用户名: 密码: 验证码:
基于分级超结构的换热网络同步综合与改造方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源供应日趋紧张是当今全球面临的巨大挑战,提高能源利用效率、发展低碳经济已经在世界范围内达成共识。在此背景下,以提高能量系统集成水平和能量回收最大化为目标的换热网络综合与改造问题已成为过程系统能量集成领域研究的热点。其中换热网络综合方法的研究起步较早,众多学者和工程技术人员投入了大量的研究精力,在学术上和工程应用方面均取得了重大进展。然而换热网络综合本质上是涉及庞大优化变量和约束条件的数学优化问题,现有换热网络综合方法在求解中等、大型换热网络综合问题时的能力仍有不足,相关研究还有待完善。另一方面,过程工业中常常需要对已经存在的换热网络系统进行改造以实现节能降耗,但是针对换热网络优化改造方法的研究相对较少,近年来这方面的研究工作正逐渐引起人们的重视。针对这两个研究方向存在的问题,本文进行了以下的研究工作:
     1.本文基于无分流分级超结构、有分流分级超结构和混合分级超结构分别建立了以年度总综合费用最小为目标函数的换热网络同步综合数学模型。其中,混合分级超结构将超结构的所有级划分为“有分流”级和“无分流级”,从而在数学建模之前可以预先在分级超结构的完整性和数学模型的求解难度之间进行权衡。建立在此基础上的数学模型改进了等温混合的不合理假设,使得换热网络同步综合数学模型更加严格,更加符合工程实际,但同时在模型中增加了非线性等式约束条件,该模型的全局最优化求解将更有挑战性。
     2.换热网络同步综合数学模型是一个复杂的混合整数非线性规划问题(MINLP)该问题具有不连续、非线性、非凸和多维等特点,属于最难于求解的NP-hard问题。求解此类优化问题的全局优化算法主要分为确定性算法和随机算法两大类,其中随机算法由于不需要利用优化函数的解析性质,在处理规模庞大的MINLP时相比确定算法显示出了较好的性能,在全局最优搜索过程中不易陷入局部极值陷阱。因此,随机性算法在换热网络同步综合领域具有非常高的研究价值和应用前景。本文针对非线性规划问题(NLP),建立了一种辅以遗传算法(GA)的改进粒子群算法(PSO),并应用于多个经典算例以验证混合优化算法的有效性。
     3.基于本文提出的PSO/GA混合优化算法,建立双层优化策略用于换热网络同步综合数学模型的求解。双层优化策略能够有效处理MINLP (?)司题中离散与连续优化变量之间的层次性和关联性。上层优化是考虑换热匹配选择的离散组合优化问题,采用遗传算法能够非常有效的处理离散优化问题,寻找到较优的网络结构,从而避免计算大量下层优化问题;下层优化是在换热网络结构给定情况下,以年度最小总综合费用为目标函数确定最佳操作参数的NLP优化问题,本文将初始可行解产生策略、不可行解修复方法和PSO/GA混合优化算法成功地相结合应用于下层优化问题求解。5个不同规模的换热网络综合问题求解证明了本文提出的双层优化策略非常有效。
     4.建立了基于混合分级超结构的换热网络同步优化改造数学模型。该模型不依赖于夹点约束,不需要预先给定最小传热温差,能够有效权衡改造投资费用与运行费用之间的关系。改造投资费用中考虑了现有换热器的重新配置费用、现有换热器新增换热面积费用和新增换热器费用,符合工程实际要求。换热网络同步优化改造数学模型也是一个复杂的MINLP模型,相比同步综合数学模型,优化变量和约束条件均有所增加。本文提出的双层优化策略同样适用于求解改造问题数学模型。4个不同规模的换热网络改造问题用于验证本文提出方法的有效性。
The energy supply situation is growing increasingly intense, which has been the great challenge to countries all over the world. Throughout the world, people have indentified the importance of higher energy efficiency and the effect of low carbon development. Under this background, the synthesis and retrofit of heat exchanger networks (HENs) have attracted significant research in the field of process systems engineering study. Numerous investigations on theory and application have been carried out to improve the performance of heat exchanger network synthesis (HENS). However, in most cases the industrial HENS problems are large scale optimization problems, the computation complexity of which promotes further perfection to the current optimization methods. In recent years the retrofit of existing HENs has become important due to the large savings of the utility consumption. But only a few methods for HENs retrofit design have been proposed. This paper has completed the following research work to solve the problems of the synthesis and retrofit method.
     1. Based on the concept of hybrid stage-wise superstructure, a modified simultaneous synthesis model of heat exchanger network is proposed. In the proposed superstructure, the candidate networks featuring splits and series structures are considered simultaneously, which can control the solution performance and search space efficiently. The novel model removes the assumption of isothermal mixing in literature and is more suitable for engineering practice. However, the model is more complicated to solve due to additional optimization variables and nonlinear constraints.
     2. The simultaneous synthesis of HEN model is usually formulated as a complex mixed integer nonlinear programming (MINLP) problem with a great number of optimization variables and constraints, which belongs to a particular difficult class of NP-hard optimization problems. Compared with deterministic methods, stochastic algorithms do not depend on gradients and work on function evaluation alone, and is therefore more suitable for dealing with complex MINLP model. In this work, a novel hybrid algorithm (PSO/GA) is developed to sovle nonlinear programming problems. Some benchmarks are presented to show the efficiency of the proposed algorithm.
     3. In order to avoid trapping into local optimum prematurely, a two-level method is proposed for optimizing HENS problems. The proposed two-level method is supposed to consider levels and associations between discrete and continuous variables, and can evolve adequately in continuous search space since discrete variables evolve in the same pace. In the upper level of the presented method, GA is used for structural optimization, since it is more suitable for the non-continuous optimization problem than other stochastic algorithms. The information of structures is sent to the lower level, in which, the process parameters such as stream-split flows and heat loads of heat exchangers are optimized by the proposed hybrid algorithm (PSO/GA). This algorithm is demonstrated to be a powerful tool for solving continuous and unconstrained optimization problems. Five case studies are presented to show the applicability of the proposed methodology.
     4. The hybrid stage-wise model for new designs is extended for Simultaneous retrofits of HEN. The presented model does not rely on pinch analysis, and does not require predetermining minimum heat transfer temperature difference. Through solving this model, investment costs in retrofit and operating costs can be optimized simultaneously. The investment costs in retrofit include reassignment cost of existing exchangers, cost of area for existing exchangers and cost of area for new exchangers. This model is a MINLP problem with more optimization variables and constraints, which can be solved efficiently through the proposed two-level method. Four case studies are presented to show the applicability of the proposed methodology.
引文
[1]TENBROECK H. Economic Selection of Exchanger Sizes [J]. Ind. Eng. Chem.1944,36(1): 64-67.
    [2]HWA C S. Mathematical Formulation and Optimization of Heat Exchanger Network Using Separable programming [C]. AICmE IChehE Symposium Series 4:New York.1965: 101-106.
    [3]MASSO A H, RUDD D F. The Synthesis of System Designs—Ⅱ. Heuristic Structuring [J]. AIChE J.1969,15(1):10-17.
    [4]钱伯章.节能减排——可持续发展的必由之路[M].北京:科学出版社,2008.
    [5]清华大学气候政策中心编辑.2010年中国低碳发展报告[C].北京:中国科学出版社,2011.
    [6]SMITH R, LINNHOFF B. The Design of Separators in the Context of Overall Processes [J]. Chem. Eng. Res. Des.1988,66(3):195-228.
    [7]PAPOULIAS S A, GROSSMANN I E. A Structural Optimization Approach in Process Synthesis part III:Total Process Systems [J]. Comput. Chem. Eng.1983,7(6): 723-734.
    [8]聂秀荣,李有润.工艺过程与换热网络的联合优化[J].化工学报,1992,43(5):609-614.
    [9]聂秀荣,李有润,陈丙珍.换热网络与蒸汽动力系统联立优化方法的探讨(I).总组合线迭代法[J].计算机与应用化学,1994,11(3):200-205.
    [10]聂秀荣,李有润,陈丙珍.换热网络与蒸汽动力系统联立优化方法的探讨(II).扩展转运模型法[J].计算机与应用化学,1994,11(4):241-244.
    [11]陈迎,李有润.夹点优化技术应用于换热网络与公用工程系统的联合优化[J].石油炼制与化工,1994,25:8-12.
    [12]FURMAN K C, SAHINIDIS N V. A Critical Review and Annotated Bibliography for Heat Exchanger Synthesis in the 20th Century [J]. Ind. Eng. Chem. Res.2002,41(10), 2335-2370.
    [13]MORAR M, AGACHI PS. Review:Important Contributions in Development and Improvement of the Heat Integration Techniques [J]. Comput. Chem. Eng.2010,34(8):1171-1179.
    [14]LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks I:systematic generation of energy optimal networks [J]. A. I. Ch.E. J.1978,24(4):633-642.
    [15]LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks II:evolutionary generation of networks with various criteria of optimality [J]. A. I. Ch. E. J.1978, 24(4):642-654.
    [16]UMEDA T, ITOH J, SHIROKO K. Heat exchanger system synthesis [J]. Chem. Eng. Prog. 1978,74(4):70-76.
    [17]LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks [J]. Chem. Eng. Sci.1983,38(5):745-763.
    [18]LINNHOFF B. Pinch analysis—a state-of-the-art overview:Techno-economic analysis [J]. Chem. Eng. Res. & Des.1993,71(5):503-522.
    [19]RASKOVIC P, STOILJKOVIC S. Pinch design method in the case of a limited number of process streams [J]. Energy,2009,34(5):593-612.
    [20]LINNHOFF B, AHMAD S. Supertargeting, or the optimization of heat exchanger networks prior to design [C]. in World Congress III, Chemical Engineering, Tokyo, Preprint, 1986,4:822-825.
    [21]LI Y, MOTARD R L. Optimal pinch approach temperature in heat exchanger networks [J]. Ind. Eng. Chem. Fundam.1986,25(4):577-581.
    [22]SU L J, MOTARD R L. Evolutionary synthesis of heat exchanger networks [J]. Comput. Chem. Eng.1984,8(2):67-80.
    [23]TRIVEDI K K,0'NEILL B K, ROACH J R, WOOD R M. Systematic energy relaxation in MER heat exchanger networks [J]. Comput. Chem. Eng.1990,14(6):601-611.
    [24]ZHU J, HAN Z, RAO M, CHUANG K T. Identification of heat load loops and downstream paths in heat exchanger networks [J]. Can. J. Chem. Eng.1996,74(6):876-882.
    [25]COLBERT RW. Industrial heat exchanger networks [J]. Chem. Eng. Prog.1982,78(7): 4754.
    [26]TRIVEDI K K,0'NEILL B K, ROACH J R. Synthesis of heat exchanger networks featuring multiple pinch points [J]. Comput. Chem. Eng.1989,13(3):291-294.
    [27]WOOD R M, SUAYSOMPOL K,0'NEILL B K, ROACH J R, TRIVEDI K K. A new option for heat exchanger network design [J]. Chem. Eng. Prog.1991,87(9):38-43.
    [28]TRIVEDI K K,0'NEILL B K, ROACH J R. A new dual temperature design method for the synthesis of heat exchanger networks [J]. Comput. Chem. Eng.1989,13(6): 667-685.
    [29]TOWNSEND D W, LINNHOFF B. Surface area targets for heat exchangers networks [C]. IChemE 11th Annual Res Meeting, Bath, UK,1988.
    [30]GUNDERSEN T, GROSSMANN I E. Improved optimization strategies for automated heat exchanger network synthesis through physical insight [J]. Comput. Chem. Eng.1990, 14(9):925-944.
    [31]LINNHOFF B, AHMAD S. Cost optimum heat exchanger networks—Ⅰ. Minimum energy and capital using simple models for capital cost [J]. Comput. Chem. Eng.1990,14(7): 729-750.
    [32]Nishimura H. A theory for the optimal synthesis of heat exchanger systems [J]. J Optimization Theory Applic.1980,30(3):423-450.
    [33]AHMAD S, LINNHOFF B, SMITH R. Cost optimum heat exchanger networks—2. Target and design for detailed capital cost models [J]. Comput. Chem. Eng.1990,14(7): 751-767.
    [34]REV E, FONYO Z. Diverse pinch concept for heat exchanger network synthesis:The case of different heat transfer conditions [J]. Chem. Eng. Sci.1991,46(7): 1623-1634.
    [35]FRASER D M. The use of minimum flux instead of minimum approach temperature as a design specification for heat exchanger networks [J]. Chem. Eng. Sci.1989,44(5): 1121-1127.
    [36]王莉,王玲,姚平经,袁一.一种具有不同传热膜系数网络的新设计方法——虚拟温度法[J].大连理工大学学报,1995,35(2):203-207.
    [37]李晖,王莉,姚平经.采用虚拟温度法设计换热网络[J].高校化学工程学报,1997,11(1):100-103.
    [38]CERDA J, WESTERBERG A W, MASON D, LINNHOFF B. Minimum utility usage in heat exchanger network synthesis [J]. Chem. Eng. Sci.1983,38(3):373-387.
    [39]PAPOULIAS S A, GROSSMANN I E. A structural optimization approach in process synthesis—2. Heat recovery networks [J]. Comput. Chem. Eng.1983,7(6):707-721.
    [40]FLOUDAS C A, CIRIC A R, GROSSMANN I E. Automatic synthesis of optimum heat exchanger network configurations. AIChE J,1986,32(2):276-290.
    [41]FLOUDAS C A, GROSSMANN I E. Synthesis of flexible heat exchanger networks for multiperiod operation [J]. Comput. Chem. Eng.1986,10(2):153-168.
    [42]FLOUDAS C A, GROSSMANN I E. Automatic generation of multiperiod heat exchanger network configurations. Comput. Chem. Eng.1987,11(2):123-142.
    [43]GALLI M R, CERDA J. Synthesis of structural-constrained heat exchanger networks —1. Series networks [J]. Comput. Chem. Eng.1998,22(7-8):819-839.
    [44]GALLI M R, CERDA J. Synthesis of structural-constrained heat exchanger networks —2. Split networks [J]. Comput. Chem. Eng.1998,22(7-8):1017-1035.
    [45]ZHU X X,0'NEILL, ROACH J R, WOOD R M. A new method for heat exchanger network synthesis using area targeting procedures [J]. Cumput. Chem. Eng.1995,29(2): 197-222.
    [46]ZHU X X,0'NEILL, ROACH J R, WOOD R M. Area-targeting methods for the direct synthesis of heat exchanger networks with unequal film coefficients [J]. Comput. Chem. Eng.1995,19(2):223-239.
    [47]ZHU X X. Automated synthesis of HENs using block decomposition and heuristic rules [J]. Comput. Chem. Eng.1995,19:S155-S160.
    [48]ZHU X X. Automated design method for heat exchanger network using block decomposition and heuristic rules [J]. Comput. Chem. Eng.1997,21(10):1095-1104.
    [49]YUAN X, PIBOULEAU L, DOMENECH S. Experiments in process synthesis via mixed-integer programming [J]. Chem. Eng. Proc.1989,25(2):99-116.
    [50]FLOUDAS C A, CIRIC A R. Strategies for overcoming uncertainties in heat exchanger network synthesis [J]. Comput. Chem. Eng.1989,13(10):1133-1152.
    [51]FLOUDAS C A, CIRIC A R. Corrigendum—Strategies for overcoming uncertainties in heat exchanger network synthesis [J]. Comput. Chem. Eng.1990,14(3):241-250.
    [52]CIRIC A R, FLOUDAS C A. Application of the simultaneous match-network optimization approach to the pseudo-pinch problem [J]. Comput. Chem. Eng.1990,14(3):241-250.
    [53]CIRIC A R, FLOUDAS C A. Heat exchanger network synthesis without decomposition [J]. Comput. Chem. Eng.1991,15(6):385-396.
    [54]YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers [J]. Comput. Chem. Eng.1990,14(10):1151-1164.
    [55]YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration —2. Heat exchanger network synthesis [J]. Comput. Chem. Eng.1990,14(10): 1165-1184.
    [56]ZAMORA J M, GROSSMANN I E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits [J]. Comput. Chem. Eng.1998,22(3): 367-384.
    [57]ZAMORA J M, GROSSMANN I E. A comprehensive global optimization approach for the synthesis of heat exchanger networks with no stream splits [J]. Comput. Chem. Eng. 1997,21:S65-S70.
    [58]BJORK K M, WESTERLUND T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption [J]. Comput. Chem. Eng. 2002,26(11):1581-1593.
    [59]HUANG K F, AL-MUTAIRI E M, KARIMI I A. Heat exchanger network synthesis using a stage-wise superstructure with non-isothermal mixing [J]. Chem. Eng. Sci.2012, 73(7):30-43.
    [60]PONCE-ORTEGA J M, JIMENEZ-GUTIERREZ A, GROSSMANN I E. Optimal synthesis of heat exchanger networks involving isothermal process stream [J]. Comput. Chem. Eng.2008, 32(8):1918-1942.
    [61]PONCE-ORTEGA J M, SERNA-GONZALEZ M, JIMENEZ-GUTIERREZ A. Synthesis of heat exchanger networks with optimal placement of multiple utilities [J]. Ind. Eng. Chem. Res.2010,49(6):2849-2856.
    [62]AALTOLA J. Simultaneous synthesis of flexible heat exchanger network [J]. Appl. Therm. Eng.2002,22(8):907-918.
    [63]CHEN C L, HUANG P S. Simultaneous synthesis of flexible heat-exchange networks with uncertain source-stream temperatures and flow rates [J]. Ind. Eng. Chem. Res. 2004,43(18):5916-5928.
    [64]VERHEYEN W, ZHANG N. Design of flexible heat exchanger network for multi-period operation [J]. Chem. Eng. Sci.2006,61(23):7730-7753.
    [65]FURMAN K C, SAHINIDIS N V. Computational complexity of heat exchanger network synthesis [J]. Comput. Chem. Eng.2001,25(9-10):1371-1390.
    [66]CHOI S H, MANOUSIOLTHAKIS V. Global optimization methods for chemical process design:Deterministic and Stochastic approaches [J]. Korean J. Chem. Eng.2002, 19(2):227-232.
    [67]HAN J R, MANOUSIOUTHAKIS V, CHOI S H. Global optimization of chemical process using the interval analysis [J]. Korean J. Chem. Eng.1997,14(4):270-276.
    [68]DURAN M A, GROSSMANN I E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs [J].36:307-339.
    [69]DURAN M A, GROSSMANN I E. A mixed-integer nonlinear programming algorithm for process systems synthesis [J]. AIChE J.1986,32(4):592-606.
    [70]VISWANATHAN J, GROSSMANN I E. A combined penalty function and outer-approximation method for MINP optimization [J]. Comput. Chem. Eng.1990,14(7):769-782.
    [71]LAND A H, DOIG A G. An automatic method for solving discrete programming [J]. Econometrica,1960,28:497-520.
    [72]BENICHOU M, GAUTHIER J M, GIRODET P, HENTGES G, RIBIERE G, VINCENT 0. Experiments in mixed-integer linear programming [J]. Math. Program.1971,1:76-94.
    [73]KORNER F. A new branching rule for the branch and bound algorithm for solving nonlinear integer programming problems [J]. BIT,1988,28(3):701-708.
    [74]GUPTA 0 K, RAVINDRAN V. Branch and bound experiments in convex nonlinear integer programming [J]. Manag. Sci.1985,31(12):1533-1546.
    [75]NAGY A B, ADONYI R, HALASZ L, FRIEDLER F, FAN L T. Integrated synthesis of process and heat exchanger networks:algorithmic approach [J].2001,21(13-14):1407-1427.
    [76]GEOFFRION A M. Generalized Benders Decomposition [J]. J. Optimiz. Theory. App. 1972,10(4):237-260.
    [77]LEVY A V, MONTALVO A. The tunneling algorithm for the global minimization of functions [J]. SIAM J. Sci. Stat. Comput.1985,6(1):15-29.
    [78]GE R P. A filled function method for finding a global minimize of a function of several variables [J]. Math. Program.1990,46(1-3),191-204.
    [79]胡向柏,崔国民,涂惟民,俞巧心.换热网络填充函数法的全局优化[J].化学工程,2011,39(1):28-31.
    [80]涂惟民,崔国民,胡向柏,李智民.填充打洞函数法优化换热网络[J].工程热物理学报,2011,32(7):1225-1227.
    [81]SALCEDO R L. Solving nonconvex nonlinear programming and mixed integer nonlinear programming problems with adaptive random search [J]. Ind. Eng. Chem. Res.1992, 31(1):262-273.
    [82]METROPOLIS N, ROSENBLUTH A, ROSENBLUTH M, TELLER A, TELLER M. Equation of State Calculations by Fast Computing Machines [J]. J. Chem. Phys.1953,21(6):1087-1092.
    [83]KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing [J]. Science,1983,220:671-680.
    [84]GROSSMANN I E, DAICHENDT M M. New trends in optimization-based approaches to process synthesis [J]. Comput. Chem. Eng.1996,20(6):665-683.
    [85]CARDOSO M F, SALCEDO R L, DE AZEVEDO S F. The simplex-simulated annealing approach to continuous nonOlinear optimization [J]. Comput. Chem. Eng.1996,20(9): 1065-1080.
    [86]CARDOSO M F, SALCEDO R L, DE AZEVEDO S F, BARBOSA D. A simulated annealing approach to the solution of minlp problems [J]. Comput. Chem. Eng.1997,21(12):1349-1364.
    [87]ATHIER G, FLOQUET P, PIBOULEAU L, DOMENECH S. Synthesis of heat exchanger network by simulated annealing and NLP procedures [J]. AIChE J.1997,43(11):3007-3020.
    [88]HOLLAND J H. Adaptation in natural and artificial systems [M]. The University of Michigan Press, Ann Arbor, MI,1975.
    [89]GOLDBERG D E. Genetic algorithms in search, optimization, and machine learning [M]. Addison-Wesley, Reading, MA,1989.
    [90]DIPAMA J, TEYSSEDOU A, SORIN M. Synthesis of heat exchanger networks using genetic algorithm [J]. Appl. Therm. Eng.2008,28(14-15):1763-1773.
    [91]RAVAGNANI M, SILVA A P, ARROYO P A, CONSTANTINO A A. Heat exchanger network synthesis and optimization using genetic algorithm [J]. Appl. Therm. Eng.2005, 25(7):1003-1017.
    [92]LEWIN D R, Wang H, SHALEV 0. A generalized method for HEN synthesis using stochastic optimization-I. General framework and MER optimal synthesis [J]. Comput. Chem. Eng.1998,22(10):1503-1513.
    [93]LEWIN D R. A generalized method for HEN synthesis using stochastic optimization II. The synthesis of cost-optimal networks [J]. Comput. Chem. Eng.1998,22(10): 1387-1405.
    [94]LUO X, WEN Q Y, FIEG G. A hybrid genetic algorithm for synthesis of heat exchanger networks [J]. Comput. Chem. Eng.2009,33(6):1169-1181.
    [95]GLOVER F. Future Path for integer programming and links to artificial intelligence [J]. Comput. Oper. Res.1986,13(5),533-549.
    [96]GLOVER F. Tabu search-Part Ⅰ [J]. ORSA J. Comput.1989,1(3):190-206.
    [97]GLOVER F. Tabu search-Part Ⅱ [J]. ORSA J. Comput.1990,2(1):4-32.
    [98]DOWSLAND K A. Nurse scheduling with Tabu Search and strategic oscillation [J]. Eur. J. Oper. Res.1998,106(2-3):393-407.
    [99]NONOBE K, LBARAKI T. A Tabu Search approach to the constraint satisfaction problem as a general problem solver [J]. Eur. J. Oper. Res.1998,106(2-3):599-623.
    [100]GENDREAU M, LAPORTE G, SEGUIN R. A tabu search heuristic for the vehicle routing problem with stochastic demands and customers [J]. Oper. Res.1996,44(3):469-477.
    [101]GENDREAU M, KELLY J P, GONZALEZ J L, GLOVER F. Tabu search for the multilevel generalized assignment problem [J]. Eur. J. Oper. Res.1998,106(2-3):539-545.
    [102]LIN B, MILLER D C. Tabu search algorithm for chemical process optimization [J]. Comput. Chem. Eng.2004,28(11):2287-2306.
    [103]LIN B, MILLER D C. Solving heat exchanger network synthesis problems with Tabu Search [J]. Comput. Chem. Eng.2004,28(11):1451-1464.
    [104]KENNEDY R, KENNEDY J. Particle Swarm Optimization [C]. In:Proceeding of IEEE International Conference on Neural Networks, Piscataway, NJ,1995:1942-1948.
    [105]EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory [C]. In: Proceeding of Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, Piscataway, NJ,1995:39-43.
    [106]SHI Y, EBERHART R. A modified particle swarm optimizer [C]. In:Proceeding of IEEE World Congress on Computational Intelligence, Anchorage, AK, USA,1998:69-73.
    [107]KENNEDY J, EBERHART R. A discrete binary version of the particle swarm algorithm [C]. In:Proceeding of the World Multiconference on Systemics, Cybernetics and Informatics, Piscataway, NJ,1997:4104-4109.
    [108]SILVA A P, RAVAGNANI MASS, BISCAIA JR E C, CABALLERO J A. Optimal heat exchanger network synthesis using particle swarm optimization [J]. Optim. Eng.2010,11: 459-470.
    [109]SILVA A P, RAVAGNANI MASS, BISCAIA JR E C. Particle swarm optimization in heat exchanger network synthesis including detailed equipment design [J] Comput. Aided Chem. Eng.2008,25:713-718.
    [110]欧阳福承,高维平.换热器及换热网络优化设计的专家系统[J].吉林化工学院学报.1991,8(2):1-7.
    [111]高维平,于为人,韩方煜.智能法合成最优换热网络[J].化工学报.1990,3:353-363.
    [112]李志红.基于专家系统有分流大规模换热网络超结构模型研究[J].石油化工设备.2000,29(6):9-12.
    [113]李志红,华贲,尹清华.基于专家系统与遗传算法的有分流换热网络的最优综合[J].石油学报.1999,15(2):85-89.
    [114]张慧平,刘洪谦,麻德贤.专家系统+遗传算法在换热网络综合中的应用[J].北京化工大学学报.2001,28(2):13-16.
    [115]李志红,华贲.考虑物流间长距离匹配的换热网络最优综合[J].石油化工.1999,28(9):608-610.
    [116]张平,何小荣.换热网络改造综合中初始网络调优的专家系统[J].计算机与应用化学.2002,19(3):218-222.
    [117]毕立群,麻德贤Hopfield神经网络与专家系统相结合的换热网络设计方法有效性分析[J].高校化学工程学报.1998,12(4):361-367.
    [118]MATHISEN K W, SKOGESTAD S, WOLFF E A. Bypass selection for control of heat exchanger networks [J]. Paper presented at ESCAPE-I, Elsinore, Denmark.1992, 24-28.
    [119]罗雄麟,白玉杰,侯本权,等.基于相对增益分析的换热网络旁路设计[J].化工学报.2011,62(5):1318-1325.
    [120]孙琳,侯本权,罗雄麟.具有旁路控制的换热网络结构可控性分析[J].化工学报.2012,63(2):530-537.
    [121]倪锦,崔国民,姜慧,等.换热网络的柔性识别及基于旁路调节的运行优化[J].化工进展.2010,29(1):17-24.
    [122]高维平,杨莹,韩方煜.换热网络优化节能技术[M].北京:中国石化出版社,2004.
    [123]GLEMMESTAD B, MATHISEN K W, GUNDERSEN T. Optimal operation of heat exchanger networks based on structural information [J]. Comput. Chem. Eng.1996,20: S823-S828.
    [124]GLEMMESTAD B, SKOGESTAD S, GUNDERSEN T. Optimal operation of heat exchanger networks [J]. Cumput. Chem. Eng.1999,23(4-5):509-522.
    [125]罗雄麟,孙琳,张俊峰.换热网络旁路优化设计[J].化工学报.2008,59(3):646-652.
    [126]罗雄麟,孙琳,王传芳,等.换热网络操作夹点分析与旁路优化控制[J].化工学报.2008,59(5):1200-1206.
    [127]TJOE T N, LINNHOFFB. Using pinch technology for process retrofits [J]. Chem. Eng. J.1986,28:47-60.
    [128]SILANGWA M. Evaluation of various surface area efficiency criteria in heat exchanger network retrofits [D]. UMIST, Manchester, UK,1986.
    [129]POLLEY G T, PANJEH SHAHI M H, JEGEDE F 0. Pressure drop considerations in the retrofit of heat exchanger networks [J]. Trans IChemE, Part A.1990,68 (A3): 211-220.
    [130]CARLSSON A, FRANCK P, BERNTSSON T. Design better heat exchanger network retrofits [J]. Chem. Eng. Prog.1993,87-96.
    [131]CIRIC A R, FLOUDAS C A. A mixed integer nonlinear programming model for retrofitting heat exchanger networks [J]. Ind. Eng. Chem. Res.1990,29:239-251.
    [132]YEE T F, GROSSMANN I E. A screening optimization approach for the retrofit of heat exchanger networks [J]. Ind. Eng. Chem. Res.1991,30:146-162.
    [133]ASANTE N D K, ZHU X X. An automated approach for heat exchanger network retrofit featuring minimal topology modifications [J]. Comput. Chem. Eng.1996,20(Suppl), S7-S12.
    [134]ASANTE N D K, ZHU X X. An automated and interactive approach for heat exchanger network retrofit [J]. Trans. Inst. Chem. Eng.1997,75:349-360.
    [135]ZHU X X, ASANTE N D K. Diagnosis and optimization approach for heat exchanger network retrofit [J]. AIChE J.1999,45(7):1488-1503.
    [136]PATERSON W R. A replacement for the logarithmic mean [J]. Chem. Eng. Sci.1984, 39(11):1635-1636.
    [137]CHEN J J J. Comments on improvements on a replacement for the logarithmic mean [J]. Chem. Eng. Sci.1987,42(10):2488-2489.
    [138]SHOPOVA E G, VAKLIEVA-BANCHEVA N G. BASIC—A genetic algorithm for engineering problems solution [J]. Comput. Chem. Eng.2006,30:1293-1309.
    [139]SHI Y, EBERHART R C. Parameter selection in particle swarm optimization [C]. In: EP'98 Proceeding of the 7th International Conference on Evolutionary Programming W,1998:591-600.
    [140]SHI Y, EBERHART R C. Experimental study of particle swarm optimization [C]. In: Proceedings of the 4th World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA,2000.
    [141]SHI Y. Fuzzy adaptive evolutionary computation:A review [C]. In:Proceeding of the 4th World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA,2000.
    [142]SHI Y, EBERHART R C. Fuzzy adaptive particle swarm optimizer [C]. In:Proceeding of IEEE Congress on Evolutionary Computation. Korea,2001:101-106.
    [143]SUGANTHAN P N. Particle swarm optimizer with neighborhood operator [C]. In: Proceeding of IEEE International Congress Evolutionary Computation,1999: 1958-1962.
    [144]RATNAWEERA A, HAUGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE T. Evolut. Comput.2004,8(3):240-255.
    [145]Ahmad S. Heat exchanger networks:Cost trade-offs in energy and capital [D]. Manchester:UMIST,1985.
    [146]Nielsen J S, Hansen M W, Joergensen S B. Heat exchanger network modeling framework for optimal design and retrofitting [J]. Comput. Chem. Eng.1996,20, S249-S254.
    [147]Khorasany R M, Fesanghary M. A novel approach for synthesis of cost-optimal heat exchanger networks [J]. Comput. Chem. Eng.2009,33(8):1363-1370.
    [148]Zhu X X, Oineill B K, Roach J R, Wood R M. A method for automated heat exchanger network synthesis using block decomposition and non-linear optimization [J]. Trans. IChemE 73(Part A).1995:919-930.
    [149]Yerramsetty, K M, Murty, C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution [J]. Comput. Chem. Eng.2008,32(8):1861-1876.
    [150]Pariyani A, Gupta A, Ghosh P. Design of heat exchanger networks using randomized algorithm [J]. Comput. Chem. Eng.2006,30(6-7):1046-1053.
    [151]Shenoy V. Heat exchanger network synthesis:Process optimization by energy and resource analysis [M]. Gulf Publishing Company.
    [152]Rezaei E, Shafiei S. Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods [J]. Comput. Chem. Eng.2009,33(9):1451-1459.
    [153]Athier G, Floquet P, Pibouleau L, Domenech S. A mixed method for retrofitting heat exchanger networks [J]. Comput. Chem. Eng.1998,22:S505-S511.
    [154]Briones V, Kokossis A C. Hypertargets:A conceptual programming approach for the optimization of industrial heat exchanger networks. Ⅱ. Retrofit design [J]. Chem. Eng. Sci.1999,54(4):519-539.
    [155]Ma K L, Hui C W, Yee T F. Constant approach temperature model for HEN retrofit [J]. Appl. Therm. Eng.2000,20(15-16):1505-1533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700