用户名: 密码: 验证码:
高温合金K465和DZ40M纯净化工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了镍基高温合金K465新料与钴基高温合金DZ40M返回料的纯净化工艺及机理,分析了纯净化处理后DZ40M返回料的组织结构与性能。利用氧、氮分析仪测定O、N含量,定硫仪测定S含量;在光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)下分析合金的组织结构及断口形貌,对比分析新料和纯净化处理后返回料的拉伸、持久及蠕变性能,结果表明:
     (1) K465镍基高温合金在1580℃高温精炼时,向熔体中加入0.02%C和0.5%Al后,O含量可降至5ppm;分两次向熔体中加Al,每次加入0.5%,可将N含量控制在5ppm;采用CaO坩埚熔炼合金时,向熔体中加少量Al后,脱S效果明显,可将S含量降至9ppm,最后采用加Ca终脱S,S含量最终控制在8ppm;
     (2)采用高温熔体处理,电磁感应搅拌可以使熔体成分均匀,加速熔体表面反应,促进了N的脱除;精炼温度高及精炼时间长,有利于C脱O反应和脱N反应进行,也利于微量有害杂质的挥发;利用熔体阶段冷却法可以使合金中氧化物、氮化物、硫化物以及缩松缩孔减少;DZ40M返回料显微组织是在钴基奥氏体上,分布着由Ti、Zr、Ta、W等强碳化物形成元素组成的碳化物MC和富Cr的M7C3碳化物,与新料一致。
     (3)在750℃~980℃/83~345MPa持久条件及700~900℃/125~360MPa蠕变条件下,DZ40M纯净化处理后合金的性能整体上高于DZ40M新料的性能,在拉伸变形期间,有细小二次M_(23)C_(6)沉淀析出,增加了合金的形变抗力;对拉伸条件为室温20℃、中温700℃、高温900℃和1000℃下的性能分析表明,纯净化处理后DZ40M返回料的强度和塑性基本达到新料的水平;纯净化处理工艺使返回料性能达到了预期的效果。
This thesis introduces the process and mechanism of cleaning treatment for the Ni-base alloy K465 and the recycled Co-base alloy DZ40M, analyses microstructures and the mechanical properties of the recycled Co-base alloy DZ40M after cleaning treatment.
     Contents of oxygen and nitrogen are examined by Oxygen-nitrogen analyzer and the content of sulfur are measured by Sulfur Determination Device; Microstructures of virgin alloy and cleaning treatment recycled alloy, the fracture morphology of alloys after broken were investigated and analyzed by Optical Microscope(OM), Scanning Electron Microscope(SEM) and Transmission Electron Microscope (TEM); Stress rupture and creep, room temperature tensile properties, high-temperature tensile properties of cleaning treatment recycled alloy DZ40M have been compared with the virgin alloy, the results are as follows:
     (1)Adding 0.02%C and 0.5%Al into Ni-base alloy K465 melting when it was refined at high temperature 1580℃, the content of O was decreased to 5ppm; When adding Al twice total 1%, each adding 0.5%, the content of N was reduced to 5ppm; When the CaO crucible were used to melt alloy, the effect of desulfurization was evident after adding a little Al into melting and it was decreased to 9ppm, adding Ca before tapping, as a result, the final content of S was 8ppm;
     (2)Melt superheating treatment and electromagnetic stirring made the melt composition uniformity, speed up the melt surface reaction, promoted denitrogenation; high temperature and longtime refining was beneficial to the reaction of carbon deoxidization reaction and denitrogenation reaction, meanwhile facilitating volatilization of toxic harmful trace elements; Shrinkage cavity and porosity, oxides, nitrides and sulfides have been reduced by use of stage cooling of melt , as a result, the microstructure of recycled alloy DZ40M is Cobalt-based Austenite distributed by Carbides M7C3 and other Carbides MC. M7C3 is rich in Cr, MC is made up of strong carbide forming elements, such as Ti, Zr, Ta, W and so on.
     (3)The mechanical properties of recycled alloy DZ40M have been analyzed in the following conditions: the stress rupture condition were 750~980℃/83~345MPa; the creep condition were 700~900℃/125MPa~360MPa,the overall properties of the cleaning treatment recycled alloy were higher than the properties of the virgin alloy, meanwhile, during the tensile deformation, some fine secondary precipitation phase M23C6 carbides released which strengthen the matrix; Tensile conditions were room temperature 20℃, intermediate temperature 700℃, high temperature 900℃and 1000℃; the result shows that the strength and the plasticity of cleaning treatment recycled alloy DZ40M have reached the level of virgin DZ40M's. It is concluded that properties of recycled alloy achieved the desired effect after cleaning treatment.
引文
[1] Nabarro F R N, Villiers H L De. The Physics of Creep.London:Taylor and Francis Ltd,1997.83
    [2] Sims C T,Stoloff N S,Hagel W C著.高温合金.赵杰,朱世杰,李晓刚译.大连理工大学出版社,1992.1~10
    [3]邱华.M91高温合金的研制及工艺优化.重庆大学,2004.3
    [4]徐强,张幸红,韩杰才,等.先进高温材料的研究现状和展望,固体火箭技术,2002.25(3):51~55
    [5] Sims C T,Stoloff N S,Hagel W C著.高温合金.赵杰,朱世杰,李晓刚译.大连理工大学出版社,1992.30~38
    [6]仲增墉,师昌绪.中国高温合金四十年.北京:中国科学技术出版社,1996.3
    [7] Stoloff N S and Sims C T,SuperalloysⅡ.John Wiley&Sons,New York,1984.32
    [8]郑运荣,张德堂,高温合金与钢的彩色金像图谱研究.北京:国防工业出版社, 1990.07
    [9]杨金侠.K465镍基高温合金的组织和性能稳定性及热疲劳性能.中国科学院金属研究所博士论文.2006.5
    [10]周瑞发,韩雅芳,李树索.高温结构材料.北京:国防工业出版社,2006,50
    [11]傅杰,王迪,徐志超.高温合金及合金钢中微量元素的作用与控制.北京:冶金工业出版社,1989.12
    [12]殷瑞钰.钢的质量现代进展.北京:冶金工业出版社,1995.32~36
    [13]孙力玲.高温合金定向凝固组织形态的研究和分形理论的应用.中国科学院金属研究所,1994.4
    [14]姜文辉.DZ40M定向凝固钴基高温合金组织与力学性能的关系.中科院金属研究所博士论文,1999.1~5
    [15]赵乃仁.凝固速度对DZ40M合金和DZ17G合金组织和力学性能的影响.中科院金属研究所硕士论文.1998.10~12
    [16] Beltran A M.,SuperalloysⅡ.edited by Sims C T,et al.John Wiley and Sons,NewYork,1984.135
    [17] D A Roberts,H J Wagner,F R Morral,Cobalt Information Center.1990.25
    [18]张行安,刘志中,夏慧琴. K417合金返回料蠕变三阶段性能研究.铸造高温合金论文集.北京:中国科学技术出版社,1993.244~250.
    [19]高温合金金相图普编写组编著,高温合金金相图普.北京:冶金工业出版社,1979.02
    [20]袁超,郭建亭,臧志新,等.多次返回对镍基合金K466组织与性能的影响,中国有色金属学报,2003. 16(3):12~15
    [21]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报.2000.20(1):55~57
    [22]李志军,周兰章,郭建亭.返回料比例对K444合金组织和力学性能的影响.动力与能源用高温结构材料-第十一届中国高温合金年会论文集,第十一届高温合金年会,上海,2007.331~333
    [23]李志军.新型抗热腐蚀镍基高温合金K444的返回料应用研究.中科院金属研究所硕士论文.2005:5~10
    [24]潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007.19-28
    [25] Agfion E , Bronfin B . Magnesium alloys development towards the 21stcentury.Materials Science Forum,2000.350~351
    [26] Yu K,Li W X,Wang R C.Mechanical properties and microstructure of as-cast and extruded Mg-(Ce,Nd)-Zn-Zr alloy.J Cent South Univ,2005.12(5):499~502
    [27] Cizek L,Greger M,Pawlica L,et a1.Study of selected properties of magnesium alloy AZ91 after heat treatment and forming.Journal of Materials Processing Technology,2004.157~158,466~471
    [28]СилоровВВ.铸造高温合金熔炼工艺中的冶金原则.航空材料学报, 1991.11 (S1):913.
    [29]黄学兵,王勇,邓宏华,等.氧、氮在镍基高温合金中的物理化学行为.材料工程增刊,第四届先进材料技术研讨会,九江,1997.32
    [30]王勇,黄学兵,邓宏华,等.多次返回重熔对K417G合金组织和性能的影响.材料工程增刊,第四届先进材料技术研讨会,九江,1997.121
    [31]宋尽霞,肖清云,藏川,等.Ni3Al基IC6返回料的显微组织与力学性能.中国航空学报,2002.13(6):1451~1453
    [32]邓宏华,赵坤,黄学兵,等.DZX40M合金返回料中碳化物类型及合金熔化行为的研究.材料工程增刊,第四届先进材料技术研讨会,九江,1997.119
    [33] Huang X B,Zhang Y,Liu Y L and Hu Z Q. Effect of Solidification Rate on the Microstructure of a Directional Ni-base Superalloy.Metall Mater Trans A,1997.28A:2143
    [34] Huang X B,Zhang Y,Hu Z Q,Deng H H eds. Effect of Nitrogen on Carbide Characteristics of a Direction Ni-base Superalloy Materials Transactions,JIM,1997.38:234
    [35] Degawa T,Ototani T.Refining of High Purity Ni-base Superalloy using Calcia Refractory.Testu to Hagane,1987,7:731~734
    [36] Lamberigts M,Lecomte-Beckers J and Drapiers J M. Superalloys.edited by Sims C T,TMS,1988.324
    [37] Okarnoto H,Nash P.Phase Diagrams Of Binary Nickel Alloys.ASM Intemation.1991.112~116
    [38] Mcliister R C and Bierstine D.Procof the Conference EBM and Refining State of the Art,1985.231
    [39] Ford D A,Hooper P R,Jenning P A.Superalloys.edited by Gell M,et al.TMS,Warrendale,1988.58
    [40]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.69~93
    [41] Fegan S,Kattamis T Z,Morral J.Variation of MC carbide geometry with local solidification time in cast inconel 713C alloy.Mater Science,1975.10 (7).103~104
    [42]周波,赵明汉,赵京晨.返回炉料添加量对K4169合金性能的影响.钢铁研究学报,2003.15(7):196~199
    [43]王铁利.钴基返回合金的力学行为与显微组织特征的研究.东北大学博士论文,2000.18
    [44]牛建平.纯净钢及高温合金制备技术.冶金工业出版社,北京,2009.35~46
    [45] Quested P N,Clean M M,Winstone M R.Superallloys.The etallurgical Society,1988.387~396
    [46] White C H,Williams P M,Morley M.Advanced Mater Processes.1990.(4):53~57
    [47]孙长杰,刑纪萍.CaO坩埚在高纯净化合金研究中的应用.金属学报,1998.34 (7):731~734
    [48] Xu X H.Grain Development During Vacuum Arc Remelting of Nickel Based Superalloys.London:The University of London,2001.16
    [49]蒋海燕,孙宝德,倪红军,等.铝合金熔体净化工艺.特种铸造及有色合金,2001.(02):48~49
    [50]郭建亭,朱耀宵,师昌绪.国外涡轮喷气发动机涡轮盘材料的现状与发展.1973.00:008
    [51]德姆鲍夫斯基著,林彬译.等离子冶金.北京:冶金工业出版社,1982.46~50
    [52] Winkler O and.Bakish R.康显澄译.真空冶金学.上海:上海科学技术出版社,1982.32~35
    [53]刘奎.均质合金真空感应熔炼工艺研究.中国科学院金属研究所博士论文,1999. 15~20
    [54]出传通,音谷登平.CaO耐火材料精炼镍基超合金.铁と钢,1987.14:1691~1697
    [55]王晓虎,赵爱民,毛卫民,等.电磁搅拌下金属流体的流场测量与研究.特种铸造及有色合金,2003. (2):47~49
    [56]汤浅悟郎,迟田亚宣,片桐英雄.超纯熔化材料生产工艺.电气制钢,1983.54(1):3~19
    [57]贾天敏,李军文,江度,等.泡沫陶瓷过滤净化原理及含过滤浇注系统的设计.铸造技术,1998,5:28
    [58]侯仲棠,代修彦,桂中楼,等.DD3单晶合金的真空感应熔炼.材料工程,1995.6:35~37
    [59] Chen F W, Huang X B,ZhangY etal.Investigation on Foam Ceramic Filter toRemove Inclution in Revert Superalloy.Master-lett,1998.34:372~376.
    [60]徐志超,马培立.高温合金中微量元素的作用与控制.北京:冶金工业出版社,1987.187~202
    [61]唱鹤鸣,杨晓平,张德惠.感应炉熔炼与特种铸造技术.北京:冶金工业出版社,2002.68~72
    [62]谢锡善,徐志娟,董建新,等.C、O、N、S在GH169合金中的作用.金属学报,1995.31(增刊)S693
    [63]牛建平,孙晓峰,金涛,等.镍基高温合金用CaO坩埚真空感应熔炼脱氧研究.材料工程,2002.10
    [64]李守军,罗威豹,张红斌.GH132合金在冶炼过程中氮、氧变化规律.金属学报,1995.31(增刊):S175
    [65] Quested P N , Mclean M,Winstone M R. Evaluation of electron-beam cold hearth refining (EBCHR) of viregin and revert IN738LC.Superalloys.Warrenhdale:TMS , 1988.387~396
    [66] Jones W E.Vacuum Treatment for Simultaneous Desulphurization and Dephosphorization of Hot Metal and Molten Steel.Vacuum Metll,1957.5:189
    [67]牛建平,孙晓峰,金涛,等.镍基高温合金的真空感应熔炼脱氧,2002.12(12):217
    [68] Zhan D P Zhang H S Jang Z H. Effects of AlMnCa and AlMnFe Alloys on Deoxidization of Low Carbon and Low Silicon Aluminum Killed Steels,J Iron Steel Inst 2008.15(3):102
    [69] Fu J,Zhang R S,Xie X S eds. Proceedings of the 10th International Conference on Vacuum Metalturgy.Beijing:Metallurgical Industry Press,1990.1
    [70]袁超,郭建亭,王铁利,等.返回料添比例对铸造钴基高温合金K640S组织与性能的影响.金属学报,2000.9:11
    [71] Ford D A,Hooper P R,Jennings P A. In:Betz W,Liebowitz H,Perrone N eds, Proc Conf on High Tem-peruture Alloy for Gas Turbines and Other Applicati,Liege:Pergramon Press,1986.51
    [72] Pehlke R D.Rizescu C.Solution of Nitrogen in Molten Heat-Resistant Aolloys,JIron Steel Inst,197l.11(3):9
    [73] Rupp S,Bienvenu Y,Massol J Ablitzer D.In:Betz W Liebowitz H,Perrone N proc Conf High Temperature Alloy for Gas Turbines and Other Applications:Liege:Pergamon Press.1986.787
    [74] Simkovich A.Correction. Metall and Matreials TransA,1982.13:12
    [75]孙超.硫在铸造镍基合金中的分布及对合金性能的影响.沈阳:中国科学院金属研究所,1987.23~27
    [76] Humbert J C,Elliot J F.The Solution of Nitrogen in Liquid Iron Alloys.Trans Metall Soc Aime,1960.218:1076
    [77] Wada H,Pehlke R D.Nitrogen Solution and Titanium Nitride Precipitation in Liquide Fe-Cr-Ni Alloys.Metall Trans.1977.8B:443
    [78]牛建平,杨克努,金涛,等.真空感应熔炼超纯净镍基高温合金脱氮的研究.金属学报,2001.37(9):944
    [79] Pehlkc R D,Elliott J F.Solution of Nitrogen in Liquid Iron Alloys.Trans Metall Soc Aime,1963.227(4):844
    [80] Ya S B lshii F,Iguchi Y,Nagasoka T.Ladle Deoxidation and Desulphurization Inclutions in Steel.Metall TransB,1978.15:156
    [81] Fu J,Zhang R S,Xie X S eds. Proceedings of the 10th International Conference on Vacuum Metalturgy.Beijing:Metallurgical Industry Press,1990.1
    [82] Rao Y K,Lee H G..Rate of nitrogen Absoption in Molten Iron .Iron Making and Steel Making,1985.12(5):209~221
    [83]郭建亭.高温合金材料学(中册),北京:科学出版社,2008
    [84]牛建平,杨克努,孙晓峰,等.镍基高温合金真空感应炉熔炼脱氢与脱硫.稀有金属材料与工程,2003.32(1):63
    [85]曲文生.CaO坩埚的制备工艺及脱硫动力学研究,中科院金属研究所硕士学位论文,2000
    [86]韩其勇.冶金过程动力学.北京,冶金工业出版社,1983.57~60
    [87]李守军,胡尧和,梅洪生,等.GH690镍基高温合金的脱硫.钢铁研究学报,2003.15(7):37
    [88]储诏贶.DZ95合金力学性能及变形机制的研究.中国科学院金属研究所博士学位论文,中科院金属研究所,2008.20
    [89]濮晟.DZ40M高温合金的再结晶及其对合金力学性能的影响.南京航空航天大学,2007.5~12
    [90] Ford D A,Hooper P R,Jennings P A.Foundry performance of reveret alloys for turbine blades.Met Technol,1986.51~64
    [91] Rupp S.High Temperature Alloys for Gas Turbines and Other Application.1986 Part:387~797
    [92]黄学兵.氮对镍基高温合金显微组织和力学性能的影响.中科院金属研究所博士学位论文,1997.35
    [93]余力,陈荣章.多次重熔对DZ1255返回料组织和性能的影响.材料与冶金学报,2005. l4(4):309
    [94]赵阳,王磊,于腾.定向凝固钴基高温合金DZ40M中碳化物析出与再结晶的交互作用.稀有金属材料与工程,2008.37(6):1032
    [95]余乾,宋尽霞,王定刚,曲士昱,等.返回料比例对镍基高温合金K465组织和性能的影响,材料工程,2006.(6):10
    [96] GJB/Z 18-91,金属材料力学性能数据表达准则(中华人民共和国国家军用标准).北京:国防科工委军标出版社,1991
    [97] Jiang W H,Yao X D,Guang H R,et al.Secondary carbide precipitation in a directionally solidified cobalt-base superalloy.Metall Trans A,1999.30A:513~520
    [98] Sims C T,Hagel W C.The Superalloys.New York:John Wiley﹠Sons Inc,1972.154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700