用户名: 密码: 验证码:
微纳米纤维纺丝拉伸机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对超细纤维生产所采用的两种常用的纺丝方法,即熔喷纺丝法和静电纺丝法进行了研究。通过数值计算和实验的方法得到了熔喷喷射气流场和单针头静电纺丝的静电场;基于对纤维处于特定物理场中的受力分析和传热规律的研究,建立了适用于熔喷纺丝法和静电纺丝法纤维拉伸的统一模型;论文还探讨了狭槽形熔喷模头几何参数的优化设计。本文的主要工作涉及以下四个方面:
     (1)以狭槽形熔喷模头为研究对象,对高温高压气体射流从熔喷模头喷射出来后的流动进行了三维数值模拟,并对数值模拟方法的有效性进行了实验验证;
     (2)运用所建立的熔喷流场模型,研究了狭槽形熔喷模头的几何参数对熔喷流场速度分布以及温度分布的影响,分别采用正交设计方法,单目标遗传算法以及多目标遗传算法来对狭槽形熔喷模头的几何参数进行优化设计。
     (3)从熔喷纺丝过程中纤维在拉伸变细时的不稳定性入手,分析其不稳定性产生的原因,并建立合适的纤维模型来表征这种不稳定性,通过对建立和求解纤维在气流场中运动的力学模型,得到了熔喷纺丝过程中纤维的运动规律;
     (4)熔喷纺丝和静电纺丝在纤维拉伸方面存在一定的相似性,从这两种纺丝过程中聚合物熔体或溶液在特定的物理场中所受到的力入手,建立了微纳米纤维纺丝的统一力学模型,得到了纤维在特定的气流场力或电场力作用下的运动规律,揭示了影响熔喷纺丝纤维进一步细化的制约因素;
     全文共分七章
     第一章对国内外与本文研究领域相关的理论研究和实验方面的文献进行了综述,主要涉及到熔喷喷射气流场,熔喷纤维拉伸模型以及静电纺丝的纤维拉伸模型。
     第二章主要介绍了狭槽形熔喷模头喷射气流场的三维数值模拟。建立的狭槽形熔喷喷射气流场的数学模型包括连续方程、运动方程、能量方程以及流体的本构方程;采用标准的两方程k-ε模型来描述熔喷流场的湍流现象;运用有限体积法对狭槽形熔喷模头喷射流场的三维模型进行离散化,采用一阶迎风格式来作为离散方程的插值格式,最终得到了湍流状态下熔喷流场的离散方程组。通过给定几何模型和边界条件,求得熔喷流场的数值结果。为了便于对模拟结果进行实验验证,所建立的狭槽形模头的几何参数采用第三章所描述的熔喷实验机的模头几何参数。通过对熔喷流场的模拟结果进行分析,总结出了熔喷喷射流场基本可以通过设定“接触点”和“合并点”将整个流场分成三个区域,即“射流单独流动区域”、“射流接触融合区域”和“射流合并区域”。“接触点”之前,气流射流是单独流动的,并且在两股射流之间的区域形成了两个回旋区域;“接触点”之后到“合并点”之前的区域,是气体射流从开始接触直至完全合并成单股射流的过渡区域;“合并点”之后射流以单股射流的形式流动,并逐步向周围扩散直至沉没于周围环境中。
     第三章采用恒温式热线风速仪对狭槽形熔喷喷射气流场的气流速度分布和温度分布进行了测量,测量点分布广而密,保证了实验数据的完整性。通过将实验数据与第二章的模拟结果在整个测量空间进行对比,发现二者吻合较好,从而证明了第二章所建立狭槽形熔喷喷射气流场的三维模型是有效的,可以用来对熔喷气流场进行预测以及纤维拉伸模型的求解,还可以采用该模型对熔喷模头的几何参数进行优化设计。
     第四章以狭槽形熔喷模头的几何参数为研究对象,以熔喷喷射流场的边界上的速度分布和温度分布为目标函数,对狭槽形熔喷模头进行了优化设计。介绍了正交设计、单目标遗传算法和多目标遗传算法优化算法的基本原理,并提出了采用计算流体动力学与上述优化算法相结合的方法来优化熔喷气流场,得出了优化结果。在采用正交设计和单目标遗传算法对狭槽形熔喷模头的优化过程中,提出了采用滞止温度这一指标作为目标函数,因为它综合了气体射流的速度和温度,更适合用来描述流场的性能。各种优化方法都有其自身的特点,通过对熔喷气流场的优化,得到的气流场的速度分布和温度分布都有显著的提高。相比较而言,正交设计由于计算量受到限制,所得到的结果并不能保证是全局内的最优解,而遗传算法虽然计算量稍有提高,但是由于该算法搜索效率高,并且是在连续空间的求解域中进行优化计算,因而其算法较为先进,所得到的优化结果也优于正交设计所得到的结果。
     第五章着重讨论了熔喷纺丝的三维纤维拉伸模型的建立和求解。首先分析了熔喷纤维拉伸过程的基本规律,讨论了熔喷气流拉伸过程中纺丝线上的力学构成和传热过程,深入地研究了纺丝线上的受力情况以及各种力的作用机理。与以往模型不同的是,本模型是“混合格式的欧拉-拉格朗日”熔喷纺丝模型,即熔喷气流场的描述采用欧拉格式,而对纤维的研究则采用拉格朗日格式,这是因为拉格朗日格式的模型关注于纤维在不同时刻的运动轨迹,从而能够得到纤维在各种力作用下产生的不稳定现象。通过对模型结果进行分析得出,在不同的扰动影响下,纤维运动会呈现出剧烈的变化,其具体的运动规律对所施加的气流场非常敏感。基于本章所建立的模型还可以得到纤维的直径、温度、内应力以及振幅等参数,对进一步研究熔喷纺丝规律提供了理论基础。
     第六章建立了微纳米纺丝纤维拉伸的统一模型。通过对比和分析熔喷纺丝和静电纺丝过程中纤维受力情况,发现这两种纺丝条件下纤维都是处于某一特定的物理场中(气流场和静电场)。正是由于这些特定的物理场的存在,产生了使聚合物拉伸变细的牵伸力。为了求解纤维处于静电场中的运动状态,首先建立了单针头静电纺丝的静电场理论模型,结合第二章所建立的狭槽形熔喷喷射气流场模型,即可将纤维在特定物理场中所受到的牵伸力计算出来。该统一模型仍然属于“混合格式的欧拉-拉格朗日”模型,纤维的运动采用拉格朗日格式进行描述。纤维在流场中所受到气流力(或静电场中所受到的电场力)、粘弹力、库仑力、重力和表面张力都包括在模型中以用来纤维在流场中的运动。通过对模型的求解,得到了不同物理场下纤维的运动规律以及纤维在纺丝拉伸过程中鞭动现象产生和变化的机理:在静电纺丝工艺中,库仑力是纤维的不稳定现象的推动力,它始终使纤维有弯曲变形的作用。而在熔喷纺丝工艺中,只有当气流力的合力在垂直纤维段的分量上大于粘弹力的情况下才会使鞭动得到加强。
     第七章是全文的结论与展望。对本文的主要研究成果,本文研究工作的主要不足以及所涉及的相关领域的进一步研究方向一一进行了叙述。
Two spinning processes of Melt blowing and Electrospinning are studied in this dissertation. Based on the modeling and experimental results, the airflow field in melt blowing and electrostatic field in electrospinning are obtained; A unified model which can be used to predict the fiber draw attenuation is established through the analysis of fiber mechanics and thermodynamics in a certain physical field; the geometry optimization of melt blowing dual slot dies are also discussed in this thesis. The following four main parts were included in this dissertation.
     (1) The air flow field of melt blowing slot die is simulated by three dimensions finite volume method, and the efficiency of the numerical simulation is verified by experiments.
     (2) Based on the three dimensional model of airflow field in melt blowing slot die, a systematic approach, which combines the application of numerical simulation and Orthogonal Array method or Genetic Algorithm, to optimize the airflow field of melt blowing slot die is proposed. The optimized geometry of the slot die under certain processing condition is obtained.
     (3) The whipping instability when fibers attenuating in melt blowing process is researched, a numerical approach to model fiber motion during melt blowing process is established. This approach also can predict fiber diameter, temperature, inner stress and so on.
     (4) Melt blowing and Electrospinning are analogous in the processes of drawing fibers:the polymer jets are both drawn in the external fields. A three dimensional model of whipping motion in the processing of microfibers is established. This model can simulate the fiber motion in air flow field or electrostatic field. After analyzing the fiber motion, several factors that restrict melt blowing further fiber attenuation were concluded.
     This dissertation included 7 chapters.
     In Chapter 1, the references relevant to this research field at home and abroad are reviewed; they are mainly focused on the research of airflow field in melt blowing and the fiber drawing model in melt blowing and electrospinning process.
     In Chapter 2, a three dimensional model of airflow field in melt blowing slot die is established using computational fluid dynamics approach. This model consists of the continuity equation, momentum equations, energy equation and constitutive equation. The k-εmodel is adopted as the turbulence model. The governing equations are discretized by the finite volume method. The first order upwind scheme is chosen as the interpolation method for discretized governing equations. The geometry of melt blowing slot die is the same with the experimental machine described in Chapter 3. The simulation results are obtained after the proper boundary conditions are set up. The results show that the development of the airflow field downstream exhibits three major zones depending on two points, namely merging point and combined point. First, closest to the orifice, is the converging zone, where the jets are still flow separately. The dominant characteristic of this zone is the presence of a recirculation area where flow is traveling in the opposite direction from the main direction of the jets. The merging zone is next; this is a transition between the converging zone and the fully developed region. The dominant characteristics of the merging zone are the lack of a recirculation area and the presence of peak velocities away from the centerline. The final region is the well-developed region, where the velocity maximum is along the centerline, and the velocity is decaying.
     In Chapter 3, with Hot Wire Anemometer, the distributions of the air velocity and the air temperature of the airflow field of melt blowing slot die are measured. It is efficient for the three dimensional model of airflow field in melt blowing slot die as compared the experimental results with computation results which obtained in Chapter 2. Therefore, the 3D model of airflow field can be used to model fiber motion and die geometry optimization.
     In Chapter 4, a systematic approach, which combines the application of numerical simulation and Orthogonal Array method or Genetic Algorithm, to optimize the airflow field of melt blowing slot die was proposed. Firstly, the orthogonal array method and CFD technique are integrated to find out the geometry parameters of the slot die which give the optimal air flow field. A parameter, stagnation temperature, which combines the air velocity and air temperature, is proposed to evaluate the air flow field of the melt blowing die. By choosing the slot width e, slot angle a and nose piece width f as the critical parameters, a three-level orthogonal array analysis was performed. The simulation results reveal that the slot width and the slot angle are important factors, while the influence of the nose piece width on the air flow is insignificant. The stagnation temperature increases with increasing slot width and decreasing slot angle.
     Secondly, Genetic Algorithm (GA) combined the application of numerical simulation is used to optimize the airflow field of melt blowing slot die. The stagnation temperature, is stilled used as the objective function. The slot width e, slot angle a, nose piece width f and setback S are investigated by using GA method. During the GA optimizing process, the coefficient of variation is used as the terminal condition from the time-saving view. It has proved that the systematic approach combining the application of numerical simulation and genetic algorithm is an effective way to optimize the geometry parameters of the melt blowing slot die. The results also show that the smaller slot angle and larger slot width result in the higher stagnation temperature.
     Finally, multi-objective optimization using genetic algorithms (MOGA) combined the application of numerical simulation is proposed to optimize the airflow field of melt blowing slot die. The geometry parameters researched and terminal condition is the same with before. The optimal results are achieved in the 50th generation with 20 individuals of each generation. The final optimal geometry parameters are:slot width e=1.998 mm, slot angle a= 12.28°, nose piece width f= 1.9384 mm and setback S= 1.393 mm.
     In Chapter 5, a three dimensional model of fiber motion during melt blowing process was established. The dynamics and heat transfer on the spinning line during the drawing process are discussed in detail. The Maxwel model is adopted as the constitutive equation to describe the rheological properties of polymer melt; this fiber model also considers the changing of the density and specific heat capacity of the polymer melt with the polymer temperature. it describes the character of large aspect ratio, viscoelasticity and flexibility of the fiber. Therefore, it can be used to simulate the fiber formation in melt blowing process. Mathematical model is developed using mixed Euler-Lagrange approach, which treats the air flow by the Euler approach and predicts the fiber motion by the Lagrange approach.
     The proposed approach is applied to simulate the fiber motion in melt blowing process. The three-dimensional paths of fiber motion are calculated. The fiber path shows a small perturbation developing into the whipping. The results of predicted fiber diameter, fiber temperature, fiber stress, fiber velocity, and fiber whipping amplitude are compared with Shanbaugh and coworkers'simulation and experimental results. The mathematical model provides a reasonable representation of the experimental data.
     In Chapter 6, a comprehensive unified model is developed for melt blowing process and electrospinning process. This model involves the simulation of conservation law of mass and charge as well as momentum balances. All kinds of forces imparted on the fiber element are summarized into three kinds of forces, namely external force, internal force and bending restoring force.
     This model can predict the fiber diameter, fiber vibration amplitude and fiber trajectory. This model also gives a method to compare the whipping dynamic of these two spinning processes. The results show that although the aerodynamic force is one or two orders larger than the electric force on each fiber element, the drawing ratio in melt blowing process is less than that in electrospinning, and fiber whipping in the melt blowing process is not as significant as in electrospinning. The main reason is that the Coulomb force in electrospinning always has the function to sustain and increase the bending instability; while in the melt blowing process, whether the aerodynamic force increases the bending instability or not depends on its value and direction at relevant fiber element.
     Conclusions and outlooks were presented in Chapter 7. Main research findings and insufficiencies of this dissertation as well as further research points involved in this field were described one by one.
引文
[1]Uyttendaele M.A.J.; Shambaugh R.L. The flow field of annular jets at moderate Reynolds numbers. Industry& Engineering Chemistry Research,1989,28(11), 1735
    [2]Tollmien W. Berechnung Turbulenter Ausbreitungsvorgange. Z. Angew. Math. Mech.,1926,6(6),468.
    [3]Majumdar B.; Shambaugh R.L. Velocity and Temperature fields of Annular Jets. Industry& Engineering Chemistry Research,1991,30(6),1300.
    [4]Mohammed A.; Shambaugh R.L. Three-Dimensional Flow Field of a Rectangular Array of Practical Air jets. Industry& Engineering Chemistry Research,1993, 32(5),976.
    [5]Mohammed A.; Shambaugh R.L. Three-Dimensional Temperature Field of a Rectangular Array of Practical Air jets. Industry& Engineering Chemistry Research,1994,33(3),730.
    [6]Harpham A.S.; Shambaugh R.L. Flow Field of Practical Dual Rectangular Jets. Industry& Engineering Chemistry Research,1996,35(10),3776-3781.
    [7]Harpham A.S.; Shambaugh R.L. Velocity and Temperature Fields of Dual Rectangular Jets. Industry& Engineering Chemistry Research,1997,36(9),3937.
    [8]Tate B.D.; Shambaugh R.L. Modified Dual Rectangular Jets for Fiber Production. Industry& Engineering Chemistry Research,1998,37(9),3772-3779.
    [9]陈廷.熔喷非织造气流拉伸工艺研究.东华大学博士论文2003.
    [10]Wang X.M.; Ke Q.F. Empirical Formulas for Distributions of Air Velocity and Temperature Along the Spinline of a Dual Slot Die. Polymer Engineering and Science,2005,45(8),1092.
    [11]Chen T.; Huang X.B. Study on the Flow Field of the Air Jet From Dual Slot Die in the Melt Blowing Process. Polymer Engineering and Science,2005,41(6), 971.
    [12]Chen T.; Huang X.B. Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process. Journal of Donghua University,2002,19(4),1.
    [13]Krutka H.M.; Shambaugh R.L. Analysis of a Melt-Blowing Die:Comparison of CFD and Experiments. Industry& Engineering Chemistry Research,2002, 41(20),5125.
    [14]Moore E.M.; Shambaugh R.L. Analysis of isothermal annular jets Comparison of Computational Fluid Dynamics and Experimental Data. Journal of Applied Polymer Science,2004,94(3),909.
    [15]Krutka H.M.; Shambaugh R.L. Analysis of Multiple Jets in the Schwarz Melt-Blowing Die Using Computational Fluid Dynamics, Industrial& Engineering Chemistry Research,2005,44(23),8922.
    [16]Krutka H.M.; Shambaugh R.L. Analysis of the Temperature Field from Multiple Jets in the Schwarz Melt Blowing Die Using Computational Fluid Dynamics, Industrial& Engineering Chemistry Research,2006,45(14),5098.
    [17]Krutka H.M.; Shambaugh R.L. Effects of Fiber on the Air Flow from an Annular Melt Blowing Die. Industrial& Engineering Chemistry Research,2007,46(2), 655
    [18]Krutka H.M.; Shambaugh R.L. Effects of the polymer fiber on the flow field from a slot melt blowing die. Industrial& Engineering Chemistry Research,2008, 47(3),935
    [19]Feldman L. Theoretical Trajectory Studies of Light Bodies in Non-Uniform Two-Dimensional Flows. Textile Research Journal,1966,36(9),809.
    [20]Bangert L.H.; Sagdeo P.M. On Fiber Alignment Using Fluid-Dynamic Forces. Textile Research Journal,1977,47(12),773
    [21]程悌吾.纤维在流体中各种运动形态可能性的判别.华东纺织工学院学报1985,11(2),1
    [22]程悌吾.弯曲纤维平面悬浮运动形态的判别.中国纺织大学学报,1987,13(6),73
    [23]程悌吾.粘弹性纤维在均匀变形流场中的悬浮动力学.中国纺织大学学报,1988,14(6),89
    [24]范辰五;程悌吾.气体—纤维流动的一个计算模型及其在典型流动中的应用举例.中国纺织大学学报,1987,13(2),1
    [25]Yamamoto S; Matsuoka T. A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field. J. Chem. Phys.,1993,98(1),644.
    [26]Mastui M. Air Drag on a Continuous Filament in Melt Spinning. Transactions of the Society of Rheology,1976,20(3) 465.
    [27]Chung T.S.; Abdalla S. Mathematical modeling of air drag spinning for nonwoven fabrics. Polyrmer Plastics Technology and Engineering,1985,24(2), 117.
    [28]Korovitsyn K.O.; Genis A.V.; Yankov V.I. et al. Isothermal stretching of the jet of polymer melt in aerodynamic fibre spinning. Fiber Chemistry,1988,20(2),104.
    [29]Majumdar B.; Shambaugh R.L. Air drag on filaments in the melt blowing process. Journal of Rheology,1990,34(4),591.
    [30]Ju Y.D.; Shambaugh R.L. Air Drag on Fine Filaments at Oblique and Normal Angles to the Air Stream. Polymer Engineering and Science,1994,34(12),958.
    [31]Uyttendaele M.A.J.; Shambaugh R.L. Melt blowing:General Equation Development and Experiment Verification. AIChE. Journal,1990,36(2),175.
    [32]Tyagi M.K.; Shambaugh R.L. Use of Oscillating Jets in Fiber Processing. Industrial& Engineering Chemistry Research,1995,34(2),656.
    [33]Chen T.; Huang X.B. Modeling Polymer Air Drawing in the Melt Blowing Process. Textile Research Journal,2003,73(7),651.
    [34]Zieininski K.F.; Spruiell J.E. A mathematical Model of Crystalline Fiber-forming Polymer. Synthetic Fibers,1986,4,31.
    [35]Wu T.T.; Shambaugh R.L. Characterization of the Melt Blowing Process with Laser Doppler. Industrial& Engineering Chemistry Research,1992,31(1),379.
    [36]Rao R.S.; Shambaugh R.L. Vibration and Stability in the Melt Blowing Process. Industrial& Engineering Chemistry Research,1993,32(12),3100-3111.
    [37]Chhabra R.; Shambaugh R.L. Experimental Measurements of Fiber Threadline Vibrations in the Melt-Blowing Process. Industrial& Engineering Chemistry Research,1996,35(11),4366.
    [38]Bansal V.; Shambaugh R.L. On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene. Industrial& Engineering Chemistry Research,1998,37(5),1799.
    [39]Yin H.; Yan Z.; Bresee R.R. Experimental Study of the Meltblowing Process. International Nonwovens Journal,2002,8(1).
    [40]Bresee R.R.; Ko W.C. Fiber Formation During Melt Blowing. International Nonwovens Journal,2003,12(2),21.
    [41]Yin H.; Yan Z.; Ko W.C; Bresee R.R. Fundamental Description of the Melt Blowing Process. International Nonwovens Journal,2000,9(4),25.
    [42]Marla V. T.; Shambaugh R.L. Three-Dimensional Model of the Melt-Blowing Process. Industrial& Engineering Chemistry Research,2003,42(26),6993.
    [43]Chen T; Huang X.B. Air Drawing of Polymers in the Melt Blowing Nonwoven: Mathematical Modeling. Modeling and Simulation in Materials Science and Engineering,2004,12(3),381.
    [44]Beard J.H.; Shambaugh R.L.; Shambaugh B.R.; Schmidtke D.W. On-line Mearsurement of Fiber Motion During Melt Blowing. Industrial& Engineering Chemistry Research,2007,46(22),7340.
    [45]Klinzing W.P.; Sparrow E.M. Three-Dimensional Fluid Flow in the Processing of Fine Fibers. Industrial& Engineering Chemistry Research,2008,47(22),8754.
    [46]Taylor G I. Electrically driven jets. Proc. Roy. Soc. Lond,1969,313(1515),453
    [47]Larrondo L.; Manley R.S. Electrostatic Fibers Spinning from Polymer Melts. Ⅰ. Experimental Observations on Fiber Formation and Properties. Journal of Polymer Science,1981,19(6),909
    [48]Yarin A.L.; Koombhongse S.; Reneker D.H. Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers. Journal of Applied Physics,2001, 90(9),4836
    [49]He J.H.; Wan Y.Q.; Yu J.Y. Allometric Scaling and Instability in Electrospinning. International Journal of Nonlinear Sciences and Numerical Simulation,2004,5(3), 243.
    [50]Kirichenko V.N.; Petryanov-Sokolov; Suprun N.N.; Shutov A.A. Asymptotic Radius of a Slightly Conducting Liquid Jet in an Electric Field. Soviet Physics Doklady,1986,31,611
    [51]Spivak F.; Dzenis Y. A. Asymptotic Decay of Radius of a Weakly Conductive Viscous Jet in an External Electric Field. Applied Physics Letters,1998,73(21), 3067.
    [52]Spivak F.; Dzenis Y. A.; Reneker D.H. a Model of Steady State Jet in the Electrospinning Process, Mechanics Research Communications,2000,27(1),37
    [53]Qin X.H.; Wan Y.Q.; He J.H.; et al. Effect of LiCl on Electrospinning of PAN Polymer Solution:Theoretical Analysis and Experimental Verification. Polymer, 2004,45(18),6409.
    [54]Hohman M.M.; Shin M.; Rutledge G; Brenner M.P. Electrospinning and electrically forced jets:Stability theory. Physics of Fluids,2001,13(8),2201.
    [55]Hohman M.M.; Shin Y.M.; Rutledge G.; Brenner M.P. Electrospinning and Electrically Forced Jets:Applications. Physics of Fluids,2001,13(8),2221.
    [56]Feng J.J. The Stretching of an Electrified Non-Newtonian Jet:A Model for Electrospinning. Physics of Fluids,2002,14(11),3912
    [57]Feng J.J. Stretching of a straight electrically charged viscoelastic jet. J. Non-Newtonian Fluids Mech.,2003,116(1),55
    [58]Deitzel J.M.; Kleinmeyer J.; Harris D. The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer,2001,42(1),261.
    [59]Doshi J.; Reneker D.H. Electrospinning Process and Applications of Electrospun Fibers. Journal of Electrostatics,1995,35(2),151.
    [60]Reneker D.H.; Yarin A.L.; Fong H.; Koombhongse S. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. Journal of Applied Physics,2000,87(9),4531
    [61]Yarin A.L.; Koombhongse S.; Reneker D.H. Bending Instability in the Electrospinning of Nanofibers. Journal of Applied Physics,2001,89(5),3018.
    [62]Shin Y.M.; Hohman M.M.; Brenner M.P.; Rutledge G.C. Electrospinning:a Whipping Fluid Jet Generates Submicron Polymer Fibers, Applied Physics Letters,2001,78(8),1149.
    [63]Shin Y.M.; Hohman M.M.; Brenner M.P.; Rutledge G.C. Experimental Characterization of Electrospinning:the Electrically Forced Jet and Instabilities. Polymer,2001,42(25),9955.
    [64]孟凯.熔喷非织造模头设计中几个问题的研究.东华大学博士论文2009.
    [1]Fluent Inc. FLUENT User's Guide. Fluent Inc.2003.
    [2]Hinze J.O. Turbulence. McGraw-Hill, New York,1975.
    [3]Lauder B.E.; Spalding D.B. Lectures in Mathematical Models of Turbulence. Academic Press, London 1972.
    [4]王福军.计算流体动力学分析——CFD软件原理与应用.清华大学出版社,北京2004.
    [5]Krutka H.M.; Shambaugh R.L. Analysis of a Melt-Blowing Die:Comparison of CFD and Experiments. Industry& Engineering Chemistry Research,2002,37, 5125.
    [1]Harpham A.S.; Shambaugh R.L. Flow Field of Practical Dual Rectangular Jets. Industry& Engineering Chemistry Research 1996,35(10),3776-3781.
    [2]Harpham A.S.; Shambaugh R.L. Velocity and Temperature Fields of Dual Rectangular Jets. Industry& Engineering Chemistry Research,1997,36(9),3937.
    [3]Tate B.D.; Shambaugh R.L. Modified Dual Rectangular Jets for Fiber Production. Industry& Engineering Chemistry Research,1998,37(9),3772-3779.
    [4]陈廷.熔喷非织造气流拉伸工艺研究.东华大学博士论文2003.
    [5]Beard J.H.; Shambaugh R.L.; Shambaugh B.R.; Schmidtke D.W. On-line Mearsurement of Fiber Motion During Melt Blowing. Industrial& Engineering Chemistry Research,2007,46(22),7340.
    [6]Dantec Dynamics Company. How to Measure Turbulence with Hot-wire Anemometers-a practical guide. Publication No.:9040U6151. Date:2002-01-01.
    [1]Uyttendaele M.A.J.; Shambaugh R.L. The flow field of annular jets at moderate Reynolds numbers. Industry& Engineering Chemistry Research,1989,28(11), 1735
    [2]Harpham A.S.; Shambaugh R.L. Flow Field of Practical Dual Rectangular Jets. Industry& Engineering Chemistry Research,1996,35(10),3776-3781.
    [3]Harpham A.S.; Shambaugh R.L. Velocity and Temperature Fields of Dual Rectangular Jets. Industry& Engineering Chemistry Research,1997,36(9),3937.
    [4]Tate B.D.; Shambaugh R.L. Modified Dual Rectangular Jets for Fiber Production. Industry& Engineering Chemistry Research,1998,37(9),3772-3779.
    [5]Wang X.M.; Ke Q.F. Empirical Formulas for Distributions of Air Velocity and Temperature Along the Spinline of a Dual Slot Die. Polymer Engineering and Science,2005,45(8),1092.
    [6]Chen T.; Huang X.B. Study on the Flow Field of the Air Jet From Dual Slot Die in the Melt Blowing Process. Polymer Engineering and Science,2005,41(6),971.
    [7]Chen T.; Huang X.B. Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process. Journal of Donghua University,2002,19(4),1.
    [8]Krutka H.M.; Shambaugh R.L. Analysis of a Melt-Blowing Die:Comparison of CFD and Experiments. Industry& Engineering Chemistry Research,2002, 41(20),5125.
    [9]Moore E.M.; Shambaugh R.L. Analysis of isothermal annular jets Comparison of Computational Fluid Dynamics and Experimental Data. Journal of Applied Polymer Science,2004,94(3),909.
    [10]Krutka H.M.; Shambaugh R.L. Analysis of Multiple Jets in the Schwarz Melt-Blowing Die Using Computational Fluid Dynamics, Industrial& Engineering Chemistry Research,2005,44(23),8922.
    [11]Krutka H.M.; Shambaugh R.L. Analysis of the Temperature Field from Multiple Jets in the Schwarz Melt Blowing Die Using Computational Fluid Dynamics, Industrial& Engineering Chemistry Research,2006,45(14),5098.
    [12]Uyttendaele M.A.J.; Shambaugh R.L. Melt blowing:General Equation Development and Experiment Verification. AIChE. Journal,1990,36(2),175.
    [13]王小平,曹立明.遗传算法—理论、应用于软件实现.西安:西安交通大学出版社,2002.
    [14]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley Publishing Company,1989.
    [15]Huang, C. C; Tang, T. T. Parameter Optimization in Melt Spinning by Neural Networks and Genetic Algorithms. The International Journal of Advanced Manufacturing Technology 2006,27(11),1113.
    [16]雷英杰MATLAB遗传算法工具箱及应用,西安电子科技大学出版社2005.
    [17]郁崇文,汪军,王新厚.工程参数的最优化设计.东华大学出版社2003.
    [1]Bird R.B.; Crutiss C.F.; Armstrong R.C. and Hassager O. Dynamics of Polymeric Liquids, Volume 2:Kinetic Theory. John Wiley& Sons, New York,1987.
    [2]Mastui M. Air Drag on a Continuous Filament in Melt Spinning. Transactions of the Society of Rheology,1976,20(3),465.
    [3]Gould J.; Smith F.S. Air-drag on Synthetic-fiber Textile Monofilaments and Yarns in Axial Flow at Speeds of up to 100 Meters per Second. Journal of the Textile Institute,1980,1,38
    [4]Majumdar B.; Shambaugh R.L. Air drag on filaments in the melt blowing process. Journal of Rheology,1990,34(4),591.
    [5]Mott R.L. Applied Fluid Mechanics; Bell& Howell Company:Ohio,1979,351.
    [6]Morgan V.T. Advances in Heat Transfer; Academic Press:New York,1975; Vol.11,239-243.
    [7]Zieininski K.F.; Spruiell J.E. A mathematical Model of Crystalline Fiber-forming Polymer. Synthetic Fibers,1986,4,31.
    [8]吴大诚,杨忠和,何勤功等.合成纤维熔体纺丝.纺织工业出版社,1980.
    [9]Uyttendaele M.A.J.; Shambaugh R.L. Melt blowing:General Equation Development and Experiment Verification. AIChE. Journal,1990,36(2),175
    [10]Rao R.S.; Shambaugh R.L. Vibration and Stability in the Melt Blowing Process. Industrial& Engineering Chemistry Research,1993,32(12),3100-3111.
    [11]Marla V. T.; Shambaugh R.L. Three-Dimensional Model of the Melt-Blowing Process. Industrial& Engineering Chemistry Research,2003,42(26),6993.
    [12]Bansal V; Shambaugh R.L. On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene. Industrial& Engineering Chemistry Research,1998,37(5),1799.
    [13]Yin H.; Yan Z.; Bresee R.R. Experimental Study of the Meltblowing Process. International Nonwovens Journal,2002,8(1).
    [14]Bresee R.R.; Ko W.C. Fiber Formation During Melt Blowing. International Nonwovens Journal,2003,12(2),21.
    [15]Yin H.; Yan Z.; Ko W.C.; Bresee R.R. Fundamental Description of the Melt Blowing Process. International Nonwovens Journal,2000,9(4),25.
    [16]Entov, V.M.; Yarin, A.L. the Dynamics of Thin Liquid Jets in Air. J. Fluid Mech, 1984,140,91.
    [17]陈廷.熔喷非织造气流拉伸工艺研究.东华大学博士学位论文2003.
    [18]曾泳春.纤维在高速气流场中运动的研究和应用.东华大学博士学位论文2003.
    [1]Hohman M.M.; Shin M.; Rutledge G; Brenner M.P. Electrospinning and electrically forced jets:Stability theory. Physics of Fluids,2001,13(8),2201.
    [2]Hohman M.M.; Shin Y.M.; Rutledge G; Brenner M.P. Electrospinning and Electrically Forced Jets:Applications. Physics of Fluids,2001,13(8),2221.
    [3]Feng J.J. The Stretching of an Electrified Non-Newtonian Jet:A Model for Electrospinning. Physics of Fluids,2002,14(11),3912
    [4]Feng J.J. Stretching of a straight electrically charged viscoelastic jet. J. Non-Newtonian Fluids Mech.,2003,116(1),55
    [5]Ganan-Calvo, A.M. On the Theory of Electrohydrodynamically Driven Capillary Jets. J. Fluid Mech.,1997,335,165
    [6]Theron, S.A.; Yarin, A.L.; Zussman, E., et al. Multiple Jets in Electrospinning: Experiment and Modeling. Polymer,2005,46(9),2889
    [7]Yang, Y; Jia, Z.D.; Liu, J.A. et al. Effect of Electric Field Distribution Uniformity on Electrospinning. Journal of Applied Physics,2008,103(10),104307
    [8]Beard, J.H.; Shambaugh, R.L.; Shambaugh, B.R.; Schmidtke, D.W. On-line Measurement of Fiber Motion during Melt Blowing. Ind. Eng. Chem. Res,2007, 46(22),7340.
    [9]Reneker D.H.; Yarin A.L.; Fong H.; Koombhongse S. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. Journal of Applied Physics,2000,87(9),4531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700