用户名: 密码: 验证码:
煤温和热解系统模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国多煤少油以及煤炭利用效率低的特点,为了高效地综合利用煤炭资源和缓解中国石油进口压力,中国科学院过程工程研究所提出了“煤拔头”工艺的概念。煤炭拔头,旨在常压、中低温、无催化剂和氢气的条件下,用温和热解的方式提取煤中的气体、液体燃料和精细化学品,并借此工艺脱硫脱硝,从而实现油、煤气、热、电的多联产。
     本文以双流体模型为基础,利用FLUENT软件对煤拔头工艺中试实验台热解系统中的“内置滚筒流化床”进行了数值模拟。主要研究了两相流模型的应用和计算区域的网格划分方法,采用有限容积法离散控制方程,研究了时间步长、松弛因子以及求解器的选择效果;以双欧拉模型及颗粒动力学理论为基础,应用Fluent软件对内置滚筒流化床进行二维模拟,比较有滚筒和无滚筒时床层内的气体流动特性;考察滚筒在床中处于不同高度时和不同初始流化速度对热解的影响,确定进口风速与滚筒在床层中的高度哪一个因素对滚筒周围的固体颗粒浓度影响更大。然后在二维模拟的基础上,提出三维计算模型,详细考察滚筒在流化床处于不同高度时整个床层的气、固流动情况。
     本文从理论与工程应用相结合的角度出发,对急冷系统中急冷器的设计计算方法进行了初步研究,并提出了一套完整可靠的计算方法,同时也指出了设计中需要进一步研究补充的内容。通过研究急冷系统热负荷的计算方法,得到冷却水的循环量,进而计算出急冷器的喷淋密度、塔径和塔高。
     本文对煤拔头系统中热解设备和急冷设备的研究,为煤拔头中试实验提供基础,对洁净煤技术的推广有着十分重要的意义。
To utilize coal with high efficiency and remedy the shortage of petroleum and natural gas, an oil-gas-heat-power co-generation technology, so-called "coal topping" process, was proposed by the Institute of Process Engineering, China Academy Sciences.
     This paper based on the theory of gas-solis two-phase,carried the numerical simulation on the roller external fluidized bed, which was the part of the pyrolysis system in Coal Top technics. Application of multiphase flow in Fluent software and the method of drawing meshes are studied,discrete equations are achieved by Finite Volume Method.Time-step、under relax factors and effect of solver choice are studied. After two-dimensional and three-dimensional computed numerical simulation,this paper has analyzed the ash density change situation in the drum fluid bed the drum nearby solid ash content density change situation, after as well as joins a drum, gas solid dynamic performance change.
     This paper combined theory with engineering application studied the design and computing method of rapid quenching equipment in the system and put up a set of reliable computation methodology. There must be some mistakes in the design, hope other researchers add. Cooling water circulation volume was obtained by study the calculation method of rapid quenching system, and then calculated spray intensity, tower diameter and tower height.
     This paper studied the pyrolysis and rapid cooling equipment ,providing the basis for coal topping experiment,taking a great significance on clean coal technology.
引文
1 Key World Energy Statistics 2004,IEA,2004
    2 BP Statistical Review of World Energy,http://www.china5e.com Jun.2006
    3中国能源战略研究课题组.中国能源战略研究.中国电力出版社, 1996
    4岑可法.洁净煤燃烧发电技术报告.中国煤炭学会第二次洁净煤技术讨论会.杭州, 2001
    5 L.A.Ruth, Version 21:Fossil Fuel Use in the 21st century.In:B.A.Sakkestaded. The proceedings of the 26th international technical conference on coal utilization&fuel systems. Clearwater, USA,2001:335-346
    6 The Role of Coal as an energy source. 2003
    7杨向忠.谈煤炭气化技术及其发展.陕西煤炭. 2004,(2):15-17
    8林伟刚.中国清洁煤技术发展中的若干问题. 21世纪青年学者论2001,22(4):50-53
    9张洁喜.煤间接液化技术的现状及工业应用前景.化学工业与术.2006,27(1):56-60
    10姚建中,郭慕孙.煤炭拔头提取液体燃料新工艺.化学进展,1995,7(3)205-208
    11郭慕孙.煤拔头工艺.中国科学院第九次院士大会报告汇编.北京:科学出版社, 1998, 202-204
    12 Tyler RJ. Flash Pyrolysis of Coals.1.Devolatilization of a Victorian Brown Coal in a Small Fluidized-bed Reactor.Fuel,1979,58(9): 680-686
    13 Tyler R J. Flash Pyrolysis of Coals. Devolatilization of Bituminous Coals in a Small Fluidized-bed Reactor. Fuel, 1980, 59(4): 218-226
    14 Farage D L, Willliford C W, Clemmer J E. Pyrolysis of Mississippi Lignite in a Fixed Bed. Fuel Processing Technology, 1987,16(1): 35-43
    15 Gibbins-Matham J, Kandiyoti R.Coal Pyrolysis Yields from Fast and Slow Heating in Wire-Mesh Apparatus with a Gas Sweep. Energy Fuels,1988,2:505-511
    16 Xu W C,Tomita A.Effect of Coal Type on the Flash Pyrolysis of Various Coals. Fuel, 1987, 66(5): 627-631
    17 Xu WC,Tomita A.Effect of Temperature on the Flash Pyrolysis of Various Coals. Fuel,1987,66(5):632-636
    18胡国新,方梦祥,李绚天等.固定床中煤与热载体颗粒混合热解规律的试验研究.浙江大学学报, 1997,31(3):352-360
    19 Hu G, Fan H, Liu Y. Experimental Studies on Pyrolysis of Datong Coal with SolidHeat Carrier in a Fixed Bed. Fuel Processing Technology, 2001, 69: 221-228
    20姚建中,郭慕孙.煤炭拔头提取液体燃料新工艺.化学进展. 1995, 7(3):205-208
    21王俊琪,方梦祥,刘耀鑫等.以循环灰热载体热解为基础的热电气多联产技术的开发与进展.能源工程. 2004,(2):39-43
    22崔丽杰,姚建中,林伟刚,张铮.喷动载流床中温度对霍林快速热解产物的影响. 2003,23(10):28-32
    23王杰广,吕雪松,姚建中,林伟刚,都林.下行床煤拔头工艺的产品产率分布和液体组成.过程工程学报. 2005,5(3):241-244
    24熊方勋.煤拔头工艺中烟煤快速热解产物分布的实验研究.哈尔滨工业大学硕士学位论文. 2006
    25 Fluent Inc. FLUENT user’s guide. USA: Fluent Inc, 2001
    26 J. T. Jenkins, S. B. Savage. A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech.. 1983, 130: 187~202
    27 C. K. K. Lun, S. B. Savage, D. J. Jerey, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 1984, 140: 223~256
    28 J. Ding, D. Gidaspow. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal. 1990, 36: 523~538
    29 D. Gidaspow. Multiphase flow and fluidization, Academic Press. 1994
    30 H. Enwald, E. Peirano, A. E. Almstedt. Eulerian two-phase flow theory applied to fluidization, Int. J. Multiphase Flow. 1996, 22: 21~66
    31 R. Jackson. The mechanics of fluidized beds.I. the stability of the state of uniform fluidization. Trans. Inst. Chem. Engs.. 1963, 41: 13~21
    32 S. L. Soo. Fluid Dynamics of Multiphase Systems Blaisdell press. New York.1967
    33 D. Gera, M. Gautam, Y. Tsuji, et al. Computer simulation of bubbles in large-particle fluidized beds. Powder Technology. 1998: 38~47
    34 D. Gidaspow. Hydrodynamics of fluidization and heat transfer: super computer modeling. App. Mech. Rev.. 1986, 39: 1~23
    35 J. A. M. Kuipers, K. J. van Duin, F. P. H. van Beckum, et al. A numerical model of gas-fluidized beds. Chemical Engineering Science. 1992a, 47: 1913~1924
    36 J. A. M. Kuipers, W. Prins, W. P. M. van Swaaij. Numerical calculation of wall to bed heat transfer coefficients in gas-fluidised beds. AIChE Journal. 1992b, 38:1079~1091
    37 R. W. Lyczkowski, I. K. Gamwo, V. Dorban, et al. Validation of computed solids hydrodynamics and pressure oscillations in a bubbling atmospheric fluidized bed. Powder Technology. 1993, 76: 65~77
    38 S. Dasgupta, R. Jackson and S. Sundaresan. Turbulent gas-particle flow in vertical risers. AIChE. Journal. 1994, 40: 215~223
    39 J. A. M. Kuiper, K. J. van Duin, F. P. H. van Beckum, et al. A numerical model of gas-fluidized beds. Chem. Eng. Sci. 1992, 47(8): 1913~1924
    40 G.. Balzer, A. Boelle and O. Simonin. Eulerian gas-sold flow modeling of dense fluidized bed. VII. Tours, 1995: 1125~1134
    41 J. J. Nieuwland, M. L. Veenendaal, J. A. M. Kuipers, et al. Bubble formation at a single orifice in gas-fluidised beds. Chem. Eng. Sci. 1996, 51(17): 4087~4102
    42 A. Boemer, H. Qi and U. Renz. Eularian simulation of bubble formation at a jet in a two-dimensional fluidized bed. Int. J. Multiphase Flow. 1997, 23: 927~944
    43张政,谢灼利.流体-固体两相流的数值模拟.化工学报. 2001, 52: 1~12
    44谢灼利,张政.气力输送的数值模拟.北京化工大学学报. 2001, 28: 22~27
    45 M. Syamlal and T. J. O'Brien. Computer Simulation of Bubbles in a Fluidized Bed. AIChE Symp. Series, 1989, 85: 22~31
    46 S. Ogawa, A. Umemura, Oshima. On the Equation of Fully Fluidized Granular Materials. J. Appl. Math. Phys.. 1980, 31: 483
    47 D. B. Spalding. Computer simulation of two-phase flows, with special reference to nuclear-reactor systems, In: Computational Techniques in Heat Transfer, Prineridge Press, Swansea, 1985: 1~44
    48徐祥,向文国,秦成虎.流化床密相区流动特性的数值模拟.热能动力工程. 2004, 19(2): 131~133
    49贾琦月,循环流化床流场分析与研究.天津大学硕士论文. 2003: 52
    50赵涛,高鹍,程中虎等.射流流化床内流体力学行为的模拟研究.煤炭转化. 2004, 27(1): 31~35
    51王康健,张丹娅,金军等. 75t/h电站循环流化床锅炉燃烧和污染物排放的数值模拟.能源工程. 2004, (1): 36~42
    52 Hamid Arastoopour. Numerical simulation and experimental analysis of gas/solidflow systems: 1999 Fluor-Daniel Plenary lecture.Powder Technology. 2001, 119: 59~67
    53 F. E.Cruz, R. Steward, T. Pugsley. Modelling CFB riser hydrodynamics using FLUENT, Circulating Fluidized Bed Technology, VII, John R. Grace,Jesse(J.-X.)Zhu and Hugo de Lasa, Eds., Ontario, Canada, 2002: 435~442
    54 S. Benyahia, H. Arastoopour, T. M. Knowlton. Numerical simulation of a large-scale circulating fluidized bed, Circulating Fluidized Bed Technology, VII, John R. Grace, Jesse (J.-X.)Zhu and Hugo de Lasa, Eds, Ontario, Canada, 2002: 451~458
    55 C. Guenther, M. Syamlal. The effect of numerical diffusion on simulation of isolated bubbles in a gas–solid fluidized bed. Powder Technoligy. 2001, 116: 142~154
    56 Eric Loth, Thomas O’Brien, Madhava Syamlal, et al. Effective diameter for group motion of polydisperse particle mixtures. Powder Technology. 2004, 142: 209~218
    57 S. Benyahia, H. Arastoopour, T. M. Knowlton, et al. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase. Powder Technology. 2000, 112: 24~33
    58 Dinesh Gera , Madhava Syamlal, J. Thomas, et al. Hydrodynamics of particle segregation in fluidized beds. International Journal of Multiphase Flow. 2004, 30: 419~428
    59 P. G. Cizmas, A. Palacios, T. O’Brien, et al. Proper-orthogonal composition of spatio-temporal patterns in fluidized beds. Chemical Engineering Science. 2003, 58: 4417~4427
    60 J. M. Dalla Valle. Micromeritics. Pitman, London, 1948
    61费祥麟主编,胡庆康,景思睿编.高等流体力学.西安交通大学出版社, 1989:71
    62周继良,邹宗树,余艾冰.鼓泡流化床流动特性的数值模拟.材料与冶金学报. 2007.6
    63金涌,祝京旭,汪展文等.流态化工程原理.清华大学出版社, 2001: 13~14 116~117 62
    64肖瑞华.煤焦油化工学.冶金工业出版社. 2002:2-5
    65曲思建,关北锋,王艳芳,陈贵烽.我国煤温和气化(热解)焦油性质及其加工利用现状与发展.煤炭转化. 1998, 21(1):15-20
    66朱延钰,黄戒介,王洋,陈富艳.煤温和气化焦油性质研究.煤炭转化. 1999,22(1):67-70
    67俞光明,薛江涛.热解和气化过程焦油析出的影响因素分析.能源工程. 2006, (1):3-10
    68李俊.空塔与动力波洗涤器的比较.硫酸工业. 1999, (6):25-28
    69段振亚,胡金榜,宗润宽,王书肖.文丘里洗涤器压力损失模型.化学工程. 2004, 32(6):31-34
    70侯凌云,侯晓春.喷嘴技术手册.中国石化出版社,2002:63~71
    71张崇华.高炉煤气净化与洗气水处理技术.中国环境科学出版社. 1991:13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700