用户名: 密码: 验证码:
高性能车用磁粉离合器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁粉离合器具有接合平顺、可控性好、响应迅速、转矩传递范围广且与滑差率无关、传动效率高等优点,决定其在车辆行业有着广阔的应用前景。但是由于国外技术封锁,国内缺少相关研究,目前国产车用磁粉离合器存在传递转矩容量低,工作过程激磁线圈温升过高等问题,无法满足车辆传动的使用要求。为此,本文以一种适用于经济型乘用车自动变速或半自动变速系统中使用的,具有高转矩传递、高可靠性、低能耗的高性能车用磁粉离合器为研究对象,运用理论分析、仿真计算、样件试制与试验测试相结合的研究方法,紧密把握材料与结构设计两条研究主线,对磁粉离合器转矩传递机理、基于电磁场分析的磁粉离合器性能评价及设计方法、材料性能及结构参数对磁粉离合器性能的影响关系、温度场分析模型、应用永磁材料的磁粉离合器设计及可行性等一系列关键问题展开了深入研究,旨在通过本文的研究提高国产磁粉离合器及汽车产品的档次和市场竞争力。主要内容包括以下几个方面:
     (1)从能量守恒角度出发,建立了磁粉离合器转矩传递机理模型,揭示其利用能量变换实现转矩传递的内在规律。建立了磁粉离合器工作间隙电磁场与其转矩传递间关系,提出了通过电磁场分析得到磁粉离合器性能的方法。
     (2)利用现有磁粉离合器的设计方法与经验,综合考虑车辆变速器型腔空间对磁粉离合器几何尺寸的限定,对车用磁粉离合器结构与电磁参数进行了设计,建立了设计车用磁粉离合器的电磁场分析模型,并对其性能进行了分析研究。
     (3)在设计的车用磁粉离合器分析模型和分析结果的基础上,从离合器结构及参数的改进与优化、离合器材料对其性能影响两个角度,分析提升磁粉离合器转矩传递性能的方法与途径,分析建立了磁粉离合器工作间隙宽度、非工作间隙宽度、工作间隙数目、磁路材料磁性能、磁粉材料等主要设计参数与其性能间的定量关系。通过储粉腔、磁粉导槽的合理设计,改善了磁粉离合器磁场分布,实现了磁粉离合器高转矩传递的高性能。
     (4)针对车用磁粉离合器的工作特点,利用永磁材料在工作中不消耗能量的优良特性,提出了一种基于永磁体产生的和由激磁线圈产生的两磁场叠加原理的磁粉离合器,对其结构方案、工作过程及结构参数进行了设计分析。确定了满足设计要求车用永磁磁粉离合器的设计方案,并对其性能进行分析,与常规电磁磁粉离合器相比,能耗得到有效降低。
     (5)为评价设计的磁粉离合器的工作能力和可行性,指导其设计与优化,建立了磁粉离合器温度场分析模型,研究了三种典型稳定工况下的磁粉离合器温度分布及其变化情况。分析结果表明,本文设计的车用磁粉离合器具有高的工作可靠性。
     (6)研制了磁粉离合器试验样机,建立了试验平台,进行了试验样机表面静态电磁场、转矩-激磁电流特性、表面温升的试验研究。试验验证了本文设计、计算等工作的正确性,结果表明本文所研究的车用磁粉离合器的具有高转矩传递、高可靠性及低能耗的特点,达到预期研究效果。
Magnetic powder clutch has the advantages of smooth separation and joint, good controllability, quick response, wide torque transmission range independent of the slip ratio, high transmission efficiency and so on, which determined that it has a broad application prospect in the vehicle industry. However, because of the technical blockage of foreign enterprise and very few people engaged in the research of the magnetic powder clutch, the present domestic magnetic powder clutch has shortcomings of the low transferring torque capacity, heating seriously during its working process etc. As a result, it can't satisfy the requirements of vehicle transmission system. Therefore, a kind of the high-performance vehicle magnetic powder clutch with high torque transmission performance, high reliability and low energy consumption was studied. And it is suitable for automatic transmission system or semi-automatic transmission system of the economical car. In order to improve the torque transmission performance of the magnetic powder clutch, raise the grade of the domestic magnetic powder clutch and its car product and have a better competitive, some key topics such as the torque transmission mechanism of the magnetic powder clutch, research on the methods of the performance evaluation and design of the magnetic powder clutch based on electromagnetic field analysis, influence of the material properties and structural parameters on the performance of the magnetic powder clutch, temperature field analysis model, magnetic powder clutch applied permanent magnet and so on were studied using research methods such as theoretical analysis, simulation calculation, prototype develop and test. The major contributions of this paper were as follows:
     (1)From the perspective of energy conservation, the torque transmission performance evaluation mathematical model of the magnetic powder clutch was established. The inherent law of its torque transmission based on energy conversion was revealed. The relation between the electromagnetic field of the working gap and the torque transmission of the magnetic powder clutch was established. The performance evaluation method for the magnetic powder clutch based on the electromagnetic field analysis was presented.
     (2) A further study on analysis and design methods of the magnetic powder clutch electromagnetic field was carried out. The structural and electromagnetic parameters of the vehicle magnetic powder clutch were initially designed based on the existing design methods and experiences of the magnetic powder clutch, and at the same time, it was comprehensively considered that the geometry size of the magnetic powder clutch was limited by the vehicle transmission cavity space. Electromagnetic field simulation model of the designed vehicle magnetic powder clutch was created. The performance of the vehicle magnetic powder clutch was simulated based on the simulation model.
     (3)According to the influences of the clutch material properties and its structural parameters on the performance of the clutch, the ways and means to improve the torque transmission performance of the magnetic powder clutch were analyzed, and the quantitative relationship was determined between its performance and its main design parameters such as working gap width, nonworking gap width, number of working gap, magnetic circuit material properties based on the designed model of the vehicle magnetic powder clutch and the analysis results. The magnetic field distribution of the magnetic powder clutch was improved by the reasonable design on powder storage chamber and magnetic powder guidance channel. And the performance of high torque transmission was realized.
     (4)According to the working characteristics of the vehicle magnetic powder clutch and the excellent characteristic of the permanent magnetic materials that it does not consume energy throughout the work, a kind of magnetic powder clutch was proposed with superposition principle of two magnetic fields generated by permanent magnet and the excitation coil. And its structure scheme, working process and structural parameters were designed and analyzed. The design scheme of the vehicle magnetic powder clutch that can meet the design requirements was determined. And the performance of the designed vehicle magnetic powder clutch was analyzed. And the performance of low energy consumption was realized.
     (5)In order to evaluate the working ability and the feasibility and to guide the design and optimization of the designed magnetic powder clutch, the simulation model of the temperature field was created. Based on the simulation model, the temperature distribution and the variation of the magnetic powder clutch under three typical stable conditions were studied. The results showed that the designed vehicle magnetic powder clutch in this paper had high working reliability.
     (6)The test prototype was developed and the test platform was established to test a study of static electromagnetic field on the surface of this test prototype, torque-exciting current characteristics and temperature rise. This study has verified the correctness of the design and calculations for this article and the feasibility of this designed magnetic powder clutch. The design and the calculations were verified by the test. The test results showed that the designed vehicle magnetic powder clutch in this article has advantages of high torque transmission,high working stablity and low energy consumption and that the research results reached the reached the expected requirement.
引文
[1]工业和信息化部.2011年汽车产销量再次刷新全球历史纪录[EB/OL].http://www.china.com.cn/policy/txt/2012-01/20/content_24455120.htm.
    [2]蔡国钦.经济型汽车发展战略及对策研究[D].天津:天津大学,2005.
    [3]发展改革委,建设部,公安部,etal.关于鼓励发展节能环保型小排量汽车的意见[EB/OL].http://www.gov.cn/gongbao/content/2006/content_212067.htm.
    [4]徐石安,江发潮.汽车离合器[M].北京:清华大学出版社,2005.
    [5]魏英俊,常思勤,胡平,et a1.汽车磁粉离合器的设计与控制研究[J].机械制造,2004,42(10):12-14.
    [6]李华,姚进,赵世佳.高效液力变矩传动系统[J].机械工程学报,2010,46(13):116-120.
    [7]施高义.机械设计手册(第3卷)[M].北京:机械工业出版社,2004.
    [8]星云仪表厂译.磁粉离合器与制动器[M].北京:国防工业出版社,1978.
    [9]李进梅.电磁离合器的温度场及热应力有限元分析[D].合肥:合肥工业大学,2007.
    [10]顾庆昌.永磁-电磁离合器磁场分析及特性研究[D].合肥:合肥工业大学,2008.
    [11]王善坡.磁粉离合器基本工作原理和设计方法的探讨[D].济南:山东工业大学,1991.
    [12]魏英俊.车用磁粉离合器起步控制试验研究[J].中国机械工程,2007,18(11):1375-1377.
    [13]曲金玉,侯树展,刘大权.汽车磁粉离合器磁场的仿真研究[J].轻型汽车技术,2008,(1):26-29.
    [16]MIKHAEIL-BOULES N. Design analysis of electromagnetic parcle clutch [J]. Industry Application Society Annual Meeting,1994,357-360.
    [17]张光荣.磁粉离合器和磁粉制动器的结构、性能及选用[J].机电工程技术,2004,33(10):77-79.
    [18]黄和妙,王善坡.磁粉离合器工作机理的探讨[J].山东工业大学学报,1995,25(3):207-213.
    [19]第一机械工业部情报所.磁粉离合器译文集[M].北京:第一机械工业部情报所,1975.
    [20]张青.磁粉制动器设计中的优化方法及实例分析[J].组合机床与自动化加工技术, 1995,(4):6-9.
    [21]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [22]刘湘连,何火生.铁—钻—镍软磁合金粉末的研制[J].湖南冶金,1995,(6):11-14.
    [23]吴菊清,李祥萍.磁粉离合器磁粉特性及其相关参数的关系[J].传动技术,1999,13(4):18-24.
    [24]吴菊清,陈仕骏.铬不锈钢磁粉的基本性能及其应用现状[J].机械工程材料,1990,(4):21-23.31.
    [25]陆伟,严彪.铁基纳米晶软磁合金的研究[J].材料科学与工程学报,2004,22(3):461-465.
    [26]赵淑兰,高锡厚.磁粉离合器散热功率的论证[J].宁夏工学院学报:自然科学版,1994,6(1):132-138.
    [27]于强,孟剑锋.回转热管磁粉离合器的散热研究与测试分析[J].工程设计学报,1997,(1):36-41.
    [28]王思刊,李伟刚.磁粉离合器温度场的计算方法[J].青岛大学学报:工程技术版,2000,15(3):77-82.
    [29]鲍晓华,王瑞男,倪有源.汽车发电机定子三维温度场有限元计算[J].微特电机,2011,(7):5-8,28.
    [30]李进梅.电磁离合器的温度场及热应力有限元分析[D].合肥:合肥工业大学,2007.
    [31]常思勤.汽车动力装置[M].北京:机械工业出版社,2006.
    [32]FELTMAN J, GANLEY J, HAMILTON S, et al. Mechatronic Torque Vectoring System with Enhanced Controllability for Augmenting the Vehicle Agility and Safety [J]. SAE paper,2006-01-0579.
    [33]林治楠,周美兰,路桂明.汽车起步磁粉离合器模糊控制研究[J].湖南工程学院学报:自然科学版,2007,17(1):6-9.
    [34]严运兵,陈华明,张光德.车用磁粉离合器的起步模糊控制策略研究[J].机械设计与制造,2010,(2):118-120.
    [35]严运兵,周建鹏,陈华明.车用磁粉离合器换挡传动过程的模糊控制及仿真[J].拖拉机与农用运输车,2010,37(3):84-86,88.
    [36]陈华明.车用磁粉离合器控制策略研究[D].武汉:武汉科技大学,2008.
    [37]胡平.微型客车功率分流式自动变速器电控系统研制[D].南京:南京理工大学,2004.
    [38]魏英俊.新型车用功率分流式自动变速器的研究[D].南京:南京理工大学,2005.
    [39]于康.车用磁粉离合器分析、设计及控制的研究[D].南京:南京理工大学,2006.
    [40]Y.YOSHIZAWA, S.OGUMA, K.YAMAUCHI. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. JApplPhys,1988,64,6044-6046.
    [41]SUZUKI K, MAKINO A, INOUE A. soft magnetic properties of nanocrystalline bcc FeZrB and FeMBCu (M=transition metal) alloys with high saturation magnetization [J]. J Appl Phys,1991,70(10):6232-6237.
    [42]SUZUKI K, KATAOKA N, INOUE A. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure [J]. JIM,1990,31(8): 743-746.
    [43]M.E.MCHENRY, F.JOHNSON, H.OKUMURA. The kinetics of nanocrystallization and microstructural observations in FINEMET,NANOPERM and HITPERM nanocomposite magnetic materials [J]. Scripta Materialis,2003,48(7):881-887.
    [44]UCAR H, IPUS J J, FRANCO V, et al. Overview of Amorphous and Nanocrystalline Magnetocaloric Materials Operating Near Room Temperature [J]. JOM Journal of the Minerals, Metals and Materials Society,2012,1-7.
    [45]KERNION S J, MILLER K J, SHEN S, et al. High Induction, Low Loss FeCo-Based Nanocomposite Alloys With Reduced Metalloid Content [J]. Magnetics, IEEE Transactions on,2011,47(10):3452-3455.
    [46]FUZER J, KOLL R P, FUZEROVA J. Soft magnetic properties of nanostructured vitroperm alloy powder cores[J]. Magnetics, IEEE Transactions on,2010,46(2):471-474.
    [47]朱凤霞,易健宏,李丽娅.铁基纳米晶软磁合金的研究现状[J].磁性材料及器件,2008,39(2):1-5.
    [48]曹玲飞,汪明朴,李周.Fe基纳米晶软磁材料热稳定性的研究[J].金属功能材料,2005,12(1):26-29.
    [49]丁昂,张延松,钱坤明.纳米晶软磁材料磁性温度稳定性与退火温度的关系[J].兵器材料科学与工程,2005,28(2):54-57.
    [50]陆伟,严彪,殷俊林.纳米晶软磁材料及其应用[J].上海钢研,2003,(4):3-11.
    [51]LI W, OHKUBO T, HONO K. Effect of post-sinter annealing on the coercivity and micro structure of Nd-Fe-B permanent magnets [J]. Acta Materialia,2009,57(5): 1337-1346.
    [52]HIRAGA K, HIRABAYASHI M, ISHIGAKI N. High resolution transmission electron microscopy of Sm-Co based permanent magnets [J]. Journal of Microscopy,2011, 142(2):201-210.
    [53]K.H.J.BUSCHOW, W.LIUTEN, P.A.NAASTEPAD, et al. Magnet material with a (BH)max of 18.5 million gaussorested [J]. Philips Tech Rev,1968,29,336-337.
    [54]T.OJIMA, S.TOMIZAWA. New Type Rare-earth-cobalt Magnets with an Energy Product of 30 MGOe[J]. Jap. J. Appl. Phys,1977,4:671-673.
    [55]M.SAGAWA, S.FUJIMURA, M.TOGAWA, et al. New material for permanent magnets on a base of Nd and Fe[J]. J.Appl. Phys,1984,55:2083-2087.
    [56]BERNARDI J, FIDLER J, SAGAWA M, et al. Microstructural analysis of strip cast Nd-Fe-B alloys for high (BH)max magnets [J]. J. App. Phys,1998,83(11):6396-6398.
    [57]KANEKO Y. Highest performance of Nd-Fe-B magnet over 55 MGOe[J]. IEEE Trans Magn,2000,36(5):3275-3278.
    [58]SAGAWA M, NAGATA H. Novel processing technology for permanent magnets[J]. IEEE Trans Magn,1993,29(6):2747-2751.
    [59]RODEWALD W, WALL B, KATTER M, et al. Top Nd-Fe-B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity[J]. IEEE Trans Magn,2002,38(5): 2955-2957.
    [60]TAKAHASHI M, UCHIDA K, TANIGUCHI F, et al. High performance Nd-Fe-B sintered magnets made by the wet process [J]. J. Apps. Phys,1998,83(11):6402-6404.
    [61]王勇.磁力机械分析与设计方法[D].合肥:合肥工业大学,2006.
    [62]杨庆新,刘素贞,陈海燕.工程电磁场无单元法[M].北京:科学出版社,2008.
    [63]王北社,窦满锋.基于热网络法的高功率密度异步电动机定子温升计算[J].微特电机,2006,36(1):24-26.
    [64]Y.C.GERSTENMAIER, G.K.M.WACHUTKA. Efficient Calculation of Transient Temperature Fields Responding to Fast Changing Heatsources Over Long Duration in Power Electronic Systems [J]. IEEE TransComponents,2004,27(2):104-111.
    [65]E.CHAUVEAU, E.H.ZALM, D.TRICHET. A Statistical Approach of Temperature Calculation in Electrical Machines [J]. IEEE TransMagn,2000,36(4):1826-1829.
    [66]SPIRYAGIN M, LEE K S, YOO H H, et al. Numerical calculation of temperature in the wheel-rail flange contact and implications for lubricant choice [J]. Wear,2010,268(1): 287-293.
    [67]何忠波,白鸿柏.AMT技术的发展现状与展望[J].农业机械学报,2007,38(5):181-186.
    [68]吕俊成.微型汽车离合器摩擦学性能及其应用研究[D].武汉:武汉理工大学,2009.
    [69]颜克志.AMT离合器接合规律研究及其稳定性分析[D].西安:西北工业大学,2007.
    [70]TRIPATH K, AQRAWAL M D. Design optioization of friction clutch [J]. Journal of the Institution of Engineer:Mechanical Engineering Division,2007, (10):29-33.
    [71]林恩,桂良进,范子杰.膜片弹簧力学特性有限元分析[J].汽车工程,2010,32(10):892-896.
    [72]付铁军,谢飞,李贺.基于汽车离合器综合性能要求的膜片弹簧优化设计[J].汽车技术,2009,(11):30-34.
    [73]刘安阵.微型汽车离合器膜片弹簧力学分析与研究[D].武汉:武汉理工大学,2008.
    [74]杨尧金.汽车摩擦离合器扭转振动特性分析及优化设计[D].长春:长春理工大学,2009.
    [75]ZHENG Q, SRINIVASAN K, RIZZONI G. Transmission shift controller design based on a dynamic model of transmission response [J]. Control Engineering Practice,1999, 1007-1014.
    [76]程东升,张建武,孙承顺.车辆AMT离合器离散变结构控制[J].农业机械学报,2003,34(1):31-34.
    [77]赵和平,刘奋,张建武.变结构控制方法在电控离合器中的应用研究[J].中国机械工程,2002,13(20):1797-1800.
    [78]谢先平.汽车自动离合器接合过程控制策略研究[D].哈尔滨:哈尔滨理工大学,2008.
    [79]张志刚.关于几个湿式离合器几个工作特性研究[D].杭州:浙江大学,2010.
    [80]胡宏伟.湿式自动离合器接合过程特性的研究[D].杭州:浙江大学,2008.
    [81]施青平.微型汽车自动离合器控制策略研究及应用[D].武汉:武汉理工大学,2010.
    [82]M.布坎南,M.凯尼格.控制双离合器变速装置的方法:中国,200410005884.[P/OL].2004.
    [83]张金香.液力机械自动变速器的研究[D].兰州:兰州理工大学,2009.
    [84]刘仕平.液力变矩器的数学模型-新型设计方法及内部流场研究[D].太原:太原理工大学,2010.
    [85]K.ABE, T.KONDOH, K.FUKUMURA, et al. Three-dimensional Simulation of the Flow in a Torque Converter [J]. SAE 910800.
    [86]H.SCHULZ, R.GREIM, W.VOLGMANN. Calculation of Three-dimensional Viscous Flow in Hydrodynamic Torque Converter [J]. ASME 94-GT-208.
    [87]王健,葛安林,雷雨龙.液力变矩器叶片三维成型法及其性能分析[J].吉林大学学报(工学版),2007,37(1):43-47.
    [88]才委,马文星,刘春宝.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,(3):316-319,25.
    [89]闫国军,董泳,张辉.液力变矩器及其控制系统动特性研究[J].机械工程学报,2002,38(2):65-68.
    [90]闫清东,魏巍,彭静.液力变矩器的宽度比敏感性数值研究[J].北京理工大学学报,2006,26(5):413-416.
    [91]何仁,商高高.液力变矩器特性参数的优化方法[J].中国公路学报,2001,14(12):118-121.
    [92]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学,2006.
    [93]KUBOTA T, KOBAYASHI T, SAGA T, et al. Application Study of PIV Measurement of Flow Field around Lock-up Clutch of Automotive Torque Converter [J]. JSAE 20034528, 425-430.
    [94]徐安,乔向明,刘圣田.汽车自动变速器锁止离合器控制策略[J].汽车工程,2004,26(3):283-286.
    [95]孙守礼.汽车磁粉离合器的研制[J].武汉工学院学报,1995,17(2):44-50.
    [96]村田俊哉,浅野哲正,植木雅晴.阎鹏志译.ZKG型微型磁粉离合器及其应用[J].三菱电机技报,1966,38(9):101-109.
    [97]孙为民.电涡流缓速器的理论研究[D].北京:北京工业大学,2005.
    [98]张宁.电涡流缓速器磁场分析及运动学仿真研究[D].合肥:合肥工业大学,2007.
    [99]顾庆昌.永磁—电磁离合器磁场分析及特性研究[D].合肥:合肥工业大学,2008.
    [100]RAO N N周建华,游佰强译.工程电磁学基础[M].北京:机械工业出版社,2006.
    [101]赵韩,田杰.磁力机械学[M].北京:高等教育出版社,2009.
    [102]侯树展,曲金玉,魏晓燕.我国汽车磁粉离合器的发展[J].磁性材料及器件,2008,39(1):7-9,13.
    [103]宫崎秀夫,村田俊哉.阎鹏志译.磁粉离合器的特性及其应用[J].机械设计,1964,8(5):9-21.
    [104]资料摘编.磁粉离合器中磁粉的类型和参数的选择[J].传动技术,2006,20(4):47-48.
    [105]张甫飞,纪朝廉,张洛.铁基纳米晶合金粉末及磁粉芯研究[J].上海钢研,2003,(1):15-19.
    [106]易敬曾.磁场计算与磁路设计[M].成都:成都电讯工程学院出版社,1987.
    [107]邹继斌,刘宝廷,崔淑梅.磁路与磁场[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [108]宋后定.常用永磁材料及其应用基本知识讲座第一讲常用永磁材料的特性参数[J].磁性材料及器件,2007,38(2):59-61.
    [109]宋后定.常用永磁材料及其应用基本知识讲座第二讲永磁材料的应用[J].磁性材料及器件,2007,38(4):65-68.
    [110]赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2006.
    [111]宋后定.常用永磁材料及其应用基本知识讲座第六讲常用永磁材料的稳定性[J].磁性材料及器件,2008,39(1):66-68.
    [112]赵克中.磁耦合传动装置的理论与设计[M].北京:化学工业出版社,2009.
    [113]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700