yoshida, T Honjo, T Shohji. Seawater desalination by horizontal tubes multi-effect[J]. Thermal and nuclear power,1975.2.
    [97]David Maron-Moalem, Samuel Sideman and Abe E. Dukler. Dripping characteristics in a horizontal tube film evaporator Desalination[J],1978,2(7):117-127.
    [98]D. Moalem-Maron, R. Scmiat and S. Sideman. Enhanced heat transfer in horizontal evaporator-condensers with straight-edged grooved tubes[J]. Desalination,1980, (34): 289-309.
    [99]王维城,许路等.水平管内强制对流凝结换热的实验研究[J].工程热物理学报,1990(01).
    [100]Shao D W and E. Crranryd. An Investigation on Flow Condensation of R22 and R407C in a Horizontal Smooth Tube[J]. Proceedings ofl9th International Congress Off Refrigeration, 1995,4:527-534.
    [101]M. K. Dobson, J. C. Chato. Condensation in Smooth Horizontal Tubes[J]. Journal of Heat Transfer,1998,2:193-213.
    [102]T. N. Tandon, H. K. Varma and C. P. Gupta. Heat Transfer during Forced[J]. Convection Condensation Inside Horizontal Tube. Int. J. Re frig,1995,3:210-214.
    [103]李沛文,陈民等.R134a水平管内流动凝结换热的实验研究[J].工程热物理学报,1997(1).
    [104]许莉.水平管降膜海水淡化多效蒸发传热研究[D].天津:天津大学,1999.
    [105]尹铭,陈嘉宾,马学虎等.水平管内低压蒸汽的冷凝.化工学报[J],2003,54(7):913-917.
    [106]尹铭.水平管内低压蒸汽冷凝现象的研究[D].大连:大连理工大学,2002.
    [107]杜小泽,王补宣.蒸气在变壁温竖直细圆管内的流动凝结换热特性[J].中国科学(E辑), 2002,32(3):308-315.
    [108]王补宣,杜小泽.细竖管内流动凝结的换热特性[J].上海交通大学学报,1999,33(8):970-973.
    [109]王补宣,杜小泽.细竖管内流动凝结液膜的稳定性分析[J].化工学报,2000,51(1):7-10.
    [110]王补宣,杜小泽.水平和竖直细圆管内流动凝结换热特性的对比研究[J].工程热物理学报,2000,21(1):67-70.
    [111]陈岩.小通道内R134a流动凝结换热特性的实验研究[D].济南:山东大学,2005.
    [112]张宽,宋保银等.动载下水平管中蒸汽凝结实验研究初探[J].制冷与空调,2012.
    [113]张宽.动载及管套结构对蒸汽凝结影响的实验研究[D].南京:南京航空航天大学,2012.
    [114]Y. V. Putilin et,al. Intensification of heat-exchange in horizontal-tube film desalination plant[J]. Proceedings of the7th international symposium on fresh water from the sea,1980: 241-254.
    [115]Schlager L. M, Pate M. B. And Bergles A. E. Evaporation and Condensation of Refrigeration-oil mixture in smooth tube and micro-fin tube[J]. ASHARE Trans,1988,94(1): 149-166.
    [116]K. Torikoshi et al. Heat Transfer and Pressure Drop Characteristics of R134a, R32 and a Mixture of R32/R134a Inside a Horizontal tube[J]. ASHRAE Trans,1993,99(2):90-96.
    [117]Dorre T, S. Eckels and M. pate. In-tube Condensation Heat Transfer of Refrigerant mixture[J]. ASHRAE Trans,1994,100(2):547-557.
    [118]Halim wijaya and Mark W. spartz. Two-phase Flow Heat Transfer and Pressure Drop Characteristics of R22 and R32/R125[J]. ASHRAE Trans,1995,101(1):1020-1027.
    [119]SamiS. M, P. J. Tulej and B. Song. Study of Heat and Mass Characteristics of ternary non-azeotropic Refrigerant mixture Inside air/refrigerant Enhanced Surface Tubing[J]. ASHRAE Trans,1995,10(1)1:1402-1412.
    [120]Akira Murata, Ei Ji Hihara, Takamoto Saito. Heat Transfer by Condensation at a Steam-Water Interface in a Horizontal Channer[J]1. Heat Transfer Japan Research.1991, 8(20):794-804.
    [121]D. Graham, J. C. Chato, T. a. Newell. Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube[J]. International Journal of Heat and Mass Transfer,1998,6:1935-1944.
    [122]M. J. Wilson, T. A. Newell, J. C. Chato, C. A. Infante Ferreira. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes[J]. International Journal of Refrigeration,2003,6:442-451.
    [123]E. W. Jassim, T. A. Newell, J. C. Chato. Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps[J]. International Journal of Heat and Mass Transfer,2008,2:485-496.
    [124]武永强,罗忠.一种新型高效传热铜管的冷凝传热性能实验研究[J].制冷与空调,2006,6(1):75-78.
    [125]解旭斌,王维城,王栋.高效传热管内凝结换热性能及阻力性能的实验研究[J].工程热物理学报,2000,21(6):742-745.
    [126]陈清华,崔文智,辛明道等.三维微肋管内凝结换热流型及环状流关联式[J].西安交通大学学报,2000,34(11):27-30.
    [127]陈清华,辛明道.三维内微肋管内凝结流型分区及分层波状流换热关联式[J].化工学报,2002,53(7):755-758.
    [128]陈清华.水平三维内微肋管内凝结流型及换热[D].重庆:重庆大学,2000.
    [129]南晓红,郭亚军,刘咸定等.R290的管内冷凝实验研究.制冷学报[J],2003,(3):6-9.
    [130]吴晓敏,王晓亮,王维城.水平新型微肋管内流动冷凝换热及流阻特性.上海理工大学学报[J],2003,25(4):326-329.
    [131]隋海明.水蒸汽在竖直管内冷凝换热的实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [132]邢玉雷.真空水平管内蒸汽凝结换热实验研究[D].大连:大连理工大学,2008.
    [133]崔文智.R134a在水平三维内微肋管内的凝结换热[D].重庆:重庆大学,1999.
    [134]社扬.辛明道.水平内微肋管局部凝结换热性能实验与数值求解[J].工程热物理学报,1996(4).
    [135]Gaibel J A, Chato J C, Dobson M K. alt. Condensation of a50/50 Blend of R-32/R-125 in Horizontal Tubes with and Without Oil. University of Illinois at Urbanna-Champaign[D]. USA,1994.
    [136]隋海明,黄渭堂.管内插入双螺旋丝强化冷凝换热的实验研究[J].应用科技,2007.8:55-57.
    [137]Jia-Xiang Y, Li-Jian D, Yang H. An Experimental Study of EHD Coupled Heat Transfer. IEEE,1996:348-351.
    [138]Chuntian Chen, Jiaxiang Yang, Y'mg Zhang, Xiaochun Chi. The Experimental Investigation of Heat Transfer Enhancement of Dielectric Fluid in Electrostatic Field. Proceedings of The 7th International Conference on Properties and Applications of Dielectric Materials,2003,2: 567-570.
    [139]恩科,陈之航.电流体力学强化水平管内凝结传热试验研究[J].暖通空调HV&AC,2003,33(1):5-7.
    [140]杜晓燕.介电流体材料的电场强化凝结换热实验研究[D].哈尔滨理工大学,2007.
    [141]MA Xuehu, ROSS J W. Advances in dropwise condensation heat transfer:Chinese research[J]. Chemical Engineering Journal,2000,78(2-3):87-93.
    [142]ROSE J W. Heat-transfer coefficients, Wilson plots and accuracy of thermal measurements[J]. Experimental Thermal and Fluid Science,2004,28(2-3):77-86.
    [143]HOLMAN J P. Heat Transfer[M]. New York:McGraw-Hill,2002.
    [144]MULLER-STEINHANGEN H, MALAYERI M R And WATINSON A P. Fouling of heat exchangers-new approaches to solve an old problem[J]. Heat Transfer Engineering,2005, 26(1):1-4.
    [145]宋永吉,张东昌.大气压附近蒸汽温度对滴状凝结传热的影响[J].化工学报,1991,1:119-123.
    [146]WILKINS D G, BROMLEY L A. Dropwise condensation phenomena[J]. American Institute of Chemical Engineers,1973,19(4):839-845.
    [147]程晓峰.固液表面自由能差强化蒸汽凝结传热的研究[D].大连:大连理工大学,2002.
    [148]MA Zhengfei, LIU Xiaoqi, YAO Huqing. Advances in adsorption principles and adsorption processes[J]. Journal of Nanjing University of Technology,2006,28(1):100-106.
    [149]邹海涛.等离子注入表面改性铜管管束的换热特性试验研究[D].济南:山东大学, 2002.
    [150]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [151]Fluent Incorporated. Fluent user's guide v6.3[M]. Lebanon:New Hanpshire.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700