用户名: 密码: 验证码:
地下咸水层储能与含水介质空间结构变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国沿海地区地下埋深在100-150m的浅层存在丰富的地下咸水资源,具有储量大、分布广、埋藏浅、封闭条件好的特点,有利于地下储能综合利用。当前,国内外对于咸水层储能机理研究尚处在起步阶段,关于地下咸水抽、回灌过程中含水层渗透性能变化的原因与机理分析的报道并不多见。
     论文基于含水层储能水-热运移的基本理论与控制方程,针对地下咸水层储能过程中地下水密度及粘滞性系数变化显著的特点,对现有的地下含水层储能数学模型进行修正、完善,建立地下咸水层水-热-盐耦合储能模型。利用完善后的地下咸水层储能模型对天津滨海新区某咸水层储能系统地下水动力场及温度场的分布情况进行模拟,所得数据与现场试验结果拟合较好。根据研究结果得到,在地下咸水层水文地质条件不变的情况下,渗透系数随地下咸水层温度的升高而升高;随着回灌溶液盐浓度的增大而降低。
     咸水层储能野外试验是探究该特定含水层储能特性的关键措施,是研究咸水层储能过程中地下水传热、传质规律的最佳方法。然而目前国内相关的野外试验研究仍处于空白状态。论文基于现场勘测结果,根据现有试验条件设计、搭建一套完整地下咸水层储能野外试验系统。通过改变回灌水的温度进行储热、储冷试验,分析不同储能模式对含水介质内传热、传质过程产生的影响,验证了咸水层储能模型中回灌水温度的变化导致渗透系数发生改变的合理性。为室内储能试验台的设计与搭建提供了模型参考与基础数据。
     本文采用室内模拟试验与理论分析相结合的方法,设计、搭建一套完整的一维渗流砂柱试验系统,通过回灌溶液温度与盐浓度突、渐变试验,结合双电层理论探索咸水层储能过程中导致含水介质空间结构以及渗透性能变化的主要原因。研究表明,含水介质渗透性能不仅与回灌溶液温度、盐浓度变化有关,同时也受到温度与盐度变化梯度的影响。以回灌溶液温度突变试验为例,分析含水介质渗透性能空间非均质性现象。通过试验发现,在回灌水量不变的情况,由于回灌溶液温度的改变,在含水介质中形成垂直于地下水流的低渗透带的区域也有所变化。
     通过对三维渗流砂箱进行模拟储热试验,发现含水介质渗透性能变化规律在水平、垂直方向具有很强的空间非均质性特征。通过抽-注水井固定与调换模式储能试验可得,地下含水层粘粒分布与空间结构变化是一个不可逆的过程。在两种工作模式下地下咸水层中均形成了低渗透帷幕带,然而由于形成机制不同,使得低渗透帷幕带所在区域有所差异。
There is abundant underground brackish water resources buried at the shallowlayer as deep as100m-150m in most costal regions in China. The undergroundbrackish water resources have a huge reverses, large distribution range, shallowburied depth, and wonderful sealed condition which are all in favor of thecomprehensive application of energy storage and recovery in aquifer. At present, thereare few reports about the analysis research of the reasons and mechanism of thehydraulic conductivity of brackish aquifers during the inject-pumping process.
     Based on the basic principle of water-heat transferring in aquifer, this paperrevises and perfects the current numerical model of energy storage and recoverysystem in aquifers and establishes a three-dimensional couple numerical model ofgroundwater flow, heat transferring and solute movement, which fully make use of thesignificant variation of groundwater density and viscosity coefficient in energystorage and recovery in brackish aquifer. The revised couple numerical model ofgroundwater flow, heat transferring and solute movement is applied to simulate onebrackish aquifer storage and recovery system in Tianjin Binhai New Area and the datafrom simulation calculation fits the spot experiment results. The results show that thecoefficient of hydraulic conductivity has a same change with the geo-temperature and an oppositeone with salinity in brackish aquifers when the hydrogeology condition of brackish aquiferremains the same.
     Field experiment on the energy storage in brackish aquifers is the key measure toexplore the characteristics of this specific energy storage in aquifer. What's more, it isthe best approach to studying water-heat transferring in aquifers. However, there isnot any such field experiment study in domestic China until now. Based on the resultsof site survey, this brackish aquifer energy storage and recovery system is establishedunder the existing site condition of experiment in the field.The regular feature of heatand mass transfer of porous medium during the process of energy storage in brackishaquifers shall be explored, which the possibility that the permeability coefficientvaries with the changes of temperature of recharge solution is proved. Thisexperiment also provides reference model and basic data for indoor experiment.
     By combining the actual experiment and theoretical analysis, a set of onedimensional infiltration sand column system is established. With a series of mutation and gradual experiments in temperature and salinities changes of recharge solution,the main reasons causing the changes of aquifer medium space structure andpermeability are explored based on double layer theory. The results show that,permeability is influenced by the temperature and salinity variation of rechargesolution as well as its change gradient. Take the temperature mutation experiment ofrecharge solution as example, the heterogeneousness of permeability in aquifermedium is revealed. In conclusion, when the recharge water remains the same, theregion of hyposmosis curtain in aquifer medium varies with the changes oftemperatures of recharge solution.
     Through simulating the heat storage of three dimension infiltration sand box, it isproved that, the permeability changes of aquifer medium is heterogeneous inhorizontal and vertical direction. By fixing and switching the locations of pumpingwell and injection well, it shows that the aquifer medium clay particle distribution andspace structure variations are irreversible. Under these two working modes, lowpermeability curtain occur in aquifer medium. However, where the low permeabilitycurtains lay is different according to its formation mechanism.
引文
[1]马捷,地下含水层储能原理及其工程应用,上海:上海交通大学出版社,2007,36-47
    [2]邬小波,马捷,中国地下水含水层储能技术及其发展,能源研究与信息,1999,15(4):8-11
    [3]张阿根,魏子新,上海地面沉降研究的过去、现在和未来,全国地面沉降学术研讨会论文集,北京:2002,149-153
    [4]邬小波,地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状,暖通空调,2004,34(1):19-22
    [5]王恩军,张兰英,天津市地下咸水资源开发利用现状与前景,地下水,2002,24(2):82-84
    [6]李小峰,张良月,天津市浅层地下咸水资源利用及其环境影响评价,地下水,2001,23(1):12-14
    [7] Snijders Art L. Lessons f rom100ATES project-the developments of aquiferstorage in the Netherlands. In: TheProceedings of8th International Conferenceon Thermal EnergyStorage, Stuttgart,2000
    [8]李之鑫,天津地区咸水分布特征及其机理讨论,地震学刊,1989,4,89-94
    [9]周志芳,裂隙介质水动力学原理,北京:高等教育出版社,2007,181-194
    [10]朱学愚,谢春红,地下水运移模型,北京:中国建筑工业版社,1990,184-203
    [11] Heijde, Paul V.D, Bachmat, Y. et al. Groundwater Management: The Use ofModels, Second Edition, America Geop. Union1985,281-287
    [12] Rybach L M, Pfister. Temperature Predictions and Predictive Temperatures inDeep Tunnels, Rock Mechanics and Rock Engineering,1994,(2):77-88
    [13] Molson J W, Palmer C D. Thermal Energy Storage in an UnconfinedAquifer,2.Model Development, Validation and Application, Water ResourcesResearch,1992,28(10):2857-2867
    [14] J. F. Sykes, R. B. Lantz, S. B. Pahwa, et al. Numerical Simulation of ThermalEnergy Storage Experiment Conducted by Auburn University, Ground Water,1982,20(5):569-576
    [15] C. Doughty, G. Hellstrom, C. F. Tsang, et al. A Dimensionless ParameterApproach to the Thermal Behavior of an Aquifer Thermal Energy StorageSystem, Water Resource Research,1982,18(3):571-587
    [16] S. S. Papadopulos, S. P. Larson. Aquifer Storage of Heated Water: PartII-Numerical Simulation of Field Results, Ground Water,1978,16(4):242-248
    [17] T. E. Dwyer, Y Eckstein, Finite-Element Simulation of Low-Temperature,Heat-Pump-Coupled, Aquifer Thermal Energy Storage.Journal of Hydrology,1987,95(1-2):19-38
    [18] S. Chevalier, O. Banton. Modeling of Heat Transfer with the Random WalkMethod, Part2, Application to Thermal Energy Storage in Fractured Aquifers,Journal of Hydrology,1999,222(1-4):140-151
    [19] S. Chevalier, O. Banton. Modeling of Heat Transfer with the Random WalkMethod, Part1, Application to Thermal Energy Storage in PorousAquifers.Journal of Hvdrology,1999.222(1-4):129-139
    [20] Y. Xue, C. Xie, Q. Li. Aquifer Thermal Energy Storage: A NumericalSimulation of Field Experiments in China. Water Resources Research,1990,26(10):2365-2375
    [21]张志辉,薛禹群,吴吉春,地下热水运移中自然对流的研究,水文地质工程地质,1995,(4):16-18
    [22]张志辉,薛禹群,谢春红,含水层热量运移中自然对流作用的数值模拟,水科学进展,1996,7(2):99-103
    [23]张志辉,含水层储能数值模拟的研究及应用:[博士学位论文],南京;南京大学,1993
    [24]张志辉,吴吉春,薛禹群,含水层热量输运中自然热对流和水-岩热交换作用的研究,工程地质学报,1997,5(3):269-275
    [25]柴军瑞,韩群柱,岩体渗流场与温度场耦合的连续介质模型,地下水,1997,19(2):59-62
    [26]柴军瑞,韩群柱,岩体一维渗流场与温度场耦合模型的解析演算,地下水,1999,21(4):180-182.
    [27]王锦国,周志芳,金忠青,地下水热量运移模拟的BEM-FAM耦合法,水利学报,2001,(5):71-76.
    [28]龙翔,万曼影,马捷,地下水含水层储能的数学模型及其流动条件的研究,能源研究与利用,2005,(1):14-18
    [29]王明育,马捷,万曼影,地下含水层储能两阶段热量运移数值模型研究,吉林大学学报(地球科学版),2004,34(4):576-580
    [30]夏民,王明育,万曼影,储能地下含水层两阶段流动换热模型分析,水动力学研究与进展A辑,2005,20(3):363-367
    [31]王明育,马捷,郝振良,地下含水层热储井位置选择和布置,成都理工大学学报(自然科学版)2005,32(1):12-16
    [32]王明育,马捷,万曼影,地下含水层同层储能应用中储能井布置方法研究,工程勘察,2005,(1):15-21
    [33] T. R. Holm,S. J. Eisenreich, H. L. Roseberg, et al, GroundwaterGeochemistry of Short-Term Aquifer Thermal Energy Storage TestCycles.Water Resource Research.1987,23(6):1005-1019
    [34] R. T. Miller. Anisotropy in the lronton and Galesville Sandstone Nears aThermal-Energy-Storage Well, St. Paul, Minnesota, Ground Water,1984,22(5):532-537
    [35] C. D. Palmer, D. W. Blowes, E. O. Frind, et al, Thermal Energy storage in anUnconfined Aquifer1,Field Injection Experiment, Water Resource Research,1992,28(10):2845-2856
    [36] B. Mathey. Development and Resorption of a Thermal Disturbance in a PhreaticAquifer with NaturalConvection, Journal of Hydrology,1977,34(5):315-333
    [37] Paksoy H O, Andersson O, Abaci S, et al, Heating and Cooling of a HostipalUsing Solar Energy Coupled with Seasonal Thermal Energy Storage in anAquifer, Renewle Energy,2000,19:117-122.
    [38] Karen Den Braven, Survey of geothermal heat pump regulations in the UnitedStates, In: The Proceedings of the Second Stockton International GeothermalConference, Pomoma, Newjersey,1998,148-153
    [39] Burhard Sanner, Eleni Konstantinidou. Guideline Draft (Green Paper) VDI4640,Part3: Underground thermal energy storage.In: The Proceedings of8thInternational Conference on Thermal Energy Storage, Stuttgart,2000,328-333
    [40]上海市水文地质大队,地下水人工回灌,北京:地质出版社,1977
    [41]孙永福,李勤奋,上海利用含水层贮冷水和热水试验与应用效果,上海地质,1993,(2):46-53,6
    [42]赵新颖,万曼影,马捷,地下含水层储能及其对环境影响的评估,能源研究与利用,2004,(1):51-54
    [43]王锦程,万曼影,马捷.地下含水层储能技术的应用条件及其关键科学问题,能源研究与信息.2003,19(4):229-235
    [44] K. Nagano, T. Mochida, K.Ochifuji, Influence of Natural Convection on ForcedHorizontal Flow in Saturated Porous Media for Aquifer ThermalEnergy Storage.Applied Thermal Engineering,2002,22(12):1299-1311
    [45]张建栋,马捷,戴斌,地下含水层储能的实验分析与模拟,能源技术,2005,26(5):231-236
    [46]马捷,王明育,戴斌,地下含水层的储能和过程特性的分析,华北电力大学学报,2004,31(6):58-60
    [47]戴斌,含水层储能总体方案分析与实验研究:[硕士学位论文],上海;上海交通大学,2005
    [48] C. E. Brett, W. J. Schaetzle. Experiences with Unconfied Aquifer Chilled WaterStorage. ASHRAE Transactions,1984,90(2B):169-180
    [49] K. C. Midlciff, C. E. Brett, K. Balaji, et al. Long-Term Performance of anAir-Conditioning System Based on Seasonal Aquifer Chill Energy Storage,27thIntersociety Energy Conversion Engineering Conference Proceedings,San Diego,CA, USA,1992.49-54
    [50]赵新颖,万曼影,施锡拒,利用含水层储能的水源热泵工程及其对环境影响的评估,能源工程,2004,(2):20-24
    [51] F. Kabus, P. Seibt. Aquifer Thermal Energy Storage for the Berlin ReichstagBuilding New Seat of the German Parliament, Proceedings World GeothermalCongress2000, Kyushu-Tohoku, Japan,2000.3611-3615
    [52] F. Kabus, G. Mollmann, F. Hoffmann, et al. Thermal Energy Store Based onSurplus Heat Arising from a Gas and Steam Cogeneration Plantat Neubrandenburg/Ne Germany, Proceedings of the10th InternationalConference on Thermal Energy Storage-ECOSTOCK, New Jersey,2006
    [53] Bakema G, Snijders Art L. Underground thermal energy storage-the states of theart1994. In: IEA ECES Report,1995
    [54] Bakema G, Snijders Art L. Field heating and space coolingat“Gelredome”multifunctional stadium in Arnhem2an example of heat pumpapplication in the Netherlands. In: The Proceedings of the Second StocktonInternational Geothermal Conference, Pomoma, Newjersey,1998
    [55] Snijders A.L, Aquifer Thermal Energy Storage in the Netherlands, NewsletterCADDET Energy Efficiency, Special issues on the Netherlands,2000,2909-2913
    [56] H. O. Paksoy, Z. Curbuz, B. Turgut, et al. Aquifer Thermal Storage forAir-Conditioning of a Supermarket in Turkey, Renewable Energy,2004,19(12):1991-1996
    [57] Hoes, J. Desmedt, N. Robeyn, et al. Experiences with ATES ApplicationsFlanders: Operational Results and Energy Savings. Proceedings of the10thTnternational Conference on Thermal Energy Storage-ECOSTOCK, New Jersey,2006,(CD-ROM)
    [58]刘毅,上海市地面沉降防治措施及其效果,火山地质与矿产,2000,21(2):107-111
    [59]邬小波,马捷,中国地下含水层储能技术及其发展,能源研究与信息,1999,15(4):8-12
    [60]付峥嵘,利用地下水的住宅中央空调系统的研究:[硕士学位论文],湖南;湖南大学,2002
    [61]龙翔,万曼影,马捷,含水层储能技术的应用及储能条件的分析,能源工程2005,(1):42-44
    [62] Schincariol R A, F W Schwartz, C A Mendoza. On the generation ofinstabilities in variable density flow, Water Resour. Res,1994,30(4):913-927.
    [63] Schincariol, R A, F W Schwartz, C A. Mendoza, Instabilities in variable densityflows: stability analyses for homogeneous and heterogeneous media. WaterResour. Res,1997,33(1):31-41.
    [64] Simmons C T, Jr Sharp, N I Robinson. Density-driven free convection in zonesof inverted salinity through fractured low-permeability units in the Gulf ofMexico Basin, Water99Jt Congr,1999,2:739–744
    [65] Ward, J.D., Simmons, C.T., Dillon, P.J., Variable-density modelling ofmultiple-cycle aquifer storage and recovery (ASR): Importance of anisotropyand layered heterogeneity in brackish aquifers, Journal of Hydrology,2008,(356):93-105
    [66] Thorbjarnarson, K.W., Huntley, D., McCarty, J.J., Absolute hydraulicconductivity estimates from aquifer pumping and tracer tests in a stratifedaquifer. Ground Water,1998,36(1),87-97
    [67] Missimer, T.M., Guo, W., Walker, C.W., Maliva, R.G., Hydraulic and densityconsiderations in the design of aquifer storage and recovery systems. FloridaWater Resources Journal,2002(February):31-35
    [68] Missimer, T.M., Guo, W., Theoretical considerations in the design of aquiferstorage and recovery wells proposed in the Everglades restudy, In: The1999Southeast Focus Groundwater Conference Offcial Program. NationalGroundwater Association,1999:21-24
    [69] Prasad, A., Simmons, C.T., Unstable density-driven fow in heterogeneousporous media: a stochastic study of the Elder ‘short heater’ problem. WaterResources Research,2003,39(1):1007-1013
    [70] Ward, J.D., Simmons, C.T., Dillon, P.J., A theoretical analysis of mixedconvection in aquifer storage and recovery: how important are density effects?Journal of Hydrology,2007,343(3-4),169-186
    [71] Schincariol R A, F W Schwartz, An experimental investigation of variabledensity flow and mixing in homogeneous and heterogeneous media, WaterResources Research,1990,26(10):2317-2329
    [72] Thorenz C, An experimental and numerical invesyigation of saltwatermovement in coupled saturated-partially saturated systems, Water ResoucesResearch,2002,38(6):109-116
    [73] Oostrom M, J H Dane. Experimental investigation of dense solute plumes in anunconfined aquifer model, Water Resources Research,1992,28(9):2315-2326
    [74] Oostrom M, J S Hayworth. Behavior of dense aqueous leachate plumes inhomogeneous porous media, Water Resources Research,1992,28(8):2123–2134
    [75] Goswami R R, T P Clement. Laboratory-scale investigation of saltwaterintrusion dynamics, Water Resources Research,2007,43(4):1-11
    [76] Swartz C H, F W Schwartz. An experimental study of mixing and instabilitydevelopment in variable-density systems, Journal of Contaminant Hydrology,1998,34(3):169-189
    [77]唐杰,地下水咸淡水混合带及其动态特性研究:[博士学位论文],北京:清华大学水利水电工程系,1996
    [78]唐杰,地下水咸淡水混合带动态特性试验研究,清华大学学报,1998,38(1):63-66
    [79] J. B. Singly G. Foster, A. W. Hunt. Representative Operating Problems ofCommercial Ground-Source and Groundwater-Source Heat Pumps, ASHRAETransactions,2000,106(2):561-568
    [80]何咏梅,孙东喜,黄晶,地源热泵空调应用的几点建议,节能,2005,(9),38-40
    [81]徐伟,地源热泵、太阳能热泵的发展及相关问题的思考,工程质量,2005,(12):32-34
    [82]赵忠仁,回灌井暂时性堵塞物的形成及其排除过程变化机制分析,水文地质工程地质.1988,(5):39-42
    [83]陈矣人,周春风,叶瑞芳,关于地源水环热泵中央空调系统设计的讨论,建筑热能通风空调,2002,(3):64-70
    [84]武晓峰,唐杰,地下水人工回灌与再利用,工程勘察,1998,(4):37-39
    [85] K. D. Rafferty. Water Chemistry Issues in Geothermal Heat PumpSystem.ASHRAE Transactions,2004,110(1):550-555
    [86]刘久荣,地热回灌的发展现状,水文地质工程地质,2003,(3):100-104
    [87]郑西来,王东升,胡志峰,滨海地区咸淡水界面上含水介质水敏感性的实验,海洋地质与第四纪地质,2007,27(5):133-137
    [88] Goldenberg L C, Magaritz M. Experimental investigation on irreversiblechanges of hydraulic conductivity on the seawater-freshwater interface in coastalaquifer, Water Resources Research,1983,19(1):77-85
    [89] Goldenberg L.C. and Magaritz. Changes in hydraulic conductivity of labsand-clay mixtures caused by a seawater-freshwater interface, Journal ofHydrology,1984,70:283-297
    [90] Goldenberg L.C. and Magaritz. Decrease of Hydraulic Conductivity in sand atthe Interface between seawater and dilute clay suspendions. Journal of hydroloy,1985,78:183-199.
    [91]张晓辉,周俊,郑西来,咸淡水界面上含水介质的水敏感性研究,海洋环境科学,2007,26(4):301-312
    [92] Boivin, P., F. Fare, C. Hammecker, J.L. Maeght, J. Delarivie're, J.C. Poussin,and M.C.S.Wopereis. Processes driving soil solution chemistry in a floodedrice-cropped vertisol: Analysis of long-time monitoring data. Geoderma2002,110:87-107
    [93] Ceuppens. J, and M.C.S. Wopereis. Impact of non-drained irrigated ricecropping on soil salinization in the Senegal River Delta. Geodenna1999,92:125-140
    [94] Cliarnes C.J. Sodic soils: Au introduction to their formation and distribution inAustralia. Aust. J Soil Res.1993,31:751-760.
    [95]郑西来,钱会,多孔介质中弥散度测定,西安工程学院学报,1998,(4):51-56
    [96]郑西来,李永乐,林国庆,土壤对可溶性油的吸附作用及其影响因素分析,地球科学,2003,(5):21-24
    [97]肖振华,万洪富,灌溉水质对土壤水力性质和物理性质的影响,土壤学报,1998,35(3):359-366
    [98] Khilar K C, H S Fogler. The existence of a critical salt concentration for particlerelease, Journal of Colloid and Interface Science,1984,101(1):214-224
    [99] Khilar K.C. and H.C.Fogler. Migration of Fines in Porous Media, Boston:Kluwer Academic Publication,1998
    [100] Burin A.R. Mobilization of Natural Colloids an Iron Ozide Coated SandAquifer: Effect of pH and Ionic Strength. Environment Science andTechnology,2002.36:314-322.
    [101] Roy S.B. et al, Colloid Release and Transport Processes in Natural and MogelPorous Media,Colloids and Surfaces,1996,107:245-262
    [102] Grolimund, et al. Transport of in situ Mobilized Colloidal Particles in PackedSoil Columns, Environmental Science and Technology,1998,32(22):3562-3569.
    [103] Brinlcman, R. Problem bydromorpbic soils in north-east Tbai-land, Physicaland chemical aspects, mineralogy and genesis, Netb,1977. J. Agric. Sci.25:170-181.
    [104] Das S K.R S Schether.M M Shanna, The role of surface roughness and contactdeformation on the hydrodymnamic detachment of particles from surface, J.colloid Interface Sci,1994,164:63-77
    [105] César M.Cerda, Mobilization of Kaolinite Fines in Porous Media, Colloidsurfaces,1987,27:219-241
    [106] Fabrice C. and Gilles P. Transport and retention of clay particles in saturatedporous media.Influence of ionic strength and pore velocity, Journal of Contam,Hydrology,2001(49):1-21
    [107] Chang, F.F,Civan, F, Practical model for chemically induced formationdamage, Science and Engineering,1997,17:123-127
    [108] Civan, F, A multi-purpose formation damage model, Paper SPE31101, In:Proceedings of the SPE International Symposium on Formation DamageControl, Lafayette LA, USA,1996,311-326
    [109] Civan, F, Interactions of horiaontal wellbore hydraulics and formationdamage,Paper SPE35213, In: Proceedings of the SPE Permian Basin Oil andGas Recovery Conference, Midland TX, USA,1996, March27-29,561-569
    [110] Muku1,M.Slianna et.al, Factors Controlling the Hydrodymainic Detaclimeut ofParticles from Surfaces. Journal of Colloid Intcrfacc Scicncc,1991,149(1):121-134.
    [111] Mohan K.K. et al. Water Sensitivity of Sandstones Containing Swelling andNon-swelling Clays.Colloid Surfaces A1993,73,237-254
    [112] Shainberg L, J.D.Rhoades, Effect of low lectrolyte concentration on claydispersion and hydraulic conductivity of a sodic soil, Soil Science Society ofAmerica Journa1,1981,45,273-277
    [113] Khilar K C,Vaudya R N,Fogler H S. Colloidally-induced fines release inporous media.J Petro Eng Sci1990,4:213-221
    [114] Kia, S.F., Fogler, H.S., Reed, M.G., Vaidya, R.N. Effect of salt composition onclay release in Berea sandstones, SPE Production Engineering,1987,277-283.
    [115]张蔚榛等,地下水与土壤水动力学,北京:中国水利水电出版社,1996,2-9
    [116]贝尔著(Bear, J.,1972),李竞生,陈崇希译,多孔介质流体动力学,北京:中国建筑工业出版社,1987,629-631
    [117]陈崇希等,地下水动力学,北京:中国地质大学出版社,2003,23-26
    [118]刘兆昌,朱琨,供水水文地质,北京:中国建筑工业出版社,1988,1-215
    [119]陈雨孙,地下水运动与资源评价,北京:中国建筑工业出版社,1986,25-32
    [120]金为芝,史文仪,供水水文地质学,上海:同济大学出版社,1989,46-55
    [121]唐大雄等,工程岩土学,北京:地质出版社,1985,10-15
    [122]秦耀东等,土壤物理学,北京:高等教育出版社,2003,1-50
    [123]林国庆,咸淡水过渡带渗透性突变的机理与效应研究:[博士学位论文],青岛:中国海洋大学,2006.
    [124] Van Olplien, H. An introduction to clay colloid chemistry,2nded JohnWiley&Sons, New York,1977
    [125]徐博会,伊/蒙混层粘土矿物研究现状与展望,河北工程大学学报(自然科学版),2009,26(4),56-60
    [126]任磊夫,粘土矿物与粘土岩,北京:地质出版社,1992,23-42
    [127]毕先梅,极低级变质作用的研究现状,地学前缘,1998,5(4):302-304
    [128]张述兴,王昌贤,黏土岩微观结构研究,重庆交通大学学报(自然科学版),2008,27(4):614-617
    [129]邵明安,土壤物理学,北京:高等教育出版社,2006,24-57
    [130] H·范·奥尔芬,许冀泉译,粘土胶体化学导论,北京:农业出版社,1982,15-48
    [131]陈宗淇,王光信,徐桂英,胶体与界面化学,北京:高等教育出版社,2004,142-156.
    [132] J.贝尔著,地下水水力学,武汉:地质出版社,1985,113-134
    [133]陈崇希,林敏,地下水动力学,武汉:中国地质大学出版社,1999,7-10
    [134]薛禹群主编,地下水动力学原理,北京:地质出版社,1986,11-58
    [135]薛禹群,李勤奋,含水层贮热能研究-上海贮能试验数值模拟,地质学报,1989,63(1).73-85
    [136]薛禹群,谢春红,三维非稳定流含水层储能的数值模拟研究,地质论评,1994,40(1),74-81
    [137]薛禹群,李勤奋,承压含水层贮能数学模型研究,岩土工程学报,1990,12(1),23-34
    [138]胡继华,张延军,于子望等,水源热泵系统中地下水流贯通及其对温度场的影响,吉林大学学报(地球科学版),2008,38(6),992-998
    [139]雷树业,郑贯宇,含湿多孔介质传热传质三参数渗流模型研究方法,清华大学学报(自然科学版),1997,37(2),121-128
    [140] Yasuhiro Hamada, Kaoru Marutani etc, Study on underground thermalcharacteristics by using digital national information and its application forenergy utilization, Applied Energy,72(2002):659-675
    [141] Kolditz, O., Modeling flow and heat transfer in fractured rocks: conceptualmodel of3D deterministic fracture network, Geothermics,1995,24(3),451-470
    [142]张远东,魏加华,井对间距与含水层采能区温度场的演化关系,太阳能学报,2006,27(11),1163-1167
    [143]王锦程,含水层储能ATES系统的分析、应用及控制:[硕士学位论文],上海:上海交通大学,2003
    [144] G.A.G.Ferguson, Groundwater and Heat Flow in Southeastern Manitoba:Implications to Water Supply and Thermal Energy.[Doctor Thesis],University of Manitoba:2004
    [145] Diersch, H., Kolditz, O., Variable-density fow and transport in porous media:approaches and challenges. Advances in Water Resources,2002,25(12),899-944
    [146] Saeed Moaveni著,有限元分析,电子工业出版社,2003,5-18
    [147] Ackerer. P, Younes. A, and Mosé. R, Modeling variable density flow and solutetransport in porous medium, Numerical model and vertification Transport inPorous Media1999,35(3),345-373
    [148] Perrochet P Personal communication, EPFL Lausanne, GEOLEP Laboratoirede géologie, Lausanne Switzerland,1996556-578
    [149] Hassanizadeh, S.M, Modeling species transport by concentrated brine inaggregated porous media, Numerical model and vertification Transport inPorous Media,1988,24(3),299-318
    [150] Chiasson A. C, S. J. Rees, J.D. Spider. A Preliminary Assessment of theEffects Of Ground-Water Flow On Closed-Loop Ground-Source Heat PumpSystems, ASHRAE Transactions.2000,106(1),380-393
    [151]中国地质调查局,GWI-D1,地下水流数值模拟技术要求,北京:中国标准出版社,2004-11
    [152]刘雪玲,李宁,刘立伟地下含水层储能效果及经济性分析,热力与煤气,2009,26(9),4-6
    [153] Faure, M.H, Sardin, M.Vitorge, P. Release of clay particles from anunconsolidated clay-sand core experiments and modeling, Journal ofHydrology,1997,26,169-178
    [154] Gronow, J.R. Mechanisms of particle movement in porous media, Clay Miner,1986,21,753-767
    [155]黄翠,滨海地下咸水分布动态特征与治理可行性研究:[硕士学位论文],青岛:中国海洋大学,2009
    [156] Shaw D J, Introduction to Colloid and Surface Chemistry, Butterworth Inc,1978,34-47
    [157] Vold R and Vold M J, Colloid&Interface Chemistry,AddisonwesleyPublishing Company, Inc,198390-102
    [158] Napper D H.Polymeric Stabilization of Collod of Dispersion by PolymerAdsorption.Marel Dekker Inc,1983,105-120
    [159]胡纪华,胶体与表面化学,广州:华南理工大学出版社,1999,199-218
    [160]章莉娟,胶体与表面化学,广州:华南理工大学出版社,2006,63-156
    [161]周祖康,胶体与表面化学原理,北京:北京大学出版社,1986,58-70
    [162]周世琦,球状胶粒表面电荷密度/表面电势的一个近似解析式,化学物理学报,1997,10(2):165-169
    [163]徐祖民,用泛函数法对电解质溶液中胶体粒子双电层性质及相互作用的研究:[硕士学位论文],无锡:江南大学,2008
    [164]杨铁笙,熊祥忠等,粘性细沙悬浮液中颗粒表面滑动层厚度的计算,水力学报2002,5:20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700