用户名: 密码: 验证码:
快速热循环注塑成型关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速热循环注塑技术是一种基于模具快速加热和快速冷却的注塑成型工艺,其技术特点是在不影响注塑成型周期的前提下实现高模温注塑成型。在快速热循环注塑中,填充阶段的高模具温度可以有效避免模具型腔中塑料熔体的过早冷凝,彻底消除塑料熔体表面的冷凝层,这将显著提高塑料熔体的流动性,增强塑料熔体转印模具型腔形状的能力。因此,快速热循环注塑工艺可以有效消除常规注塑成形产品易出现的流痕、喷射痕、熔接痕、浮纤、低光泽等表面缺陷,能够注塑成形具有超高流长比的塑件,精确复制模具型腔的微细结构,有效降低注射压力、注射速率、保压压力和锁模力,减小塑件的内应力。由于快速热循环注塑成形的塑件具有极高的外观质量,无需打磨、喷涂、罩光等后续加工,所以该技术可以显著缩短高品质外观塑件的生产流程,有效降低生产成本,减小能源消耗,并避免打磨、喷涂、罩光等工序对环境造成的污染,有利于改善车间工作环境和保护工人身体健康。显然,快速热循环注塑是一种高质量、高精度而又节能减排、环境友好的绿色注塑新工艺,具有广阔的应用前景和巨大的市场潜力。
     本文从快速热循环注塑成型的工艺原理、工艺流程、模具温度控制系统、模具设计与制造、装备及生产线构建、模具热响应分析、模具加热/冷却系统优化设计、模具疲劳寿命分析与优化、工艺优化设计、成型机理等方面对快速热循环注塑成型工艺进行了系统研究。
     分析了快速热循环注塑工艺原理和模具温度控制原理,提出了蒸汽加热快速热循环注塑工艺和电加热快速热循环注塑工艺,通过对快速热循环注塑周期的深入分析,制定了合理的工艺流程。研发了基于可编程逻辑控制器和触摸屏技术的蒸汽加热和电加热动态模具温度控制系统,研制了大型液晶电视机面板用蒸汽加热快速热循环注塑模具和电加热快速热循环注塑模具,基于热响应分析和试验对模具的热循环效率进行了评估,提出了一种适合于具有三维复杂形状塑件的蒸汽加热快速热循环注塑模具结构和电加热快速热循环注塑模具结构。利用自主研制的动态模具温度控制系统和注塑模具,构建了蒸汽加热快速热循环注塑生产线和电加热快速热循环注塑生产线,实现了液晶电视机面板的高光无熔痕注塑生产,彻底消除了打磨、喷涂、罩光等二次加工工序。对快速热循环注塑成本和效益进行了对比分析,研制了不同规格不同型号的动态模具温度控制系统和注塑模具,实现了快速热循环注塑成型技术的工程化应用。
     分别研究了蒸汽加热和电加热快速热循环注塑过程的传热规律,推导建立了两种快速热循环注塑工艺的热平衡方程,分析了模具加热效率和冷却效率的影响因素,提出了加快模具热循环的有效措施和快速热循环注塑模具结构设计原则。构建了蒸汽加热和电加热快速热循环注塑模具的热响应分析模型,研究了两种加热方式的快速热循环注塑模具型腔表面的热响应规律,分析了模具隔热层、模具材料对模具型腔表面热响应效率和温度均匀性的影响规律,对比讨论了两种快速热循环注塑工艺的加热效率、冷却效率和能量消耗,给出了两种加热方式的快速热循环注塑模具结构设计方法。提出了一种浮动型腔式电加热快速热循环注塑模具结构,有效减小了注塑循环过程中需要快速加热和快速冷却的型腔板的热容量,显著提高了模具型腔表面的热响应效率。基于浮动型腔式模具结构,设计了大型液晶电视机面板的电加热快速热循环注塑模具,解决了与模具设计、加工和装配有关的关键技术。基于传热数值模拟技术,研究分析了加热/冷却介质类型、加热/冷却介质温度、加热冷却管道布局、模具材料以及塑件厚度对蒸汽加热快速热循环注塑模具热循环效率和温度均匀性的影响规律,建立了加热系统、冷却系统和模具结构的优化设计方法。
     基于响应曲面法,结合试验设计和热-结构耦合分析,研究了加热冷却管道布局和电加热元件布局对模具型腔表面的热响应效率、温度分布均匀性和疲劳寿命的影响规律,利用基于最小二乘法的回归分析,建立了模具加热时间、型腔表面最高温度和型腔板承受的最大等效应力的响应曲面模型,通过变异数分析和随机试验,验证了响应曲面模型的有效性。提出了加热效率优先、温度均匀性优先和疲劳寿命优先三种优化设计策略,基于建立的响应曲面模型分别构建了带有约束的优化函数模型,利用自主开发的优化设计程序对目标优化函数模型进行了非线性优化,获得了加热冷却管道和电加热元件的优化布局和尺寸,并模拟验证了优化设计的有效性。通过优化设计可有效提高模具的热响应效率、改善型腔表面温度分布的均匀性和减小模具承受的最大等效热应力。基于响应曲面法和开发的多目标优化设计程序,分别实现了液晶电视机面板蒸汽加热和电加热快速热循环注塑模具型腔板结构的优化设计,研究结果对提高快速热循环注塑工艺的成品率、生产效率和模具使用寿命具有十分重要的作用。
     以蒸汽加热快速热循环注塑模具为例,通过三维有限元传热分析和热-结构分析,研究得到了模具加热过程中型腔板内部温度场和应力场的分布规律,试验验证了传热分析结果的有效性。基于应力分析结果,对型腔板进行了疲劳模拟分析,实现了快速热循环注塑模具疲劳寿命的预测和评估,并分析讨论了模拟预测结果与实际结果之间存在一定差距的原因,结合热-结构分析结果和注塑模具的实际疲劳失效形式,揭示了模具的疲劳破坏机制。研究了模具型腔表面温度、锁模力、型腔板固定方式、模具加热系统等对快速热循环注塑模具疲劳寿命的影响规律,为快速热循环注塑工艺参数的合理控制和模具结构的优化设计提供了理论依据和科学指导。
     研究了快速热循环注塑工艺的模拟技术,通过对快速热循环注塑工艺和常规注塑工艺的注塑模拟,对比分析了快速热循环注塑工艺对熔体填充能力、塑件形状尺寸精度、表面缩痕、冷却时间和光学性能的影响。针对基于单侧模具快速加热和快速冷却技术的快速热循环注塑工艺存在的塑件翘曲变形问题,分析揭示了塑件翘曲变形的机理,研究了保压控制和模具冷却控制对塑件翘曲变形和缩痕深度的影响规律,提出了优化的保压控制和模具冷却策略,实现了保压参数和模具冷却参数的优化设计。基于优化的保压控制和模具冷却控制策略,进一步研究了快速热循环注塑工艺的注射速率、熔体温度、型芯侧模具温度等工艺参数对塑件翘曲变形和缩痕深度的影响规律,建立了可用于塑件翘曲变形和缩痕深度预测的数学模型,以减小塑件的翘曲变形和缩痕深度为目标,构建了有约束的优化函数模型,利用自主开发的优化设计程序,实现了快速热循环注塑工艺的优化设计。实际生产结果表明,经优化设计的快速热循环注塑工艺有效减小了塑件的翘曲变形和减轻了塑件的表面缩痕,从而显著简化了快速热循环注塑工艺的调试过程,有效提高了快速热循环注塑工艺的成品率。
     研制了可生产有/无熔接痕标准拉伸试样、冲击试样和热变形试样的电加热快速热循环注塑模具,对模具的加热系统和流道系统进行了优化设计,利用自主研发的动态模温控制系统,构建了电加热快速热循环注塑试验线。开发了基于薄膜热电偶、数据记录仪和计算机的模具型腔表面温度测量和采集系统,试验研究了电加热快速热循环注塑模具型腔表面的温度响应规律。通过试验设计,定量分析了模具加热时间和冷却时间对热循环过程中型腔表面最高温度和最低温度的影响,利用回归分析技术拟合建立了可用于模具型腔表面最高温度和最低温度控制的数学模型,并对构建的数学模型进行了试验验证。建立了电加热快速热循环注塑模具的热响应分析模型,对热循环过程中模具型腔板的热响应进行了模拟分析,研究了模具型腔板的温度分布规律,通过与试验结果的对比,验证了模拟分析的有效性,分析讨论了电加热元件功率密度对模具加热效率的影响和冷却水温度对模具冷却效率的影响。通过全析因试验设计,系统研究了快速热循环注塑工艺的注射压力、注射速率和模具型腔表面温度对熔体填充能力的影响规律。利用构建的电加热快速热循环注塑试验系统,系统研究了高光塑料、结晶型塑料、无定形塑料、纳米颗粒增强塑料和纤维增强塑料的快速热循环注塑工艺,探明了填充阶段模具型腔表面温度对各种材料塑件表面光泽度、表面粗糙度、熔接痕、形貌结构的影响规律,揭示了低型腔表面温度下混合型塑料和结晶型塑料塑件表面粗糙的机理、高型腔表面温度下增强塑料塑件表面浮纤或悬浮颗粒消失的机制以及玻纤增强塑件表面驼峰型熔接痕的形成机理。系统研究了快速热循环注塑工艺填充阶段的模具型腔表面温度对各种塑料有/无熔接痕塑件拉伸强度和冲击强度的影响规律。
Rapid heat cycle molding (RHCM) is a new developed injection molding process based on rapid heating and rapid cooling technologies. Compared with conventional injection molding (CIM), the most notable feature of RHCM is that the injection mold should be rapidly heated to a high temperature before melt filling and rapidly cooled to a low temperature after melt filling. The high cavity surface temperature during melt filling can effectively prevent the premature cooling of the polymer melt and eliminate the frozen layer completely. Therefore, RHCM process can significantly improve the fluidity of the polymer melt and hence increase its transferability of the mold cavity geometry. RHCM process can effectively solve the part surface defects, such as flow mark, jetting mark, weld mark, floating fiber, low glossy, etc., usually appearing in CIM process. In addition, RHCM can be used to mold the plastic part with super-high flow length ratio, the plastic part with micro structure. Besides, RHCM can also significantly reduce injection pressure, injection velocity, packing pressure and clamping force of the molding process. This is of great significance to reduce the dependence of the molding process on large tonnage injection molding machines. Low injection pressure and low injection velocity can reduce the inner stress of the molded plastic part, which is very helpful to reduce shape distortion, improve dimension accuracy and optical performance. Since RHCM parts has extremely high surface appearance and the secondary processing operations for CIM parts, such as polishing, painting and finishing, are not needed any more, it can significantly shorten the production process, effectively reduce production cost, energy consumption and environmental pollution. Altogether, RHCM is a type of high-quality, high-accuracy, energy-saving and also environment-friendly green injection molding process, which has broad application prospects and huge market potential. In this paper, RHCM will be given a systematic and in-depth study in the aspects of technology principle, technological process, dynamic mold temperature control system, mold design and manufacture, equipment and production lines construction, mold thermal response analysis, mold heating and cooling system optimization design, mold fatigue life analysis and optimization, process optimization and experimental research.
     By analyzing the process principle and dynamic mold temperature control principle of RHCM, two types of new RHCM processes are presented. One based on steam heating is the so-called rapid heat cycle molding with steam heating (S-RHCM) and the other one based on electric heating is the so-called rapid heat cycle molding with electric heating (E-RHCM). The reasonable process steps for the two RHCM processes are presented by analyzing their molding cycle compositions. The corresponding dynamic mold temperature control system for the two RHCM processes are developed and manufactured based on programmable logic controller and touch panel techniques. S-RHCM mold and E-RHCM mold for a type of large LCD TV panel are also designed and manufactured. The thermal response efficiency of the two RHCM molds is evaluated by heat transfer analysis. In order to achieve uniform heating and cooling the mold cavity surface with complex geometry, a new S-RHCM mold structure with conformal heating and cooling channels and a new E-RHCM mold structure with conformal heating elements are presented. With the developed dynamic mold temperature control systems and RHCM molds, S-RHCM production lines and E-RHCM production lines for LCD TV panels are constructed. The test production results show that the developed RHCM processes can significantly improve the surface appearance of the plastic part by eliminating weld marks and increasing surface gloss, and at the same time the molding cycle time of RHCM is very close to that of CIM. Several types and series of dynamic mold temperature control systems and RHCM molds are developed and manufactured and a large application of the developed RHCM processes are achieved.
     Heat transfer in the molding systems of S-RHCM and E-RHCM are investigated and the corresponding thermal balance equations are presented and deduced. Based on the developed thermal balance equations, the factors affecting the heating and cooling efficiency of the RHCM mold are analyzed and hence the design guidelines for S-RHCM mold and E-RHCM mold are proposed. The thermal response analysis models for S-RHCM mold and E-RHCM mold are constructed. Heat transfer analysis based finite element method (FEA) is performed to investigate the thermal response of the mold cavity surface. The effect of the insulation layer and mold materials on thermal response efficiency and temperature uniformity of the mold cavity surface are also investigated. According to the thermal response analysis results, the heating efficiency, cooling efficiency and energy consumption of the two RHCM processes are calculated and compared. Some useful guidelines are presented for mold optimization design and application of the two RHCM processes. A new E-RHCM mold structure with a floating cavity block or cooling plate is developed to reduce the thermal inertia of the cavity block that has to be rapidly heated and cooled. Thermal response analysis results show that the new developed E-RHCM mold structure can significantly improve the thermal response efficiency of the mold cavity surface. Based on the new E-RHCM mold structure, a new large E-RHCM mold for a type of LCD TV panel is developed. The tricks in design, manufacture and assembly of the new E-RHCM mold are also discussed and some useful guidelines are presented. The effect of different types of heating/cooling medium, heating/cooling medium temperatures, heating and cooling channels distribution, mold material and plastic part thickness on thermal cycle efficiency and temperature uniformity of S-RHCM process are also investigated by heat transfer analysis. Based on the analysis results, some guidelines for improving heating system design, cooling system design and mold design of S-RHCM process are presented. Finally, the effectiveness of heat transfer analysis is verified by comparing the analysis results with the theoretical results.
     The effect of the heating/cooling channels distribution on thermal response efficiency, temperature uniformity and fatigue life of the S-RHCM mold and the effect of the electric heating elements distribution on thermal response efficiency, temperature uniformity and fatigue life of the E-RHCM mold are both systematically investigated based on response-surface experimental design and thermo-structural coupling analysis. With the experimental design and analysis results, least squares regression analysis is used to fit the response surface models for the three objective variables including the required mold heating time, the maximum temperature difference of the cavity surface and the maximum von mises stress. The significance and effectiveness of the constructed response surface models are then verified by ANOVA analysis and random experiments. Three different optimization design strategies including heating efficiency priority, temperature uniformity priority and fatigue life priority are proposed for optimization design of the S-RHCM mold and E-RHCM mold. The optimization function models for the three optimization strategies are built accordingly. A multi-objective particle swarm optimization algorithm (MOPSO) is then developed to solve the optimization problems. The optimization results show that heating efficiency, temperature uniformity and fatigue life of the mold can be improved significantly. Finally, the developed optimization design method based on MOPSO is used to achieve optimization design of the cavity blocks for a large LCD TV panel S-RHCM mold and E-RHCM mold. Based on the optimization design, the heating efficiency and temperature uniformity of the mold are greatly improved, which is of great significance to increase production yield, production efficiency and service life of the S-RHCM mold and E-RHCM mold.
     Three-dimensional finite element heat transfer analysis and thermo-structural coupling analysis are used to investigate thermal response, temperature distribution, and thermal stress distribution of the S-RHCM mold cavity block. Thermal response experiment of the S-RHCM mold is performed to verify the effectiveness of the heat transfer analysis. The fatigue analysis based on thermo-structural coupling analysis is further performed to evaluate the fatigue life of the S-RHCM mold. The reason for the difference between the estimated fatigue life and the actual fatigue life is discussed. According to the thermal stress analysis results and the actual failure mode of the S-RHCM mold, the thermal fatigue failure mechanism is proposed. Finally, the effect of the mold cavity surface temperature, clamping force, installation of the cavity block and mold heating system on fatigue life of the S-RHCM mold and E-RHCM mold is investigate by thermo-structural coupling analysis. Some useful guidelines for the process control and mold design are presented to improve the fatigue life of the S-RHCM mold and E-RHCM mold.
     Simulation technologies for RHCM process are investigated and Moldflow is successfully used to simulate the new molding process. Based on the simulation results of RHCM process and CIM process, the effect of RHCM process on melt filling ability, part shape and dimension accuracy, sink mark, cooling time and birefringence is investigated. The mechanism for part large warpage of the RHCM process in which only the cavity side of the mold is rapidly heated and cooled is proposed. The effect of the packing control and mold cooling control on the part warpage of the RHCM process is investigated by simulation so as to achieve optimization design of the packing process and cooling process. The optimization results show that the warpage and sink depth of the plastic part can be greatly decreased with the optimum packing and cooling control. Based on the optimum packing and cooling control, the effect of RHCM process parameters including injection velocity, melt temperature and the mold temperature of core side and packing pressure on warpage and sink depth of the molded part is further investigated. The quadratic polynomial mathematic models are developed to predicate warpage and sink depth of the plastic part. ANOVA is performed to analyze the significance of the developed mathematic models and also the design variables. Random experiments are used to verify the effectiveness and accuracy of the developed mathematic models. The optimization function model is built with the objective to reduce warpage and sink depth of the part. The developed MOPSO is then used to solve the optimization function model and acquire the optimum process parameters. Finally, actual RHCM production with the optimum parameters on the S-RHCM production line is performed to verify the effectiveness of the optimization design.
     An E-RHCM production line which can produce standard tensile specimens, impact specimens and heat deflection specimens with/without weld lines is constructed for experimental research of RHCM process. The heating system of the E-RHCM mold is optimized to ensure a uniform heating of the cavity surfaces and the runner system of the E-RHCM mold is also optimized to achieve balance filling of the mold cavities. A cavity surface temperature measurement and acquisition system is developed and built based on thin-film thermocouple, data logger and computer, which is then used to investigate the thermal response of the cavity surfaces. Full factorial experimental design is used to research the effect of the molding heating time and cooling time on the maximum temperature and minimum temperature of the cavity surfaces. Based on the experimental results, regress analysis is applied to develop the mathematical relationships between the design variables of mold heating time and mold cooling time and the objective variables of the maximum temperature and the minimum temperature of the cavity surfaces. The external random experiments are also performed to confirm the accuracy of the developed mathematic relationship models. Thermal response simulation based on FEA is performed to investigate the temperature variety of the cavity surfaces during rapid heating and cooling cycles. The thermal response of the cavity surface acquired by experiments is used to verify the effectiveness of the heat transfer simulation. After verification, thermal response simulation is then used to investigate the effect of power density of the electric heating elements on mold heating efficiency and the effect of cooling water temperature on mold cooling efficiency. With the E-RHCM experimental production line, the effect of injection pressure, injection velocity and mold cavity surface temperature on melt filling ability is investigated by experimental study. The RHCM processes of the high glossy plastics, crystalline plastics, amorphous plastics, nano-particle reinforced plastics and fiber reinforced plastics are systematically and in-depth researched. The effect of the mold cavity surface temperature on surface gloss, surface roughness, weld mark and structural morphology is analyzed. Based on this, the mechanisms for high roughness of the mixed plastics and crystalline plastics with a low cavity surface temperature, the elimination of the floating particles or fibers of the reinforced plastics with a high cavity surface temperature and also the hump-shaped weld mark for the fiber reinforced plastics are proposed. Finally, the effect of the cavity surface temperature in RHCM process on tensile strength and impact strength of the plastic part with/without weld lines for different plastics are systematically studied. The mechanisms for the variety of the plastic part strength with the temperature changes are in-depth analyzed and discussed.
引文
[I]Rubin I.I. Mold cooling [J]. Advances in Polymer Technology,1981,1(1):65-93.
    [2]Giboz J., Copponnex T., Mele P. Microinjection molding of thermoplastic polymers:a review [J]. Journal of Micromechanics and Microengineering,2007,17(6):R96-R109.
    [3]Yao D.G., Chen S.C., Kim B.H. Rapid Thermal Cycling of Injection Molds:An Overview on Technical Approaches and Applications [J]. Advances in Polymer Technology,2008, 27(4):233-255.
    [4]Bolstad L.L. Molding apparatus [P]. USA:2979773,1961-04-18.
    [5]Lemelson J.H. Molding apparatus [P]. USA:3173175,1965-03-16.
    [6]Chen S.C., Chien R.D., Lin S.H., et al. Feasibility evaluation of gas-assisted heating for mold surface temperature control during injection molding process [J]. International Communications in Heat and Mass Transfer,2009,36(8):806-812.
    [7]Fu G., Loh N.H., Tor S.B., et al. A variotherm mold for micro metal injection molding [J]. Microsystem Technologies,2005,11(12):1267-1271.
    [8]Jeng M.C., Chen S.C., Minh P.S., et al. Rapid mold temperature control in injection molding by using steam heating [J]. International Communications in Heat and Mass Transfer,2010, 37(9):1295-1304.
    [9]Wang G.L., Zhao G.Q., Li H.P., et al. Research on a New Variotherm Injection Molding Technology and its Application on the Molding of a Large LCD Panel [J]. Polymer-Plastics Technology and Engineering,2009,48(7):671-681.
    [10]Hendry J.W. Method and apparatus for injection molding foamed resin products having a smooth finish on their surface [P]. USA:4201742,1980-05-06.
    [11]Hendry J.W., Han J.C. Method and apparatus for heating a mold cavity uniformly [P]. USA: 4930486,1983-06-28.
    [12]Kimura N., Takahashi F., Yamaki M., et al. Mold device for injection molding of synthetic resin [P]. USA:US 2002/0094354 A1,2002-06-18.
    [13]Maus S.M., Galic G.J. Precision surface-replicating thermoplastic injection molding method and apparatus, using a heating phase and a cooling phase in each molding cycle [P]. USA: 5376317.
    [14]Satoh Y., Imagawa A., Yamaki M., et al. Synthetic resin molding mold, apparatus for and method of adjusting a temperature of the mold [P]. USA:US 6936206 B1,2005-08-30.
    [15]林志鸿.微射出快速模温控制系统与玻璃模仁表面微结构複制成型性探封[D].台湾大学硕士学位论文,2002.
    [16]葉俊锋.氣休辅助勤态模温控制系统建置与分析之研究[D].私立中原大学硕士学位 论文,2007.
    [17]锺佳伸.射出成型燮模温方法与成品表面品质之研究[D].国立中央大学硕士学位论文,2008.
    [18]Cao W., Shen C.Y., Li H.M. Coupled part and mold temperature simulation for injection molding based on solid geometry [J]. Polymer-Plastics Technology and Engineering,2006, 45(6):741-749.
    [19]Yao D.G. Rapid thermal response injection molding for microfeature fabrication [D]. Doctoral dissertations for University of Massachusetts-Amherst,2001.
    [20]Chen M., Yao D.G., Kim B. Eliminating flow induced birefringence and minimizing thermally induced residual stresses in injection molded parts [J]. Polymer-Plastics Technology and Engineering,2001,40(4):491-503.
    [21]Chen S.C., Jong W.R., Chang J.A., et al. Dynamic mold surface temperature control using induction and heater heating combined with coolant cooling [J]. International Polymer Processing,2006,21(5):457-463.
    [22]Wang G.L., Zhao G.Q., Liu J.T., et al. Development and evaluation of a dynamic mould temperature control system with electric heating for variotherm injection moulding [J]. Polymers & Polymer Composites,2009,17(7):443-455.
    [23]Jansen K.M.B. Heat transfer in injection moulding systems with insulation layers and heating elements [J]. International Journal of Heat and Mass Transfer,1995,38(2):309-316.
    [24]Jansen K.M.B., Flaman A.A.M. Construction of fast-response heating elements for injection molding applications [J]. Polymer Engineering and Science,1994,34(11):894-897.
    [25]Jansen K.M.B., Flaman A.A.M. The influence of surface heating on the birefringence distribution in injection molded parts [J]. Polymer Engineering and Science,1994,34(11): 898-904.
    [26]Kim B., Suh N. Low Thermal Inertia Molding (LTIM) [J]. Polymer-Plastics Technology and Engineering,1986,25(1):73-93.
    [27]Kim Y., Choi Y., Kang S.N. Replication of high density optical disc using injection mold with MEMS heater [J]. Microsystem Technologies,2005,11(7):464-469.
    [28]Lin Y.W., Li H.M., Chen S.C., et al.3D numerical simulation of transient temperature field for lens mold embedded with heaters [J]. International Communications in Heat and Mass Transfer,2005,32(9):1221-1230.
    [29]Xie L., Ziegmann G. A visual mold with variotherm system for weld line study in micro injection molding [J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,2008,14(6):809-814.
    [30]Yao D.G., Kim B. Development of rapid heating and cooling systems for injection molding applications [J]. Polymer Engineering and Science,2002,42(12):2471-2481.
    [31]Yao D.G., Kim B. Increasing flow length in thin wall injection molding using a rapidly heated mold [J]. Polymer-Plastics Technology and Engineering,2002,41(5):819-832.
    [32]Yao D.G., Kim B. Developing rapid heating and cooling systems using pyrolytic graphite [J]. Applied Thermal Engineering,2003,23(3):341-352.
    [33]Addeo A., Cocca V., Tommasi I. Process for preparing surface-upgraded molded articles using a low thermal inertia mold [P]. USA:5232653,1993-08-03.
    [34]Bernhardt E.C., Skewis F.H. Molding method and apparatus [P]. USA:3044118, 1962-07-17.
    [35]Godwin H., Whiffen D. Molding system using film heaters and/or sensors [P]. USA:US 6341954,2002-01-29.
    [36]Kim B.M. Multilayered mold structure for hot surface molding in a short cycle time [P]. USA:5176839,1993-01-05.
    [37]Yang W.J. Method of injection molding a foamed resin product having a smooth surface involving surface heating of the mold by applying high current low voltage electric power [P]. USA:4390485,1983-06-28.
    [38]Kim B. Low thermal inertia injection molding [D]. Doctoral dissertations for Massachusetts Institute of Technology,1983.
    [39]Chen S.C., Jong W.R., Chang J.A. Dynamic mold surface temperature control using induction heating and its effects on the surface appearance of weld line [J]. Journal of Applied Polymer Science,2006,101(2):1174-1180.
    [40]Chen S.C., Jong W.R., Chang Y.J., et al. Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology [J]. Journal of Micromechanics and Microengineering,2006,16(9):1783-1791.
    [41]Chen S.C., Lin Y.W., Chien R.D., et al. Variable Mold Temperature to Improve Surface Quality of Microcellular Injection Molded Parts Using Induction Heating Technology [J]. Advances in Polymer Technology,2008,27(4):224-232.
    [42]Eom H., Park K. Fully-Coupled Numerical Analysis of High-Frequency Induction Heating for Thin-Wall Injection Molding [J]. Polymer-Plastics Technology and Engineering,2009, 48(10):1070-1077.
    [43]Huang M.S., Huang Y.L. Effect of multi-layered induction coils on efficiency and uniformity of surface heating [J]. International Journal of Heat and Mass Transfer,2010, 53(11-12):2414-2423.
    [44]Huang M.S., Tai N.S. Experimental Rapid Surface Heating by Induction for Micro-Injection Molding of Light-Guided Plates [J]. Journal of Applied Polymer Science,2009,113(2): 1345-1354.
    [45]Kim S.H., Shiau C.S., Kim B.H., et al. Injection molding nanoscale features with the aid of induction heating [J]. Polymer-Plastics Technology and Engineering,2007,46(10-12): 1031-1037.
    [46]Kimerling T.E., Liu W.D., Kim B.H., et al. Rapid hot embossing of polymer microfeatures [J]. Microsystem Technologies,2006,12(8):730-735.
    [47]Park K., Sohn D.H., Cho K.H. Eliminating weldlines of an injection-molded part with the aid of high-frequency induction heating [J]. Journal of Mechanical Science and Technology, 2010,24(1):149-152.
    [48]陈夏宗,张仁安,林钰婉,等.快速动态模温控制于高深宽比微结构注塑成型[J].塑胶工业,2007,(1):24-27.
    [49]Depcik H.W. Process for improving the quality of injection moulded parts [P].USA: 5061415,1991-10-29.
    [50]Huang J. High frequency induction heater built in an injection mold [P]. USA:7132632, 2006-11-07.
    [51]Wada A., Tazaki K., Tabara T., et al. Injection molded articles with improved surface characteristics production of same and apparatus therefor [P]. USA:4340551,1982-07-20.
    [52]范家瑞.电磁感應技术應用於模具快速加热系统[D].国立成功大学硕士学位输文,2008.
    [53]郭永异.應用障列点膠於導光板模仁之制作及勤态燮模温系统对精密射出成型尊光板之研究[D].国立雲林科技大学硕士学位输文,2005.
    [54]李育芸.感應加熟應用於模具表面快速加热之研究[D].私立中原大学硕士学位输文,2002.
    [55]林夆融.内建式感應加熟器於射出模具表面快速加热之應用[D].国立台北科技大学硕士学位论文,2004.
    [56]王荷翔.利用燮模温改善超临界微细发泡成品表面品质之研究[D].私立中原大学硕士学位论文,2007.
    [57]谢友智.燮模温系统封精密微射出成型微溝纹複度影响研究[D].国立霎林科技大学硕士学位输文,2004.
    [58]杨坤颖.感應加热勤悲模温即畴监视与控温方式之研究[D].私立中原大学硕士学位论文,2007.
    [59]Chen S.C. Induction heating coil device [P]. USA:7060952,2006-06-13.
    [60]Kimerling T.E., Yao D.G., Kim B.H. Injection Molding Poly(Para-phenylene) with a Rapidly Heated Mold [J]. Polymer-Plastics Technology and Engineering,2009,48(10): 1008-1013.
    [61]Park K., Kim B., Yao D.G. Numerical simulation for injection molding with a rapidly heated mold, Part I:Flow simulation for thin wall parts [J]. Polymer-Plastics Technology and Engineering,2006,45(8):897-902.
    [62]Park K., Kim B., Yao D.G. Numerical simulation for injection molding with a rapidly heated mold, Part Ⅱ:Birefringence prediction [J]. Polymer-Plastics Technology and Engineering, 2006,45(8):903-909.
    [63]Yao D.G., Kimerling T.E., Kim B. High-frequency proximity heating for injection molding applications [J]. Polymer Engineering and Science,2006,46(7):938-945.
    [64]Kim B., Yao D.G. Method and apparatus for rapid mold heating and cooling [P]. USA:US 2004/0041303 Al,2004-03-04.
    [65]Saito T., Satoh I., Kurosaki Y. A new concept of active temperature control for an injection molding process using infrared radiation heating [J]. Polymer Engineering and Science, 2002,42(12):2418-2429.
    [66]杨益成.辐射快速加热模具表面之实验研究[D].国立成功大学硕士学位论文,2005.
    [67]Chang P.C., Hwang S.J. Simulation of infrared rapid surface heating for injection molding [J]. International Journal of Heat and Mass Transfer,2006,49(21-22):3846-3854.
    [68]Chang P.C., Hwang S.J. Experimental investigation of infrared rapid surface heating for injection molding [J]. Journal of Applied Polymer Science,2006,102(4):3704-3713.
    [69]游茗景.快速加熟系统於微射出成型之應用[D].国立成功大学硕士学位论文,2006.
    [70]张沛颀.热塑性塑膠微射出成型技术之研究[D].国立成功大学博士学位论文,2006.
    [71]Yu M.C., Young W.B., Hsu P.M. Micro-injection molding with the infrared assisted mold heating system [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,460:288-295.
    [72]Fallon M. Mold-heating technology raises thermoset molding quality [EB/OL]. http://www.thefreelibrarv.com/Mold-heating+technology+raises+thermoset+molding+qualit v.-a09304812,1990-12-01/2010-11-26.
    [73]Tsai Y.P., Wang J.C. Vapor chamber in injection molding process [J]. International Review of Chemical Engineering (Rapid Communications),2009,1(2):179-182.
    [74]Tsai Y.P., Wang J.C., Hsu R.Q. The effect of vapor chamber in an injection molding process on part tensile strength [J]. Experimental Techniques,2011,35(1):60-64.
    [75]Yim S.J. Momentary surface heated mould tool with gas flame [P]. WIPO: WO/1998/051460,1998-11-19.
    [76]Kim D.H., Kan M.H., Chun Y.H. Development of A Notebook PC Housing by Using MmSH (Momentary Mold Surface Heating) Process [C]. SPE ANTEC Conf. Proc. Dallas, USA,2001,3347-3350.
    [77]Kim D.H., Kang M.H., Chun Y.H. Development of a new injection molding technology: Momentary Mold Surface Heating process [J]. Journal of Injection Molding Technology 2001,5(4):229-232.
    [78]Yim S.J. Apparatus for momentarily heating the surface of a mold [P]. USA:US 6638048, 2003-10-28.
    [79]Soulier J., Bataille I.L. Apparatus for molding particulate expandable thermoplastic resin material using microwave heating [P]. USA:4298324,1981-11-03.
    [80]Berggren B. Method and apparatus for effecting by microwaves a substantially uniform heating of a material in a cavity [P]. USA:4323745,1982-04-06.
    [81]Byon S.K. Apparatus for heating a mold for an injection molding system [P]. USA: 5762972,1998-06-09.
    [82]Hawley M.C., Asmussen J.J., Wei J.H., et al. Method for liquid thermosetting resin molding using radiofrequency wave heating [P]. USA:5770143,1998-07-23.
    [83]Kim B., Wadhwa R. A New Approach to Low Thermal Inertia Molding [J]. Polymer-Plastics Technology and Engineering,1987,26(1):1-22.
    [84]Nardin B., Zagar B., Glojek A., et al. Adaptive system for electrically driven thermoregulation of moulds for injection moulding [J]. Journal of Materials Processing Technology,2007,187-188:690-693.
    [85]Chen H.L., Chien R.D., Chen S.C. Using thermally insulated polymer film for mold temperature control to improve surface quality of microcellular injection molded parts [J]. International Communications in Heat and Mass Transfer,2008,35(8):991-994.
    [86]Chen S.C., Chang Y., Chang Y.P., et al. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts [J]. International Communications in Heat and Mass Transfer,2009,36(10):1030-1035.
    [87]Chen S.C., Li H.M., Huang S.T., et al. Effect of decoration film on mold surface temperature during in-mold decoration injection molding process [J]. International Communications in Heat and Mass Transfer,2010,37(5):501-505.
    [88]Chen S.C., Li H.M., Hwang S.S., et al. Passive mold temperature control by a hybrid filming-microcellular injection molding processing [J]. International Communications in Heat and Mass Transfer,2008,35(7):822-827.
    [89]Kim B.M., Niemeyer M.F. Insulated mold structure for injection molding of optical disks [P]. USA:5458818,1995-10-17.
    [90]Kim Y., Bae J., Kim H., et al. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates [J]. Journal of Physics D-Applied Physics,2004,37(9): 1319-1326.
    [91]Kim Y., Seong K., Kang S. Effect of insulation layer on transcribability and birefringence distribution in optical disk substrate [J]. Optical Engineering,2002,41(9):2276-2281.
    [92]Lee J., Turng L.S. Improving Surface Quality of Microcellular Injection Molded Parts Through Mold Surface Temperature Manipulation With Thin Film Insulation [J]. Polymer Engineering and Science,2010,50(7):1281-1289.
    [93]Liou M.J., Suh N.P. Reducing Residual Stresses in Molded Parts [J]. Polymer Engineering and Science,1989,29(7):441-447.
    [94]Niemeyer M.F., Baumgartner C.E., Hovatter T.W., et al. Method for injection molding of optical discs [P]. USA:5897814,1999-03-27.
    [95]Tosello G., Hansen H.N., Marinello F., et al. Replication and dimensional quality control of industrial nanoscale surfaces using calibrated AFM measurements and SEM image processing [J]. Cirp Annals-Manufacturing Technology,2010,59(1):563-568.
    [96]Yoon J.D., Hong S.K., Kim J.H., et al. A mold surface treatment for improving surface finish of injection molded microcellular parts [J]. Cellular Polymers,2004,23(1):39-47.
    [97]Rosato D.V., Rosato D.V., Rosato M.G. Injection molding handbook [M]. Dordrecht, Netherlands:Kluwer Academic Publisher,2000.
    [98]Kelly A.L., Coates P.D., Evans R. Effect of cyclic cooling on power consumption of the injection moulding process [C]. ANTEC 2004 Plastics:Annual Technical Conference Proceedings. Chicago, USA,2004,465-469.
    [99]Mccalla B.A., Allan P.S., Hornsby P.R., et al. Evaluation of pulsed cooling in injection mould tools [C]. ANTEC 2004 Plastics:Annual Technical Conference Proceedings. Chicago, USA,2004,461-464.
    [100]Simith A.G., Wrobel L.C., Mccalla B.A., et al. Optimisation of continuous and pulsed cooling in injection moulding processes [J]. Plastics, Rubber and Composites,2007,36(3): 93-100.
    [101]Chen S.C., Chang Y., Chang T.H., et al. Influence of using pulsed cooling for mold temperature control on microgroove duplication accuracy and warpage of the Blu-ray Disc [J]. International Communications in Heat and Mass Transfer,2008,35(2):130-138.
    [102]Chen S.C., Tarng S.H., Chiou Y.C., et al. Simulation and verification mold temperature variation of pulsed-cooling [C]. ANTEC 2008 Plastics:Annual Technical Conference Proceedings. Milwaukee, USA,2008.
    [103]Chen S.C., Minh P.S., Hsieh I.S., et al. Improve cooling effect of injection molding by pulsed-cooling method [C]. ANTEC 2009 Plastics:Annual Technical Conference Proceedings. Chicago, USA,2009.
    [104]Chen S.C., Wang Y.C., Liu S.C., et al. Mold temperature variation for assisting micro-molding of DVD micro-featured substrate and dummy using pulsed cooling [J]. Sensors and Actuators a-Physical,2009,151(1):87-93.
    [105]Wang G.L., Zhao G.Q., Li H.P., et al. Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating [J]. Materials & Design,2010,31(1):382-395.
    [106]Bejan A., Kraus A.D. Heat transfer handbook [M]. Hoboken:Wiley-Intersciences,2003.
    [107]lncropera F.P., Dewitt D.P., Bergman T.L., et al. Fundamentals of heat and mass transfer [M]. New York:Wiley-Intersciences,2007.
    [108]Au K.M., Yu K.M. A scaffolding architecture for conformal cooling design in rapid plastic injection moulding [J]. International Journal of Advanced Manufacturing Technology,2007, 34(5-6):496-515.
    [109]Dimla D.E., Camilotto M., Miani F. Design and optimisation of conformal cooling channels in injection moulding tools [J]. Journal of Materials Processing Technology,2005,164-165: 1294-1300.
    [110]Ferreira J.C., Mateus A. Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding [J]. Journal of Materials Processing Technology,2003,142(2): 508-516.
    [111]Li C.G., Li C.L. Plastic injection mould cooling system design by the configuration space method [J]. Computer-Aided Design,2008,40(3):334-349.
    [112]Liu J.H., Lu Z.L., Shi Y.S., et al. Investigation into manufacturing injection mold via indirect selective laser sintering [J]. International Journal of Advanced Manufacturing Technology,2010,48(1-4):155-163.
    [113]Park H.S., Pham N.H. Design of conformal cooling channels for an automotive part [J]. International Journal of Automotive Technology,2009,10(1):87-93.
    [114]Park S.J., Kwon T.H. Optimal cooling system design for the injection molding process [J]. Polymer Engineering and Science,1998,38(9):1450-1462.
    [115]Sachs E., Wylonis E., Allen S., et al. Production of injection molding tooling with conformal cooling channels using the three dimensional printing process [J]. Polymer Engineering and Science,2000,40(5):1232-1247.
    [116]Saifullah A.B.M., Masood S.H. Finite element thermal analysis of conformal cooling channels in injection moulding [C].5th Australasian Congress on Applied Mechanics. Brisbane, Australia,2007,337-341.
    [117]Saifullah A.B.M., Masood S.H. Cycle time reduction in injection moulding with conformal cooling channels [C].7th International Conference on Mechanical Engineering. Dhaka, Bangladesh,2007.
    [118]Saifullah A.B.M., Masood S.H., Sbarski I. New cooling channel design for injection moulding [C]. Proceedings of the World Congress on Engineering. London, U.K.,2009.
    [119]Xu R.X., Sachs E. Rapid Thermal Cycling with Low Thermal Inertia Tools [J]. Polymer Engineering and Science,2009,49(2):305-316.
    [120]Xu X.R. Conformal cooling and rapid thermal cycling in injection molding with 3D printed tools [D]. Doctor dissertations for Massachusetts Institute of Technology,1999.
    [121]Xu X.R., Sachs E., Allen S. The design of conformal cooling channels in injection molding tooling [J]. Polymer Engineering and Science,2001,41(7):1265-1279.
    [122]刘锦辉,史玉升,陈继兵.具有内置随形冷却水道的注塑模具快速制造[J].粉末冶金技术,2008,26(5):365-368+373.
    [123]史玉升,伍志刚,魏青松,等.随形冷却对注塑成型和生产效率的影响[J].华中科技大学学报(自然科学版),2007,35(3):60-62.
    [124]伍晓宇,梁雄,李积彬,等.基于全区域连通型随形介质槽的注塑模具[J].塑料工业,2009,37(5):24-26+34.
    [125]Kazmer D.O. Injection mold design engineering [M]. Cincinnati:Hanser Gardner Publications,2007.
    [126]Tadmor Z., Gogos C.G. Principles of polymer processing [M]. Second edition ed. New York: Wiley-Interscience,2006.
    [127]洪芳柏,袁石明.注塑模具的热管冷却[J].塑料科技,1989,(2):41-45.
    [128]松本秀一,庄恩保.“热管”在注塑模中的应用[J].模具技术,1991,(1):52-58+49.
    [129]夏邦一.使用热管加速注塑模具的冷却[J].塑料科技,1980,(3):50-53.
    [130]徐先满,虞斌.热管技术在金属模具均温散热上的应用[J].低温与超导,2009,(10):76-80.
    [131]Baumgartner C.E., Gutmann J.M., Hamly K.D., et al. Multilayer injection mold having improved surface properties [P]. USA:5535980,1996-07-16.
    [132]Baumgartner C.E., Hamly K.D. Molding thermoplastic materials for producing textured articles [P]. USA:5489410,1996-02-06.
    [133]Wang G.L., Zhao G.Q., Li H.P., et al. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process [J]. Materials & Design,2010,31(7):3426-3441.
    [134]Wang G.L., Zhao G.Q., Guan Y.J. Research on optimum heating system design for rapid thermal response mold with electric heating based on response surface methodology and particle swarm optimization [J]. Journal of Applied Polymer Science,2010,119(2): 902-921.
    [135]Nussbaum F.J. Low heat capacity mold for injection molding [P]. USA:3671168, 1972-6-20.
    [136]Satoh Y., Imagawa A., Yamaki M., et al. Synthetic resin forming metal mold, metal mold temperature regulating device, and metal mold temperature regulating method [P]. WIPO: WO/2000/067979,2000-11-16.
    [137]Bar K.K.O., Gaus R. Infrared heating systems combined with contactless measuring techniques-An effective instrument in controlled processing [J]. Cfi-Ceramic Forum International,1998,75(3):101-106.
    [138]Kimura T., Takeuchi M., Nagai N., et al. Compression molding of sandwich plate using waste cord assemblage of synthetic fabrics-Melting behavior of waste cord by infrared heating [J]. Materials Science Research International,1998,4(2):124-129.
    [139]Fasina O.O., Tyler R.T., Pickard M.D., et al. Infrared heating of hulless and pearled barley [J]. Journal of Food Processing and Preservation,1999,23(2):135-151.
    [140]Fasina O., Tyler B., Pickard M., et al. Effect of infrared heating on the properties of legume seeds [J]. International Journal of Food Science and Technology,2001,36(1):79-90.
    [141]Lamaison V., Scudeller Y., Bardon J.P., et al. Experimental study of transfer phenomena during drying of paint film under infrared heating. [J]. International Journal of Thermal Sciences,2001,40(2):181-194.
    [142]Datta A.K., Ni H. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture [J]. Journal of Food Engineering,2002,51(4):355-364.
    [143]Bittner D.N., Collins G.W., Sater J.D. Generating low-temperature layers with infrared heating [J]. Fusion Science and Technology,2003,44(4):749-755.
    [144]Lee C.W., Moss M.D. Hot runer system for coinjection molding [P]. USA:US 6261075 B1, 2001-07-17.
    [145]Unger P. Hot runner technology [M]. First edition ed. Cincinnati:Hanser Gardner Pubns, 2006.
    [146]陈剑玲,刘廷华.热流道技术的发展和应用概况[J].模具工业,2003,(8):32-36.
    [147]陈剑玲,徐燕君,刘廷华.热管技术原理及其在热流道模具中的应用[J].工程塑料应用,2004,(7):51-53.
    [148]雷玉成,赵晓军.热管式热流道设计[J].模具工业,1996,(4):37-40.
    [149]孙建丽.热管式热喷嘴的研制开发[D].四川大学硕士学位论文,2006.
    [150]赵国群,王桂龙,李辉平,et al.快速热循环注塑技术的研究与应用[J].塑性工程学报,2009,16(]):190-195.
    [151]Li X.P., Zhao G.Q., Guan Y.J., et al. Optimal design of heating channels for rapid heating cycle injection mold based on response surface and genetic algorithm [J]. Materials & Design,2009,30(10):4317-4323.
    [152]王桂龙,赵国群,李辉平,等.变模温注塑热响应模拟与模具结构优化[J].机械工程学报,2009,45(6):216-221.
    [153]王桂龙,赵国群,李辉平,等.变模温注塑技术的研究与应用分析[J].现代化工,2009,(2):24-27.
    [154]NADA公司.http://www.mmsh.co.kr/ch/page2.html,2010-11-30.
    [155]小野产业株式会社.http://www.onosg.co.jp/en/rhcm/index.html,2010-11-30.
    [156]Yao D.G., Chen M., Kim B. Development of Rapid Heating and Cooling Mold Inserts Comprising a Heating Layer an Insulation and Substrate [C]. SPE ANTEC Conf. Proc. Dallas, USA,2001,704-708.
    [157]May A. Thermal cycling of injection molds boosts surface quality. (heat/cool molding) http://www.ptonline.com/articles/200805fa4.html,2010-11-30.
    [158]Rohsenow W.M., Hartnett J.P., Cho Y.I. Handbook of Heat Transfer [M]. Third edition ed. New York:McGraw-Hill,1998.
    [159]Dawson A., Rides M., Allen C.R.G., et al. Polymer-mould interface heat transfer coefficient measurements for polymer processing [J]. Polymer Testing,2008,27(5):555-565.
    [160]Bendada A., Derdouri A., Lamontagne M., et al. Analysis of thermal contact resistance between polymer and mold in injection molding [J]. Applied Thermal Engineering,2004, 24(14-15):2029-2040.
    [161]Masse H., Arquis E., Delaunay D., et al. Heat transfer with mechanically driven thermal contact resistance at the polymer-mold interface in injection molding of polymers [J]. International Journal of Heat and Mass Transfer,2004,47(8-9):2015-2027.
    [162]Notterl R.H., Sleicher C.A. A solution to the turbulent Graetz problem—Ⅲ Fully developed and entry region heat transfer rates [J]. Chemical Engineering Science,1972,27(11): 2073-2093.
    [163]Sleicher C.A., Rouse M.W. A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow [J]. International Journal of Heat and Mass Transfer,1975,18(5):677-683.
    [164]Wikipedia. http://en.wikipedia.org/wiki/Electric_steam_boiler,2010-09-21/2011-03-16.
    [165]Rao N.S., Schumacher G. Design Formulas for Plastics Engineers [M]:Hanser Publishers, 2004.
    [166]Ernest C.B. Computer Aided Engineering for Injection Molding [M]:Hanser Publishers, 1983.
    [167]Liang J.Z., Ness J.N. The calculation of cooling time in injection moulding [J]. Journal of Materials Processing Technology,1996,57(1-2):62-64.
    [168]Nylund C., Meinander K. The influence of heat transfer coefficient on cooling time in injection molding [J]. Heat and Mass Transfer,2005,41(5):428-431.
    [169]Stelson K.A. Calculating cooling times for polymer injection moulding [J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2003, 217(5):709-713.
    [170]Yu C.Y., Sunderland J.E. Determination of ejection temperature and cooling time in injection molding [J]. Polymer Engineering and Science,1992.32(3):191-197.
    [171]Zarkadas D.M., Xanthos M. Prediction of cooling time in injection molding by means of a simplified semianalytical equation [J]. Advances in Polymer Technology,2003,22(3): 188-208.
    [172]Dietz W. A cooling time model for plastics processing operations [J]. Polymer Engineering and Science,1978,18(13):1030-1036.
    [173]Tang L.Q., Chassapis C., Manoochehri S. Optimal cooling system design for multi-cavity injection molding [J]. Finite Elements in Analysis and Design,1997,26(3):229-251.
    [174]Liang J.Z. An optimal design of cooling system for injection mold [J]. Polymer-Plastics Technology and Engineering,2002,41(2):261-271.
    [175]Lam Y.C., Zhai L.Y., Tai K., et al. An evolutionary approach for cooling system optimization in plastic injection moulding [J]. International Journal of Production Research, 2004,42(10):2047-2061.
    [176]Li C.L., Li C.G., Mok A.C.K. Automatic layout design of plastic injection mould cooling system [J]. Computer-Aided Design,2005,37(7):645-662.
    [177]祁东霞.遗传算法在注塑模冷却系统优化问题中的研究[D].郑州大学硕士学位论文,2005.
    [178]隙建霖.整合Moldflow舆基因演算法於射出成型模具冷卻水道位置最佳化[D].国立大同大学硕士学位论文,2006.
    [179]李国榮.整合粒子群演算法舆MOLDFLOW於塑模冷卻水[D].大同大学硕士学位论文,2007.
    [180]Li C.L., Li C.G. Plastic injection mould cooling system design by the configuration space method [J]. Computer-Aided Design,2008,40(3):334-349.
    [181]Pirc N., Schmidt F., Mongeau M., et al. Optimization of 3D cooling channels in injection molding using DRBEM and model reduction [J]. International Journal of Material Forming, 2009,2(Suppl.1):271-274.
    [182]Rhee B.O., Park C.S., Chang H.K., et al. Automatic Generation of Optimum Cooling Circuit for Large Injection Molded Parts [J]. International Journal of Precision Engineering and Manufacturing,2010,11(3):439-444.
    [183]Bae W.B., Kim M.H., Han J.Y., et al. Optimal locations of heaters in a shoe outsole rubber injection mold using FEA and parametric analysis [J]. International Journal of Precision Engineering and Manufacturing,2010,11(5):733-739.
    [184]Wang G., Zhao G., Li H., et al. Multi-objective optimization design of the heating/cooling channels of the steam-heating rapid thermal response mold using particle swarm optimization [J]. International Journal of Thermal Sciences,2011,50(5):790-802.
    [185]Wang G., Zhao G., Li H., et al. Research on optimization design of the heating/cooling channels for rapid heat cycle molding based on response surface methodology and constrained particle swarm optimization [J]. Expert Systems with Applications,2011,38(6): 6705-6719.
    [186]茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社,2004.
    [187]Kennedy J., Eberhart R. Particle swarm optimization [C]. Proceedings of the 4th IEEE International Conference on Neural Networks. Piscataway, USA,1995,1942-1948.
    [188]Kennedy J., Eberhart R. A New Optimizer Using Particle Swarm Theory [C]. Proceedings of 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995,39-43.
    [189]Arya L.D., Choube S.C., Shrivastava M., et al. Particle swarm optimization for determining shortest distance to voltage collapse [J]. International Journal of Electrical Power & Energy Systems,2007,29(10):796-802.
    [190]Chen Y.Y., Lin J.T. A modified particle swarm optimization for production planning problems in the TFT Array process [J]. Expert Systems with Applications,2009,36(10): 12264-12271.
    [191]El-Saleh A.A., Ismail M., Viknesh R., et al. Particle swarm optimization for mobile network design [J]. Ieice Electronics Express,2009,6(17):1219-1225.
    [192]Leong W.F., Yen G.G. PSO-based multiobjective optimization with dynamic population size and adaptive local archives [J]. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics,2008,38(5):1270-1293.
    [193]Suresh S., Sujit P.B., Rao A.K. Particle swarm optimization approach for multi-objective composite box-beam design [J]. Composite Structures,2007,81(4):598-605.
    [194]Wimalajeewa T., Jayaweera S.K. Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO [J]. Ieee Transactions on Wireless Communications,2008,7(9):3608-3618.
    [195]罗宇玲,曹辉,刘好.大型注塑模具使用寿命影响因素分析及改进方法[J].茂名学院学报,2006,16(4):56-59.
    [196]周莉.如何提高注塑模具使用寿命[J].模具技术,2007,(3):46-48.
    [197]俞振胜.以疲劳观点分析模具强度的设计[J].模具技术,1999,(6):41-45.
    [198]李思良.注塑模具型腔壁面疲劳应力开裂的研究[J].中国塑料.2006,20(5):88-90.
    [199]Zhang Y., Mahmood N., Siddiqui A., et al. Application of FEA simulations in plastic injection molding tooling failure analysis [J]. SAE transactions,2003,112(5):366-372.
    [200]Firrao D., Gerosa R., Ghidini A., et al. Relation between fatigue crack initiation and propagation, toughness and microstructure in large steel blooms for automotive plastic molds [J]. International of Fatigue,2007,29(9-11):1880-1884.
    [201]Firrao D., Matteis P., Scavino G., et al. Relationships between tensile and fracture mechnics properties and fatigue properties of large plastic mould steel blocks [J]. Materials Science & Engineering A,2007,468-470(11):193-200.
    [202]Koh S.K. Fatigue analysis of autofrettaged pressure vessels with radial holes [J]. International Journal of Fatigue,2000,22(8):717-726.
    [203]Chang J.C., Yun Y.H., Choi C., et al. Failure analysis of gas turbine buckets [J]. Engineering Failure Analysis,2003,10(5):559-567.
    [204]Giglio M. Fatigue analysis of different types of pressure vessel nozzle [J]. International Journal of Pressure Vessels and Piping,2003,80(1):1-8.
    [205]Luo R.K., Wu W.X. Fatigue failure analysis of anti-vibration rubber spring [J]. Engineering Failure Analysis,2006,13(1):110-116.
    [206]Abdelal G.F., Atef A. Thermal fatigue analysis of solar panel structure for micro-satellite applications [J]. International Journal of Mechanics and Materials in Design,2008,4(1): 53-62.
    [207]Chakarov K., Garbatov C., Soares C.G. Fatigue analysis of ship deck structure accounting for imperfections [J]. International Journal of Fatigue,2008,30(10-11):1881-1897.
    [208]Kim D.J., Lee Y.M., Park J.S., et al. Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface [J]. Materials Science & Engineering A,2008,483-484(1-2):456-459.
    [209]Bagnoli F., Dolce F., Bernabei M. Thermal fatigue cracks of fire fighting vehicles gray iron brake discs [J]. Engineering Failure Analysis,2009,16(1):152-163.
    [210]Pinheiro B.C., Pasqualino I.P. Fatigue analysis of damaged steel pipelines under cyclic internal pressure [J]. International Journal of Fatigue,2009,31(5):962-973.
    [211]Zhou X., Tang Z.F., Qu G.H. Thermal stress and thermal fatigue analysis of the continuous casting tundish cover [J]. Materials Science & Engineering A,2010,527(9):2327-2334.
    [212]Naumenko K., Kutschke A., Kostenko Y., et al. Multi-axial thermo-mechanical analysis of power plant components from 9-12% Cr steels at high temperature [J]. Engineering Fracture Mechanics,2011,78(8):1657-1668.
    [213]莫继华.近海风电机组单桩式支撑结构疲劳分析[D].上海交通大学硕士学位论文, 2011.
    [214]刘家骅.Glidcop材料性能测试与SSRF热缓释部件热结构分析[D].中国科学技术大学硕士学位论文,2009.
    [215]Carrillo A.J., Isayev A.I. Birefringence in gas-assisted tubular injection moldings: Simulation and experiment [J]. Polymer Engineering and Science,2009,49(12):2350-2373.
    [216]Fernandes C., Pontes A.J., Viana J.C., et al. Using multiobjective evolutionary algorithms in the optimization of operating conditions of polymer injection molding [J]. Polymer Engineering and Science,2010,50(8):1667-1678.
    [217]Imihezri S.S.S., Sapuan S.M., Ahmad M., et al. A study of the comparison of 'V' and 'X' ribbing in a composite pedal using mold flow analysis software [J]. Materials & Design, 2005,26(2):157-166.
    [218]Marcilla A., Odjo-Omoniyi A., Ruiz-Femenia R., et al. Simulation of the gas-assisted injection molding process using a mid-plane model of a contained-channel part [J]. Journal of Materials Processing Technology,2006,178(1-3):350-357.
    [219]Shen Y.K., Wu C.W., Yu Y.F., et al. Analysis for optimal gate design of thin-walled injection molding [J]. International Communications in Heat and Mass Transfer,2008,35(6): 728-734.
    [220]Tsai M.H., Ou K.L., Huang C.F., et al. Study on micro-injection molding of light guiding plate by numerical simulation [J]. International Communications in Heat and Mass Transfer, 2008,35(9):1097-1100.
    [221]Vincent M., Giroud T., Clarke A., et al. Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics [J]. Polymer,2005,46(17):6719-6725.
    [222]Zhil'tsova T.V., Oliveira M.S.A., Ferreira J.A.F. Relative influence of injection molding processing conditions on HDPE acetabular cups dimensional stability [J]. Journal of Materials Processing Technology,2009,209(8):3894-3904.
    [223]Kennedy P. Practical and scientific aspects of injection molding simulation [D]. Doctoral dissertations for Eindhoven University of Technology,2008.
    [224]Park K., Kim B., Yao D.G. Numerical simulation for injection molding with a rapidly heated mold, part 1:flow simulation for thin wall parts [J]. Polymer-Plastics Technology and Engineering,2006,45(8):897-902.
    [225]Chiou Y.C., Chiu Y.Y., Yu H.S., et al. Integrated true 3D simulation of rapid heat cycle molding process [C]. SPE ANTEC Conf. Proc. Cincinnati, USA,2007,2563-2566
    [226]Chiou Y.C., Wang H.C., Chiu H.S., et al. Thermal feature of variotherm mold in injection molding processes [C]. SPE ANTEC Conf. Proc. Chicago, USA,2009,2491-2495.
    [227]Li H.M., Chen S.C., Shen C.Y., et al. Numerical simulations and verifications of cyclic and transient temperature variations in injection molding process [J]. Polymer-Plastics Technology and Engineering,2009,48(1):1-9.
    [228]Liu J.T., Zhao G.Q., Guan Y.J. Fully coupled transient heat transfer and melt filling simulations in rapid heat cycle molding with steam heating [J]. Polymer-Plastics Technology and Engineering,2011,50(4):423-437.
    [229]申长雨,郭恒亚,赵振峰,等.模腔表面平均温度边界对注塑仿真的影响[J].郑州大学学报(工学版),2005, 26(1):9-12.
    [230]Xie L., Ziegmann G. Visualizing analysis for weld line forming in micro injection molding by experimental method [J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems,2009,15(6):913-917.
    [231]Tung J., Simon G.P., Edward G.H. Weld lines in nylon 6 melt-blended nanocomposites [J]. Polymer Engineering and Science,2005,45(12):1606-1614.
    [232]Wu C.H., Liang W.J. Effects of geometry and injection-molding parameters on weld-line strength [J]. Polymer Engineering and Science,2005,45(7):1021-1030.
    [233]林文卿.射出成型之缝(熔)合综探封及实务封策[D].私立中原大学硕士学位论文,2005.
    [234]Tosello G., Gava A., Hansen H.N., et al. Characterization and analysis of weld lines on micro-injection moulded parts using atomic force microscopy (AFM) [J]. Wear,2009, 266(5-6):534-538.
    [235]Kuo H.C., Jeng M.C. Effects of part geometry and injection molding conditions on the tensile properties of ultra-high molecular weight polyethylene polymer [J]. Materials & Design,2010,31(2):884-893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700