用户名: 密码: 验证码:
基于电化学方法的Co_3O_4纳米薄膜材料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在诸多的过渡金属氧化物中,C0304是一种重要的半导体功能材料,具有稳定的化学性质和特定的磁学性能,因此在许多领域有着重要的应用,诸如能量存储、催化、传感器、场发射材料以及电致变色装置等,因此开发C0304先进功能材料并研究其相应的电磁性能具有重要的意义。
     近几十年来在纳米材料技术迅速发展的基础上,研究者们通过多种制备途径开发出形貌和尺寸多样化的C0304纳米材料,并报道了材料在不同应用领域的性能。所采用的方法主要包括化学沉淀法、水热/溶剂热法、溶胶凝胶法、模板法、电化学沉积法、化学气相沉积法、原子层沉积、雾化-热分解法等;所制备的C0304纳米材料的形貌主要有纳米线、纳米棒、纳米立方、纳米管、纳米带、纳米盘以及具有复合结构的纳米材料;所制备材料的尺寸范围分布很广,从几百纳米到小于10纳米不等。在此基础上,研究者们还开发出C0304复合材料,典型的如Co3O4/C(C=石墨烯,其它碳材料等)、MxCo3-xO4(M=Ni, Zn, Mn等)等材料,以期提高材料的性能。在诸多的报道中,具有吸引力和较高应用价值的材料往往满足如下特性之一:(a)具有特定形貌(如线状、片状)的纳米材料;(b)小尺寸(高比表面积,强量子效应)纳米材料;(c)具有多孔结构的纳米材料;(d)具有独立式(Freestanding)纳米结构的薄膜材料;(e)复合材料。具有以上单一特性的材料已多见诸报道,在此基础上,进一步开发具有多种特性的Co3O4纳米材料是一项艰巨而有意义的工作。另外,随着科技的日益发展,社会在能量存储、催化、环境污染治理、传感器、磁性材料等领域对C0304材料的数量和质量必将有进一步的需求,因此探索新的高产量、低成本、操作简便的制备路径仍然是一项具有挑战性并有前景的工作。
     基于电化学方法制备C0304纳米材料具有操作简单、方法灵活、条件温和等优点,因此近些年逐渐成为研究的热点之一。本论文从电化学的基本原理出发,以开发新型Co3O4纳米薄膜材料为主要研究方向,探索基于电化学方法制备具有多种特性的C0304纳米材料的新路径,并对所制备材料的电化学性能进行了研究。本论文的主要研究工作如下:
     (1)以金属钻作为反应原材料,通过碱液薄膜法制备出独立式C0304六边形纳米薄膜材料。通过XRD、SEM(?)■TEM手段对材料进行了物理学表征,通过观察进一步证明出纳米片内部具有类似泡沫状的多孔(介孔)结构。在电化学测试中,所制备的C0304材料作为锂离子电池负极材料,表现出较高的储锂容量和良好的循环稳定性;作为电化学传感器,该材料对的H202检测表现出较高的灵敏度。
     (2)基于电化学沉积/还原的方法制备了小尺寸独立式C0304纳米片薄膜材料。通过Ranman、XRD、XPS、SEM和TEM等手段对材料进行了物理表征。作为电化学传感器,该材料表现出良好的低浓度H202检测能力,实现了对1μmol L-1浓度的检测;作为催化材料,制备的独立式小尺寸C0304纳米片电极在电化学析氧中表现出良好的催化活性、稳定性以及较高的活性物质利用率。
     (3)基于电沉积方法制备了沉积均匀、负载量可控的C0304薄膜,研究了不同负载质量的Co3O4/ITO电极对电化学析氧催化的变化规律。通过EIS技术对电极在Tafel区的电极过程动力学变化规律进行了表征,从而得到了电极活性随C0304活性质量的变化规律。
     (4)以阳极氧化的Ti02纳米管(内径~70nm,长度5μm)序列为基体,通过光沉积的方法制备出Co3O4/TiO纳米管薄膜电极复合材料。通过XRD、SEM和TEM等手段对材料进行了物理学表征。在电化学测试中,Co3O4/TiO2纳米管复合材料作为锂离子电池负极材料,表现出较高的储锂容量,并在不同放电电流下表现出良好的循环稳定性。
Among all of the transition metal oxides, Co3O4is an important functional semconductive materials with broad applications in variety of fields such as energy storage, catalysis, sensing, field-emission and electrochromic devices, mainly due to their stable chemical properties and specific magnetic properties, thus developing novel strategies to synthesize advanced Co3O4materials and characterizing their electronic/magnetic properties are of importance.
     In past decades with the rapid development of nanotechnologies, various synthetic routes have been developped, including chemical precipitation, solvethermal/hydrothermal, sol-gel, electrochemical, chemical vapor deposition, atom layered deposition and spary-pyrolysis, to design and prepare Co3O4nanoparticles with diverse morphologies, such as nanowires, nanorods, nanotubes, nanosheets, nanobelt, nanodisks and other complicated-structured namomaterials. The size of as-synthesized Co3O4nanoparticles could be controlled at a wide range of distribution, from hundreds nm to a very small size even less than10nm in their dimensions. Besides, synthesis of Co3O4-based compsite materials, such as Co3O4/C(C=graphene or other carbon materials), MxCo3-xO4(M=Ni, Zn, Mn, etc) is also an promising objective in order to improving the performance of products. Among all the products according to literatures, one attactive product wih high application value mainly possesses at least one of the following properties:(a) special and uniform morphology (such as wires, sheeets);(b) small size (high specific surface area and strong quantnum effect);(c) porous inside archetecture;(d) freestanding-structured film materials;(e) compsite materials. The products with just one of the abovementioned properties are commonly seen in literatures, however, one possesses combined properties is less reported. Based on this, synthesis of Co3O4nanoparticles with integrative properties is an arduous and significant work. Additionally, with the development of mordern technology, the society will have a further demand for Co3O4nano-products in energy storage, catalysis, decomposition of contaminations, sensors, magnetic material, either in quantity or in quality, thus developing novel synthetic routes with high yield, low cost, easy operation still to be a challenge and promising objective.
     Electrochemical-based strategies for synthesizing Co3O4products have advantages of easy and flexible operation in mild condition, thus have attracted attentions in recent years. Herein we pay more attentions on the synthesis of advanced Co3O4nano-film materials based on electrochemical principles, and developing novel synthetic routes to prepare Co3O4nanomaterials with integrative properties and characterizing the electrochemical performances of products. The main work of the thesis is as follows:
     (1) By adopting cobalt metallic layer as reagents, we proposed an alkaline thin film-method to synthesize Co3O4fim electrode. According to XRD, SEM and TEM characterization we found that the film products are composed of freestanding hexagonal nanosheet arrays with foam-like mesoporous inside architecture. In the electrochemical test, the products exhibit high lithium storage capacity and good cycle stability. Besides, the as-made film electrode gives high sensitivity for H2O2sensing.
     (2) Small-sized freestanding Co3O4nanosheets have been successfully synthesized on substrates via a novel and simple electrochemical deposition&reduction-based strategy. As an electrochemical sensor, the as fabricated Co3O4/ITO electrode shows much higher than previous reports sensitivity for H2O2detecting, and achieves the detecting ability as low as1μmol L-1H2O2. Besides, in the oxygen evolution test, the as-synthesized Co3O4/ITO electrode could perform an enhanced efficiency for oxygen evolution with high catalytic activity and efficiency, and good durability.
     (3) A superfine Co3O4film with controllable loading was obtained through an electrochemical deposition method. Based on this we investigated the catalytic activity of spinel Co3O4for oxygen evolution at different loading density of active materials. A clear tendency curve of catalytic activity versus Co3O4loading was obtained via an Electrochemical Impedance Spectroscopy (EIS) technology in the Tafel region of oxygen evolution reaction.
     (4) We developed photo-depsition strategy to synthesize Co3O4/TiO2composite materials by adopting TiO2nanotube (-70nm in inner diameter and5μm in length) array film electrode as substrate. As for lithium storage test, the as-prepared Co3O4/TiO2nanotube composite materials exhibit an improved capacity and cycle durability for lithium storage at different current densities. A further electrochemical characterization indicates that the photo-deposited Co3O4could improve the conductivity of TiO2nanotube.
引文
[1]Nakamura T, Kajiyama A. Synthesis of LiCoO2 particles with uniform size distribution using hydrothermally precipitated Co3O4 fine particles. Solid State Ion., 1999,123(1-4):95-101.
    [2]Wang G X, Chen Y, Konstantinov K, Yao J, Ahn J H, Liu H K, Dou S X. Nanosize cobalt oxides as anode materials for lithium-ion batteries. J. Alloy. Compd., 2002,340(1-2):L5-L10.
    [3]Yuan Z Y, Huang F, Feng C Q, Sun J T, Zhou Y H. Synthesis and electrochemical performance of nanosized Co3O4. Mater. Chem. Phys.,2003,79(1): 1-4.
    [4]Wang Y, Fu Z W, Qin Q Z. A nanocrystalline Co3O4 thin film electrode for Li-ion batteries. Thin Solid Films,2003,441(1-2):19-24.
    [5]Huang F, Zhan H, Zhou Y H. Studies of nano-sized Co3O4 as anode materials for lithium-ion batteries. Chin. J. Chem.,2003,21(10):1275-1279.
    [6]Pralong V, Leriche J B, Beaudoin B, Naudin E, Morcrette M, Tarascon J M. Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ion.,2004,166(3-4):295-305.
    [7]Yang R Z, Wang Z X, Liu J Y, Chen L Q. Nano Co3O4 particles embedded in porous hard carbon spherules as anode material for Li-ion batteries. Electrochem. Solid State Lett.,2004,7(12):A496-A499.
    [8]Fu Z W, Wang Y, Zhang Y, Qin Q Z. Electrochemical reaction of nanocrystalline Co3O4 thin film with lithium. Solid State Ion.,2004,170(1-2):105-109.
    [9]Kang Y M, Song M S, Kim J H, Kim H S, Park M S, Lee J Y, Liu H K, Dou S X. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta,2005,50(18):3667-3673.
    [10]Needham S A, Wang G X, Konstantinov K, Tournayre Y, Lao Z, Liu H K. Electrochemical performance of Co3O4-C composite anode materials. Electrochem. Solid State Lett.,2006,9(7):A315-A319.
    [11]Shaju K M, Jiao F, Debart A, Bruce P G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys., 2007,9(15):1837-1842.
    [12]Liu H C, Yen S K. Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. J. Power Sources,2007,166(2):478-484.
    [13]Binotto G, Larcher D, Prakash A S, Urbina R H, Hegde M S, Tarascon J M. Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders. Chem. Mat.,2007,19(12):3032-3040.
    [14]Gu F, Li C Z, Hu Y J, Zhang L. Synthesis and optical characterization of Co3O4 nanocrystals. J. Cryst. Growth,2007,304(2):369-373.
    [15]Du N, Zhang H, Chen B, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D, Huang X H, Tu J P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:A highly efficient material for Li-battery applications. Adv. Mater.,2007,19(24):4505-4509.
    [16]Yao W L, Yang J, Wang J L, Nuli Y. Multilayered Cobalt Oxide Platelets for Negative Electrode Material of a Lithium-Ion Battery. J. Electrochem. Soc.,2008, 155(12):A903-A908.
    [17]Lou X W, Deng D, Lee J Y, Archer L A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem.,2008,18(37):4397-4401.
    [18]Liu Y, Mi C H, Su L H, Zhang X G. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta,2008, 53(5):2507-2513.
    [19]Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem. Soc.,1998,145(12): 4097-4103.
    [20]Grupioni A A F, Lassali T A F. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode. J. Electrochem. Soc.,2001, 148(9):A1015-A1022.
    [21]Kim H K, Seong T Y, Lim J H, Cho W I, Yoon Y S. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. J. Power Sources,2001,102(1-2):167-171.
    [22]Cao L, Lu M, Li H L. Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J. Electrochem. Soc.,2005,152(5):A871-A875.
    [23]Kandalkar S G, Lokhande C D, Mane R S, Han S H. A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application. Appl. Surf. Sci.,2007,253(8):3952-3956.
    [24]Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys.,2007, 103(2-3):206-210.
    [25]Chou S L, Wang J Z, Liu H K, Dou S X. Electrochemical Deposition of Porous Co(OH)2 Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors. J. Electrochem. Soc.,2008,155(12):A926-A929.
    [26]Wang H, Wang J, Xiao W D, Yuan W K. Preparation and catalytic activity of nanometer gold ultrafines supported on Co3O4. Powder Technol.,2000,111(1-2): 175-178.
    [27]Epling W S, Hoflund G B, Weaver J F, Tsubota S, Haruta M. Surface characterization study of Au/alpha-Fe2O3 and Au/COo3O4 low-temperature CO oxidation catalysts. J. Phys. Chem.,1996,100(23):9929-9934.
    [28]Schmidt-Szalowski K, Krawczyk K, Petryk J. The properties of cobalt oxide catalyst for ammonia oxidation. Appl. Catal. A-Gen.,1998,175(1-2):147-157.
    [29]Jansson J. Low-temperature CO oxidation over Co3O4/Al2O3. J. Catal.,2000, 194(1):55-60.
    [30]Jansson J, Skoglundh M, Fridell E, Thormahlen P. A mechanistic study of low temperature CO oxidation over cobalt oxide. Top. Catal.,2001,16(1-4):385-389.
    [31]Yan L, Zhang X M, Ren T, Zhang H P, Wang X L, Suo J S. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chem. Commun.,2002(8):860-861.
    [32]Broqvist P, Panas I, Persson H. A DFT study on CO oxidation over Co3O4. J. Catal.,2002,210(1):198-206.
    [33]Lin H K, Wang C B, Chiu H C, Chien S H. In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide. Catal. Lett.,2003,86(1-3):63-68.
    [34]Yan L, Ren T, Wang X L, Gao Q, Ji D, Suo J S. Excellent catalytic performance of ZnxCo1-xCo2O4 spinel catalysts for the decomposition of nitrous oxide. Catal. Commun,2003,4(10):505-509.
    [35]Haneda M, Kintaichi Y, Bion N, Hamada H. Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl. Catal. B-Environ.,2003,46(3):473-482.
    [36]El-Shobaky G A, Shouman M A, El-Khouly S A. Effect of silver oxide doping on surface and catalytic properties of Co3O4/Al2O3 system. Mater. Lett.,2004, 58(1-2):184-190.
    [37]Xu X Y, Li J J, Hao Z P. CeO2-Co3O4 catalysts for CO oxidation. J. Rare Earths, 2006,24(2):172-176.
    [38]Shao J J, Zhang P, Tang X F, Zhang B C, Song W, Xu Y D, Shen W J. Effect of preparation method and calcination temperature on low-temperature CO oxidation over Co3O4/CeO2 catalyst. Chinese J. Catal.,2007,28(2):163-169.
    [39]Wang Y Z, Zhao Y X, Gao C G, Liu D S. Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation. Catal. Lett.,2007,116(3-4): 136-142.
    [40]Liotta L F, Di Carlo G, Pantaleo G, Venezia A M, Deganello G, Borla E M, Pidria M. Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: Effects of high reaction temperature and SO2 exposure on the deactivation process. Appl. Catal. B-Environ.,2007,75(3-4):182-188.
    [41]Xue L, Zhang C B, He H, Teraoka Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B-Environ.,2007,75(3-4): 167-174.
    [42]Guo Q, Liu Y. Preferential oxidation of CO in H-2 over Co3O4-CeO2 catalysts. React. Kinet. Catal. Lett.,2007,92(1):19-25.
    [43]Guo Q, Wu M L, Liu Y, Bai X. Mesoporous CeO2-supported Co3O4 catalysts for CO preferential oxidation in H2-rich gases. Chinese J. Catal,2007,28(11):953-957.
    [44]Lopes I, Davidson A, Thomas C. Calibrated Co3O4 nanoparticles patterned in SBA-15 silicas:Accessibility and activity for CO oxidation. Catal. Commun.,2007, 8(12):2105-2109.
    [45]Chen B S, Bai C S, Cook R, Wright J, Wang C. Gold/cobalt oxide catalysts for oxidative destruction of dichloromethane. Catal. Today,1996,30(1-3):15-20.
    [46]Li Z H, Hoflund G B. Catalytic oxidation of methane over Pd/Co3O4. React. Kinet. Catal. Lett.,1999,66(2):367-374.
    [47]Stavart A, Lierde A V. Electrooxidation of cyanide on cobalt oxide anodes. J. Appl. Electrochem.,2001,31(4):469-474.
    [48]Zhuang H, Cheng T X, Bi Y L, Zhou G D, Zhen K J. Selective oxidation of octadecan-1-ol to octadecanoic acid over Co3O4/SiO2 catalysts. React. Kinet. Catal. Lett.,2004,81(1):13-20.
    [49]Zhou L P, Xu J, Miao H, Wang F, Li X Q. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Appl. Catal. A-Gen.,2005,292:223-228.
    [50]Dong Y M, He K, Yin L, Zhang A M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology, 2007,18(43).
    [51]Li F, Chen J, Zhang Q, Wang Y. Hydrous ruthenium oxide supported on Co3O4 as efficient catalyst for aerobic oxidation of amines. Green Chem.,2008,10(5): 553-562.
    [52]Krstajic N, Trasatti S. Cathodic behaviour of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions:hydrogen evolution. J. Appl. Electrochem.,1998,28(12): 1291-1297.
    [53]Singh S P, Samuels S, Tiwari S K, Singh R N. Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution. Int. J. Hydrog. Energy,1996,21(3):171-178.
    [54]Musiani M. Anodic deposition of PbO2/Co3O4 composites and their use as electrodes for oxygen evolution reaction. Chem. Commun.,1996, (21):2403-2404.
    [55]Yan L, Zhang X M, Ren T, Zhang H P, Wang X L, Suo J S. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chem. Commun.,2002, (8):860-861.
    [56]Wen T C, Kang H M. Co-Ni-Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solution. Electrochim. Acta,1998,43(12-13): 1729-1745.
    [57]Musiani M, Guerriero P. Oxygen evolution reaction at composite anodes containing Co3O4 particles-Comparison of metal-matrix and oxide-matrix composites. Electrochim. Acta,1998,44(8-9):1499-1507.
    [58]Musiani M. Anodic deposition of PbO2/Co3O4 composites and their use as electrodes for oxygen evolution reaction. Chem. Commun.,1996, (21):2403-2404.
    [59]Bocca C, Cerisola G, Magnone E, Barbucci A. Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution. Int. J. Hydrog. Energy, 1999,24(8):699-707.
    [60]Castro E B, Gervasi C A. Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrog. Energy, 2000,25(12):1163-1170.
    [61]Rashkova V, Kitova S, Konstantinov I, Vitanov T. Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction. Electrochim. Acta,2002,47(10):1555-1560.
    [62]Singh N K, Singh J P, Singh R N. Sol-gel-derived spinel Co3O4 films and oxygen evolution:Part II. Optimization of preparation conditions and influence of the nature of the metal salt precursor. Int. J. Hydrog. Energy,2002,27(9):895-903.
    [63]Jansson J, Palmqvist A E C, Fridell E, Skoglundh M, Osterlund L, Thormahlen P, Langer V. On the catalytic activity of Co3O4 in low-temperature CO oxidation. J. Catal.,2002,211(2):387-397.
    [64]Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk D A, Park S M, Fujishima A. Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J. Electrochem. Soc.,2003,150(7):E337-E341.
    [65]Grillo F, Natile M M, Glisenti A. Low temperature oxidation of carbon monoxide:the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Appl. Catal. B-Environ.,2004,48(4):267-274.
    [66]Hamdani M, Pereira M I S, Douch J, Addi A A, Berghoute Y, Mendonca M H. Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis. Electrochim. Acta,2004,49(9-10):1555-1563.
    [67]Zhang H Z, Yang W S. Highly efficient electrocatalysts for oxygen reduction reaction. Chem. Commun.,2007, (41):4215-4217.
    [68]El-Shobaky G A, Turky A E M. Catalytic decomposition of H2O2 on Co3O4 doped with Ag2O or ZnO. Adsorpt. Sci. Technol.,2000,18(8):727-740.
    [69]El-Shobaky G A, Turky A. Catalytic decomposition of H2O2 on Co3O4 doped with MgO and V2O5. Colloid Surf. A-Physicochem. Eng. Asp.,2000,170(2-3): 161-172.
    [70]El-Shobaky G A, Amin N H, Deraz N M, El-Molla S A. Decomposition of H2O2 on pure and ZnO-treated Co3O4/Al2O3 solids. Adsorption Science& Technology, 2001,19(1):45-58.
    [71]Deraz N A M. Catalytic decomposition of H2O2 on promoted cobaltic oxide catalysts. Mater. Lett.,2002,57(4):914-920.
    [72]Ando M, Kobayashi T, Iijima S, Haruta M. Optical recognition of CO and H-2 by use of gas-sensitive Au-Co3O4 composite films. J. Mater. Chem.,1997,7(9): 1779-1783.
    [73]Shimizu Y, Furuta Y. An opto-electrochemical phosphate-ion sensor using a cobalt-oxide thin-film electrode. Solid State Ion.,1998,113:241-245.
    [74]Choi S D, Min B K. Co3O4-based isobutane sensor operating at low temperatures. Sens. Actuator B-Chem.,2001,77(1-2):330-334.
    [75]Wollenstein J, Burgmair M, Plescher G, Sulima T, Hildenbrand J, Bottner H, Eisele I. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuator B-Chem.,2003,93(1-3):442-448.
    [76]Wu R J, Hu C H, Yeh C T, Su P G. Nanogold on powdered cobalt oxide for carbon monoxide sensor. Sens. Actuator B-Chem.,2003,96(3):596-601.
    [77]Choi U S, Sakai G, Shimanoe K, Yamazoe N. Sensing properties of SnO2-Co3O4 composites to CO and H-2. Sens. Actuator B-Chem.,2004,98(2-3):166-173.
    [78]Cantalini C, Post M, Buso D, Guglielmi A, Martucci A. Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol-gel films. Sens. Actuator B-Chem.,2005,108(1-2):184-192.
    [79]Zhang M M, Jiang G S. Gas sensing Properties of Co3O4-loaded SnO2 to ethanol and acetone. Chin. J. Chem. Phys.,2007,20(3):315-318.
    [80]Takada S, Fujii M, Kohiki S, Babasaki T, Deguchi H, Mitome M, Oku M. Intraparticle magnetic properties of Co3O4 nanocrystals. Nano Lett.,2001,1(7): 379-382.
    [81]Li T, Yang S G, Huang L S, Gu B X, Du Y W. Formation of Co3O4 nanotubes and the magnetic behaviour at low temperature. Chin. Phys. Lett.,2004,21(5): 966-969.
    [82]Ichiyanagi Y, Kimishima Y, Yamada S. Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater.,2004,272:E1245-E1246.
    [83]Wang R M, Liu C M, Zhang H Z, Chen C P, Guo L, Xu H B, Yang S H. Porous nanotubes of Co3O4:Synthesis, characterization, and magnetic properties. Appl. Phys. Lett.,2004,85(11):2080-2082.
    [84]Hou Y L, Kondoh H, Shimojo M, Kogure T, Ohta T. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B,2005,109(41):19094-19098.
    [85]Ichiyanagi Y, Yamada S. The size-dependent magnetic properties of Co3O4 nanoparticles. Polyhedron,2005,24(16-17):2813-2816.
    [86]Zhang Y G, Chen Y C, Zhao Y G. Synthesis and magnetic properties of Co3O4 nanoflowers. Chin. J. Chem. Phys.,2007,20(5):601-606.
    [87]Varghese B, Hoong T C, Yanwu Z, Reddy M V, Chowdari B V R, Wee A T S, Vincent T B C, Lim C T, Sow C H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater.,2007,17(12): 1932-1939.
    [88]Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater.,2005,15(5):851-857.
    [89]Xu X L, Li J Q. DFT studies on H2O adsorption and its effect on CO oxidation over spinel Co3O4(110) surface. Surf. Sci.,2011,605(23-24):1962-1967.
    [90]Chen J, Selloni A. Electronic states and magnetic structure at the Co3O4 (110) surface:A first-principles study.Phys. Rev. B,2012,85 (8):8536
    [91]Smith W L, Hobson A D. STRUCTURE OF COBALT OXIDE, Co3O4. Acta Crystallogr. Sect. B-Struct. Sci.,1973, B29(FEB15):362-363.
    [92]Tang C W, Wang C B, Chien S H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta,2008,473(1-2):68-73.
    [93]Hutchings K N, Wilson M, Larsen P A, Cutler R A. Kinetic and thermodynamic considerations for oxygen absorption/desorption using cobalt oxide. Solid State Ion., 2006,177(1-2):45-51.
    [94]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414(6861):359-367.
    [95]Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells,1990,9(209).
    [96]Mohri M, Yanagisawa N, Tajima Y, Tanaka H, Mitate T, Nakajima S, Yoshida M, Yoshimoto Y, Suzuki T, Wada H. RECHARGEABLE LITHIUM BATTERY BASED ON PYROLYTIC CARBON AS A NEGATIVE ELECTRODE. J. Power Sources,1989,26(3-4):545-551.
    [97]Tarascon J M. Key challenges in future Li-battery research. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.,2010,368(1923):3227-3241.
    [98]Su X, Wu Q L, Zhan X, Wu J, Wei S Y, Guo Z H. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci.,2012,47(6): 2519-2534.
    [99]Binotto G, Larcher D, Prakash A S, Urbina R H, Hegde M S, Tarascon J M. Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders. Chem. Mat.,2007,19(12):3032-3040.
    [100]Guo B, Li C S, Yuan Z Y. Nanostructured Co3O4 Materials:Synthesis, Characterization, and Electrochemical Behaviors as Anode Reactants in Rechargeable Lithium Ion Batteries. J. Phys. Chem. C,2010,114(29):12805-12817.
    [101]Wang X, Chen X Y, Gao L S, Zheng H G, Zhang Z, Qian Y T. One-dimensional arrays of Co3O4 nanoparticles:Synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B,2004,108(42): 16401-16404.
    [102]Hong S H, Bae J S, Ahn H J. Synthesis of nano-sized Co3O4 powder by spray conversion method for anode material of lithium battery. Met. Mater.-Int.,2008, 14(2):229-232.
    [103]Ding Y H, Zhang P, Long Z L, Jiang Y, Huang J N, Yan W J, Liu G. Synthesis and electrochemical properties of Co3O44 nanofibers as anode materials for lithium-ion batteries. Mater. Lett.,2008,62(19):3410-3412.
    [104]Barreca D, Cruz-Yusta M, Gasparotto A, Maccato C, Morales J, Pozza A, Sada C, Sanchez L, Tondello E. Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. J. Phys. Chem. C,2010,114(21):10054-10060.
    [105]Nam S H, Kim Y S, Shim H S, Kim J G, Kim W B. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries. Nanoscale Res. Lett.,2011,6.
    [106]Donders M E, Knoops H C M, Kessels W M M, Notten P H L. Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition. J. Power Sources,2012,203:72-77.
    [107]Xu M W, Wang F, Zhao M S, Yang S, Song X P. Molten hydroxides synthesis of hierarchical cobalt oxide nanostructure and its application as anode material for lithium ion batteries. Electrochim. Acta,2011,56(13):4876-4881.
    [108]Chou S L, Wang J Z, Liu H K, Dou S X. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J. Power Sources,2008, 182(1):359-364.
    [109]Yao X Y, Xin X, Zhang Y M, Wang J, Liu Z P, Xu X X. Co3O4 nanowires as high capacity anode materials for lithium ion batteries. J. Alloy. Compd.,2012,521: 95-100.
    [110]Tian L, Zou H L, Fu J X, Yang X F, Wang Y, Guo H L,Fu X H, Liang C L, Wu M M, Shen P K, Gao Q M. Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. Adv. Funct. Mater.,2010,20(4):617-623.
    [111]Wilczkowska E, Krawczyk K, Petryk J, Sobczak J W, Kaszkur Z. Direct nitrous oxide decomposition with a cobalt oxide catalyst. Appl. Catal. A-Gen.,2010, 389(1-2):165-172.
    [112]Li C C, Yin X M, Li Q H, Chen L B, Wang T H. Topochemical Synthesis of Cobalt Oxide-Based Porous Nanostructures for High-Performance Lithium-Ion Batteries. Chem.-Eur. J.,2011,17(5):1596-1604.
    [113]Li C C, Li Q H, Chen L B, Wang T H. Topochemical synthesis of cobalt oxide nanowire arrays for high performance binderless lithium ion batteries. J. Mater. Chem.,2011,21(32):11867-11872.
    [114]Lou X W, Deng D, Lee J Y, Feng J, Archer L A. Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.,2008,20(2):258-262.
    [115]Nam K M, Shim J H, Han D W, Kwon H S, Kang Y M, Li Y, Song H, Seo W S, Park J T. Syntheses and Characterization of Wurtzite CoO, Rocksalt CoO, and Spinel Co3O4 Nanocrystals:Their Interconyersion and Tuning of Phase and Morphology. Chem. Mat.,2010,22(15):4446-4454.
    [116]Xu R, Wang J W, Li Q Y, Sun G Y, Wang E B, Li S H, Gu J M, Ju M L. Porous cobalt oxide (Co3O4) nanorods:Facile syntheses, optical property and application in lithium-ion batteries. J. Solid State Chem.,2009,182(11):3177-3182.
    [117]Wang Y, Xia H, Lu L, Lin J Y. Excellent Performance in Lithium-Ion Battery Anodes:Rational Synthesis of Co(CO3)0.5(OH)0.11H2O Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co3O4. Acs Nano,2010,4(3): 1425-1432.
    [118]Tao F F, Gao C L, Wen Z H, Wang Q, Li J H, Xu Z. Cobalt oxide hollow microspheres with micro-and nano-scale composite structure:Fabrication and electrochemical performance. J. Solid State Chem.,2009,182(5):1055-1060.
    [119]Li Y G, Tan B, Wu Y Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett.,2008,8(1):265-270.
    [120]Wang G X, Liu H, Horvat J, Wang B, Qiao S Z, Park J, Ahn H. Highly Ordered Mesoporous Cobalt Oxide Nanostructures:Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chem.-Eur. J., 2010,16(36):11020-11027.
    [121]Xia X H, Tu J P, Xiang J Y, Huang X H, Wang X L, Zhao X B. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. J. Power Sources, 2010,195(7):2014-2022.
    [122]Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater.,2005,15(5):851-857.
    [123]Shim H W, Jin Y H, Seo S D, Lee S H, Kim D W. Highly Reversible Lithium Storage in Bacillus subtilis-Directed Porous Co3O4 Nanostructures. Acs Nano,2011, 5(1):443-449.
    [124]Wang X, Yu L J, Wu X L, Yuan F L, Guo Y G, Ma Y, Yao J N. Synthesis of Single-Crystalline Co3O4 Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties. J. Phys. Chem. C,2009,113(35):15553-15558.
    [125]He T, Chen D R, Jiao X L, Xu Y Y, Gu Y X. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir,2004,20(19):8404-8408.
    [126]Nuli Y N, Zhang P, Guo Z P, Liu H K, Yang J, Wang J L. Nickel-cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries. Mater. Res. Bull.,2009,44(1):140-145.
    [127]Qiu Y C, Yang S H, Deng H, Jin L M, Li W S. A novel nanostructured spinel ZnCo2O4 electrode material:morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem., 2010,20(21):4439-4444.
    [128]Guo H J, Li X H, Xie J, Wang Z X, Peng W J, Sun Q M. Effects of Ni substitution on the properties of Co3O4/graphite composites as anode of lithium ion batteries. Energy Conv. Manag.,2010,51(2):247-252.
    [129]Kim B Y, Yu S H, Kim H S, Lee D C, Shim I B, Derosa S E, Sung Y E, Pyun J. Morphological conversion of dipolar core-shell Au-Co nanoparticles into beaded Au-Co3O4 nanowires. J. Mater. Chem.,2011,21(37):14163-14166.
    [130]Meng Y D, Chen D R, Jiao X L. Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites. J. Phys. Chem. B, 2006,110(31):15212-15217.
    [131]Ryu J, Kim S W, Kang K, Park C B. Synthesis of Diphenylalanine/Cobalt Oxide Hybrid Nanowires and Their Application to Energy Storage. Acs Nano,2010, 4(1):159-164.
    [132]Li B J, Cao H Q, Shao J, Li G Q, Qu M Z, Yin G. Co3O4@graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries. Inorg. Chem.,2011,50(5):1628-1632.
    [133]Wang B, Wang Y, Park J, Ahn H, Wang G X. In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J. Alloy. Compd.,2011,509(29): 7778-7783.
    [134]Zhang P, Guo Z P, Huang Y D, Jia D Z, Liu H K. Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties. J. Power Sources,2011, 196(16):6987-6991.
    [135]Wang G L, Liu J C, Tang S, Li H Y, Cao D X. Cobalt oxide-graphene nanocomposite as anode materials for lithium-ion batteries. J. Solid State Electrochem.,2011,15(11-12):2587-2592.
    [136]Jayaprakash N, Jones W D, Moganty S S, Archer L A. Composite lithium battery anodes based on carbon@Co3O4 nanostructures:Synthesis and characterization. J. Power Sources,2012,200:53-58.
    [137]Tao L Q, Zai J T, Wang K X, Zhang H J, Xu M, Shen J, Su Y Z, Qian X F. Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Sources,2012,202: 230-235.
    [138]Largeot C, Portet C, Chmiola J, Taberna P L, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc.,2008,130(9):2730.
    [139]Kandalkar S G, Dhawale D S, Kim C K, Lokhande C D. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met.,2010, 160(11-12):1299-1302.
    [140]Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev.2012,41, (2):797-828.
    [141]B. E. Conway Electrochemical Supercapacitors, Kluwer Academic/Plenum Press, New York,1999.
    [142]Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys.,2007, 103(2-3):206-210.
    [143]Estrada W, Fantini M C A, Decastro S C, Dafonseca C N P, Gorenstein A. RADIO-FREQUENCY SPUTTERED COBALT OXIDE COATING STRUCTURAL, OPTICAL, AND ELECTROCHEMICAL CHARACTERIZATION. J. Appl. Phys.,1993,74(9):5835-5841.
    [144]Xu C H, Sun J, Gao L A. Controllable synthesis of triangle taper-like cobalt hydroxide and cobalt oxide. Crystengcomm,2011,13(5):1586-1590.
    [145]Wang G X, Shen X P, Horvat J, Wang B, Liu H, Wexler D, Yao J. Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods. J. Phys. Chem. C,2009,113(11):4357-4361.
    [146]Wang L, Liu X H, Wang X, Yang X J, Lu L D. Electrochemical capacitance study on Co3O4 nanowires for super capacitors application. J. Mater. Sci.-Materials in Electronics,2011,22(6):601-606.
    [147]Wang D W, Wang Q H, Wang T M. Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors. Inorg. Chem.,2011,50(14):6482-6492.
    [148]Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. Preparation of Mesoporous Co3O4 Nanoparticles via Solid-Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors. J. Phys. Chem. C,2009,113(9):3887-3894.
    [149]Aghazadeh M. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J. Appl. Electrochem.,2012,42(2):89-94.
    [150]Wang X, Sumboja A, Khoo E, Yan C Y, Lee P S. Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. J. Phys. Chem. C,2012,116(7):4930-4935.
    [151]Liang Y Y, Schwab M G, Zhi L J, Mugnaioli E, Kolb U, Feng X L, Mullen K. Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. J. Am. Chem. Soc.,2010,132(42):15030-15037.
    [152]Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2 center dot xH2O composites for electrochemical capacitors. Electrochim. Acta,2008,53(8):3296-3304.
    [153]Keng P Y, Kim B Y, Shim I B, Sahoo R, Veneman P E, Armstrong N R, Yoo H, Pemberton J E, Bull M M, Griebel J J, Ratcliff E L, Nebesny K G, Pyun J. Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires. Acs Nano,2009,3(10):3143-3157.
    [154]Zhou W W, Liu J P, Chen T, Tan K S, Jia X T, Luo Z Q, Cong C X, Yang H P, Li C M, Yu T. Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys.,2011,13(32): 14462-14465.
    [155]Hu G X, Tang C H, Li C X, Li H M, Wang Y, Gong H. The Sol-Gel-Derived Nickel-Cobalt Oxides with High Supercapacitor Performances. J. Electrochem. Soc., 2011,158(6):A695-A699.
    [156]Wu Y Q, Chen X Y, Ji P T, Zhou Q Q. Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta,2011,56(22):7517-7522.
    [157]Wang H L, Gao Q M, Jiang L. Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small,2011,7(17):2454-2459.
    [158]Lang J W, Yan X B, Xue Q J. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. J. Power Sources,2011,196(18):7841-7846.
    [159]甄开吉,王国甲,李荣生 毕颖丽 阚秋斌.催化作用基础(第三版).北京:科学出版社,2005.
    [160]Pollard M J, Weinstock B A, Bitterwolf T E, Griffiths P R, Newbery A P, Paine J B. A mechanistic study of the low-temperature conversion of carbon monoxide to carbon dioxide over a cobalt oxide catalyst. J. Catal.,2008,254(2):218-225.
    [161]Gui Z, Zhu J X, Hu Y A. A simple preparative method for porous hollow-ware stacked cobalt oxides and their catalytic properties. Mater. Chem. Phys.,2010,124(1): 243-247.
    [162]Chen J F, Zhang Y R, Tan L, Zhang Y. A Simple Method for Preparing the Highly Dispersed Supported Co3O4 on Silica Support. Ind. Eng. Chem. Res.,2011, 50(7):4212-4215.
    [163]Xie X W, Shang P J, Liu Z Q, Lv Y G, Li Y, Shen W J. Synthesis of Nanorod-Shaped Cobalt Hydroxycarbonate and Oxide with the Mediation of Ethylene Glycol. J. Phys. Chem. C,2010,114(5):2116-2123.
    [164]Jia C J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Wecichuysen B M, Schuth F. Co3O4-SiO2 Nanocomposite:A Very Active Catalyst for CO Oxidation with Unusual Catalytic Behavior. J. Am. Chem. Soc.,2011, 133(29):11279-11288.
    [165]Zhang Q H, Liu X H, Fan W Q, Wang Y. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream. Appl. Catal. B-Environ.,2011,102(1-2):207-214.
    [166]Wang W X, Li Y W, Zhang R J, He D H, Liu H L, Liao S J. Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catal. Commun.,2011,12(10):875-879.
    [167]Zhao Z K, Lin X L, Jin R H, Dai Y T, Wang G R. High catalytic activity in CO PROX reaction of low cobalt-oxide loading catalysts supported on nano-particulate CeO2-ZrO2 oxides. Catal. Commun.,2011,12(15):1448-1451.
    [168]Teng F, Chen M D, Li G Q, Teng Y, Xu T G, Hang Y C, Yao W Q, Santhanagopalan S, Meng D D, Zhu Y F. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Appl. Catal. B-Environ.,2011,110:133-140.
    [169]Liu Q, Liu C X, Nie X L, Bai L, Wen S H. Facile synthesis of mesoporous Co3O4 via a soft reactive grinding route and their application in the CO oxidation. Mater. Lett.,2012,72:101-103.
    [170]Jeon H S, Park W, Kim J, Kim H, Kim W, Min B K. Printed Co3O4 film as an electrocatalyst for hydrogen production by a monolithic photovoltaic-electrolysis system. Int. J. Hydrog. Energy,2011,36(3):1924-1929.
    [171]Liang Y Y, Wang H L, Zhou J G, Li Y G, Wang J, Regier T, Dai H J. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc.,2012,134(7):3517-3523.
    [172]Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis. J. Phys. Chem. C,2009,113(33):15068-15072.
    [173]Zafeiratos S, Dintzer T, Teschner D, Blume R, Havecker M, Knop-Gericke A, Schlogl R. Methanol oxidation over model cobalt catalysts:Influence of the cobalt oxidation state on the reactivity. J. Catal.,2010,269(2):309-317.
    [174]Li Y L, Zhao J Z, Dan Y Y, Ma D C, Zhao Y, Hou S N, Lin H B, Wang Z C. Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J.,2011,166(1):428-434.
    [175]Ding Y S, Xu L P, Chen C H, Shen X F, Suib S L. Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method. J. Phys. Chem. C,2008,112(22):8177-8183.
    [176]Palmas S, Ferrara F, Mascia M, Polcaro A M, Ruiz J R, Vacca A, Piccaluga G. Modeling of oxygen evolution at Teflon-bonded Ti/Co3O4 electrodes. Int. J. Hydrog. Energy,2009,34(4):1647-1654.
    [177]Song X C, Wang X, Zheng Y F, Ma R, Yin H Y. Synthesis and electrocatalytic activities of Co3O4 nanocubes. J. Nanopart. Res.,2011,13(3):1319-1324.
    [178]Casas-Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M. Defect Chemistry and Catalytic Activity of Nanosized Co3O4. Chem. Mat.,2009, 21(9):1939-1947.
    [179]Lei T, Tian Y M, Wang G L, Yin J L, Gao Y Y, Wen Q, Cao D X. An Alkaline AI-H2O2 Semi-Fuel Cell Based on a Nickel Foam Supported Co3O4 Nanowire Arrays Cathode. Fuel Cells,2011,11(3):431-435.
    [180]Wang G L, Cao D X, Yin C L, Gao Y Y, Yin J L, Cheng L. Nickel Foam Supported-Co3O4 Nanowire Arrays for H2O2 Electroreduction. Chem. Mat.,2009, 21(21):5112-5118.
    [181]Selim M M, Deraz N M, Ramadan M. Influence of Precursor Compounds on the Structural and Catalytic Properties of Cobalt-based Catalysts. Adsorpt. Sci. Technol,2009,27(9):883-891.
    [182]Armatas G S, Katsoulidis A P, Petrakis D E, Pomonis P J, Kanatzidis M G. Nanocasting of Ordered Mesoporous Co3O4-Based Polyoxometalate Composite Frameworks. Chem. Mat.,2010,22(20):5739-5746.
    [183]Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl. Catal. B-Environ.,2008,78(3-4): 242-249.
    [184]Irfan M F, Goo J H, Kim S D. Co3O4 based catalysts for NO oxidation and NO, reduction in fast SCR process. Appl. Catal. B-Environ.,2008,78(3-4):267-274.
    [185]Mei Z J, Shen Z M, Wang W H, Zhang Y J. Novel sorbents of non-metal-doped spinel Co3O4 for the removal of gas-phase elemental mercury. Environ. Sci. Technol., 2008,42(2):590-595.
    [186]Yoshino H, Ohnishi C H, Hosokawa S, Wada K, Inoue M. Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O. J. Mater. Sci., 2011,46(3):797-805.
    [187]Yamada Y, Yano K, Xu Q A, Fukuzumi S. Cu/Co3O4 Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis. J. Phys. Chem. C,2010,114(39):16456-16462.
    [188]Wu H J, Wang L D, Shen Z Y, Zhao J H. Catalytic oxidation of toluene and p-xylene using gold supported on Co3O4 catalyst prepared by colloidal precipitation method. J. Mol. Catal. A-Chem.; 2011,351:188-195.
    [189]de Rivas B, Lopez-Fonseca R, Jimenez-Gonzalez C, Gutierrez-Ortiz J I. Synthesis, characterisation and catalytic performance of nanocrystalline Co3O4 for gas-phase chlorinated VOC abatement. J. Catal.,2011,281(1):88-97.
    [190]Hu L H, Peng Q, Li Y D. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc.,2008,130(48):16136.
    [191]Chen C H, Abbas S F, Morey A, Sithambaram S, Xu L P, Garces H F, Hines W A, Suib S L. Controlled synthesis of self-assembled metal oxide hollow spheres via timing redox potentials:Versatile nanostructured cobalt oxides. Adv. Mater.,2008, 20(6):1205-1209.
    [192]Zhu J J, Kailasam K, Fischer A, Thomas A. Supported Cobalt Oxide Nanoparticles As Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase. Acs Catalysis,2011,1(4):342-347.
    [193]Cao F, Wang D Q, Deng R P, Tang J K, Song S Y, Lei Y Q, Wang S, Su S Q, Yang X G, Zhang H J. Porous Co3O4 microcubes:hydrothermal synthesis, catalytic and magnetic properties. Crystengcomm,2011,13(6):2123-2129.
    [194]Garcia T, Agouram S, Sanchez-Royo J F, Murillo R, Mastral A M, Aranda A, Vazquez I, Dejoz A, Solsona B. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Appl. Catal. A-Gen.,2010, 386(1-2):16-27.
    [195]Askarinejad A, Bagherzadeh M, Morsali A. Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surf. Sci.,2010,256(22):6678-6682.
    [196]Liu Q, Wang L C, Chen M, Cao Y, He H Y, Fan K N. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal.,2009,263(1):104-113.
    [197]Tang X F, Li J H, Hao J M. Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {111} facets. Mater. Res. Bull.,2008,43(11):2912-2918.
    [198]Liu C Y, Chen C F, Leu J P. Fabrication of Mesostructured Cobalt Oxide Sensor and Its Application for CO Detector. Electrochem. Solid State Lett.,2009, 12(4):J40-J43.
    [199]Teng F, Yao W Q, Zheng Y F, Ma Y T, Xu T G, Gao G Z, Liang S H, Teng Y, Zhu Y F. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases. Talanta,2008,76(5):1058-1064.
    [200]Park J S, Shen X P, Wang G X. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens. Actuator B-Chem.,2009,136(2): 494-498.
    [201]Choi K I, Kim H R, Kim K M, Li D W, Cao G Z, Lee J H. C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuator B-Chem.,2010,146(1):183-189.
    [202]Nguyen H, El-Safty S A. Meso-and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors. J. Phys. Chem. C,2011,115(17):8466-8474.
    [203]Li C C, Yin X M, Wang T H, Zeng H C. Morphogenesis of Highly Uniform CoCO3 Submicrometer Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications. Chem. Mat.,2009,21(20):4984-4992.
    [204]Rahman M M, Jamal A, Khan S B, Faisal M. Fabrication of Highly Sensitive Ethanol Chemical Sensor Based on Sm-Doped Co3O4 Nanokernels by a Hydrothermal Method. J. Phys. Chem. C,2011,115(19):9503-9510.
    [205]Wang M Y, Zhang D E, Tong Z W, Xu X Y, Yang X J. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J. Appl. Electrochem.,2011,41(2):189-196.
    [206]Hallaj R, Salimi A. Nanomolar detection of guanine based on a novel cobalt oxide nanostructure-modified glassy carbon electrode. Analytical Methods,2011, 3(4):911-918.
    [207]Man L Y, Niu B, Xu H Y, Cao B Q, Wang J Q. Microwave hydrothermal synthesis of nanoporous cobalt oxides and their gas sensing properties. Mater. Res. Bull,2011,46(7):1097-1101.
    [208]Kung C W, Lin C Y, Lai Y H, Vittal R, Ho K C. Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens. Bioelectron.,2011,27(1):125-131.
    [209]Gupta R K, Sinha A K, Sekhar B N R, Srivastava A K, Singh G, Deb S K. Synthesis and characterization of various phases of cobalt oxide nanoparticles using inorganic precursor. Appl. Phys. A-Mater. Sci. Process.,2011,103(1):13-19.
    [210]Wang S J, Zhang B P, Zhao C H, Li S J, Zhang M X, Yan L P. Valence control of cobalt oxide thin films by annealing atmosphere. Appl. Surf. Sci.,2011,257(8): 3358-3362.
    [211]Xu R, Zeng H C. Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their closeand non-close-packed organizations. Langmuir,2004,20(22):9780-9790.
    [212]Al-Tuwirqi R, Al-Ghamdi A A, Aal N A, Umar A, Mahmoud W E. Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices Microstruct,2011,49(4):416-421.
    [213]Sun H, Kang S Z, Mu J. A Facile Preparation of the Co3O4 Villiform Nanostructure. J. Dispersion Sci. Technol.,2009,30(4):500-502.
    [214]Barakat N A M, Khil M S, Sheikh F A, Kim H Y. Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. J. Phys. Chem. C,2008,112(32):12225-12233.
    [215]Du J, Chai L L, Wang G M, Li K, Qian Y T. Controlled synthesis of one-dimensional single-crystal Co3O4 nanowires. Aust. J. Chem.,2008,61(2): 153-158.
    [216]Ma J. Co3O4@PFR cube-like core-shell nanocomposite prepared via a facile one-step hydrothermal approach. J. Nanoprt. Res.,2011,12:1219-1228.
    [217]Yu T, Zhu Y W, Xu X J, Shen Z X, Chen P, Lim C T, Thong J T L, Sow C H. Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv. Mater.,2005,17(13):1595-1599.
    [218]Ma J, Zhang S P, Liu W, Zhao Y. Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder. J. Alloy. Compd.,2010, 490(1-2):647-651.
    [219]Qi Y C, Zhao Y B, Wu Z S. Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization. Mater. Chem. Phys.,2008,110(2-3):457-462.
    [220]Ahmed J, Ahmad T, Ramanujachary K V, Lofland S E, Ganguli A K. Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. J. Colloid Interface Sci.,2008,321(2):434-441.
    [221]Shen X P, Miao H J, Zhao H, Xu Z. Synthesis, characterization and magnetic properties of Co3O4 nanotubes. Appl. Phys. A-Mater. Sci. Process.,2008,91(1): 47-51.
    [222]Shambharkar B H, Umare S S. Production and characterization of polyaniline/Co3O4 nanocomposite as a cathode of Zn-polyaniline battery. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.,2010,175(2):120-128.
    [223]Yuan Z Q, Chen H, Li C, Huang L H, Fu X, Zhao D J, Tang J X. Facile method to prepare stable superhydrophobic Co3O4 surface. Appl. Surf. Sci.,2009,255, (23): 9493-9497.
    [224]Li L, Li Y, Gao S Y, Koshizaki N. Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. J. Mater. Chem.,2009,19(44):8366-8371.
    [225]Xia X H, Tu J P, Zhang J, Huang X H, Wang X L, Zhang W K, Huang H. Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition. Electrochem. Commun.,2008,10(11):1815-1818.
    [226]Gill S K, Shobe A M, Hope-Weeks L J. Synthesis of Cobalt Oxide Aerogels and Nanocomposite Systems Containing Single-Walled Carbon Nanotubes. Scanning, 2009,31(3):132-138.
    [227]Nethravathi C, Sen S, Ravishankar N, Rajamathi M, Pietzonka C, Harbrecht B. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of alpha-cobalt hydroxide. J. Phys. Chem. B,2005, 109(23):11468-11472.
    [228]Thangavelu K, Parameswari K, Kuppusamy K, Haldorai Y. A simple and facile method to synthesize Co3O4 nanoparticles from metal benzoate dihydrazinate complex as a precursor. Mater. Lett.,2011,65(10):1482-1484.
    [229]Yang J, Liu H W, Martens W N, Frost R L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C,2010,114(1):111-119.
    [230]Guyon C, Barkallah A, Rousseau F, Giffard K, Morvan D, Tatoulian M. Deposition of cobalt oxide thin films by plasma-enhanced chemical vapour deposition (PECVD) for catalytic applications. Surf. Coat. Technol.,2011,206(7):1673-1679.
    [231]Jiang J, Liu J P, Huang X T, Li Y Y, Ding R M, Ji X X, Hu Y Y, Chi Q B, Zhu Z H. General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co3O4 Directly on Heterogeneous Substrates. Cryst. Growth Des.,2010,10(1): 70-75.
    [232]Shao Y Z, Sun J, Gao L. Hydrothermal Synthesis of Hierarchical Nanocolumns of Cobalt Hydroxide and Cobalt Oxide. J. Phys. Chem. C,2009,113(16):6566-6572.
    [233]Zhuo L H, Ge J C, Cao L H, Tang B. Solvothermal Synthesis of CoO, Co3O4, Ni(OH)2 and Mg(OH)2 Nanotubes. Cryst. Growth Des.,2009,9(1):1-6.
    [234]Hou Y L, Kondoh H, Shimojo M, Kogure T, Ohta T. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B,2005,109(41):19094-19098.
    [235]Tripathy S K, Christy M, Park N H, Suh E K, Anand S, Yu Y T. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Mater. Lett.,2008,62(6-7): 1006-1009.
    [236]He T, Chen D R, Jiao X L, Wang Y L, Duan Y Z. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mat.,2005,17(15):4023-4030.
    [237]Yang J H, Sasaki T. Morphological Control of Single Crystalline Co3O4 Polyhedrons:Selective and Nonselective Growth of Crystal Planes Directed by Differently Charged Surfactants and Solvents. Cryst. Growth Des.,2010,10(3): 1233-1236.
    [238]Tian L, Huang K L, Liu Y N, Liu S Q. Topotactic synthesis of Co3O4 nanoboxes from Co(OH)2 nanoflakes. J. Solid State Chem.,2011,184(11): 2961-2965.
    [239]Ai L H, Jiang J. Facile synthesis and characterization of polypyrrole/Co3O4 nanocomposites with adjustable intrinsic electroconductivity. J. Mater. Sci.-Materials in Electronics,2010,21(4):410-415.
    [240]Fu L, Liu Z M, Liu Y Q, Han B X, Hu P G, Cao L C, Zhu D B. Beaded cobalt oxide nanoparticles along carbon nanotubes:Towards more highly integrated electronic devices. Adv. Mater.,2005,17(2):217.
    [241]Liang H Y, Raitano J M, Zhang L H, Chan S W. Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem. Commun.,2009, (48): 7569-7571.
    [242]Dickinson C, Zhou W Z, Hodgkins R P, Shi Y F, Zhao D Y, He H Y. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chem. Mat.,2006,18(13):3088-3095.
    [243]Rumplecker A, Kleitz F, Salabas E L, Schuth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chem. Mat.,2007,19(3):485-496.
    [244]Llavona A, Diaz-Guerra C, Sanchez M C, Perez L. Growth, structure and luminescence properties of electrodeposited and post-oxidized Co oxide nanowires. Mater. Chem. Phys.,2010,124(2-3):1177-1181.
    [245]Shi X Y, Han S B, Sanedrin R J, Zhou F M, Selke M. Synthesis of cobalt oxide nanotubes from colloidal particles modified with a Co(Ⅲ)-cysteinato precursor. Chem. Mat.,2002,14(4):1897-1902.
    [246]Singh R N, Awasthi M R, Sinha A S K. Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution. J. Solid State Electrochem.,2009,13(10):1613-1619.
    [247]Kong A G, Zhu H Y, Wang W J, Zhang Q Y, Yang F, Shan Y K. Novel nanocasting method for synthesis of ordered mesoporous metal oxides. J. Porous Mat., 2011,18(1):107-112.
    [248]Li J, Tang S B, Lu L, Zeng H C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc.,2007, 129(30):9401-9409.
    [249]Liu S L, Hu H Z, Zhou J P, Zhang L N. Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals:preparation, characterization and properties. Cellulose,2011,18(5):1273-1283.
    [250]Svegl F, Orel B, Hutchins M G, Kalcher K. Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc.,1996,143(5):1532-1539.
    [251]Patil P S, Kadam L D, Lokhande C D. Preparation and characterization of spray pyrolysed cobalt oxide thin films. Thin Solid Films,1996,272(1):29-32.
    [252]Louardi A, Rmili A, Ouachtari F, Bouaoud A, Elidrissi B, Erguig H. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer. J. Alloy. Compd.,2011,509(37):9183-9189.
    [253]Shinde V R, Mahadik S B, Gujar T P, Lokhande C D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci.,2006,252(20): 7487-7492.
    [254]Koshizaki N, Narazaki A, Sasaki T. Size distribution and growth mechanism of Co3O4 nanoparticles fabricated by pulsed laser deposition. Scr. Mater.,2001,44(8-9): 1925-1928.
    [255]Han B, Choi K H, Park K, Han W S, Lee W J. Low-Temperature Atomic Layer Deposition of Cobalt Oxide Thin Films Using Dicobalt Hexacarbonyl tert-Butylacetylene and Ozone. Electrochem. Solid State Lett.,2012,15(2):D14-D17.
    [256]Diskus M, Nilsen O, Fjellvag H. Thin Films of Cobalt Oxide Deposited on High Aspect Ratio Supports by Atomic Layer Deposition. Chem. Vapor Depos.,2011, 17(4-6):135-140.
    [257]Donders M E, Knoops H C M, van de Sanden M C M, Kessels W M M, Notten P H L. Remote Plasma Atomic Layer Deposition of Co3O4 Thin Films. J. Electrochem. Soc.,2011,158(4):G92-G96.
    [258]Fujii E, Torii H, Tomozawa A, Takayama R, Hirao T. Preparation of cobalt oxide films by plasma-enhanced metalorganic chemical vapour deposition. J. Mater. Sci.,1995,30(23):6013-6018.
    [259]Papadopoulos N D, Karayianni H S, Tsakiridis P E, Perraki M, Sarantopoulou E, Hristoforou E. MOCVD Cobalt Oxide Deposition from Inclusion Complexes: Decomposition Mechanism, Structure, and Properties. J. Electrochem. Soc.,2011, 158(1):P5-P13.
    [260]Barreca D, Gasparotto A, Lebedev O I, Maccato C, Pozza A, Tondello E, Turner S, Van Tendeloo G. Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. Crystengcomm,2010, 12(7):2185-2197.
    [261]Guo Q S, Guo X Y, Tian Q H. Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl(2) solution via a versatile spray roasting method. Advanced Powder Technol.,2010,21(5):529-533.
    [262]Wen W, Wu J M, Tu J P. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries. J. Alloy. Compd.,2012,513:592-596.
    [263]Bhatt A S, Bhat D K, Tai C W, Santosh M S. Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys.,2011,125(3): 347-350.
    [264]Salabas E L, Rumplecker A, Kleitz F, Radu F, Schuth F. Exchange anisotropy in nanocasted Co3O4 nanowires. Nano Lett.,2006,6(12):2977-2981.
    [265]He T, Chen D R, Jiao X L. Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chem. Mat.,2004,16(4):737-743.
    [266]Kumar U, Shete A, Harle A S, Kasyutich O, Schwarzacher W, Pundle A, Poddar P. Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem. Mat.,2008,20(4):1484-1491.
    [267]Verelst M, Ould-Ely T, Amiens C, Snoeck E, Lecante P, Mosset A, Respaud M, Broto J M, Chaudret B. Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem. Mat.,1999,11(10):2702-2708.
    [268]Askarinejad A, Morsali A. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem.,2009,16(1):124-131.
    [269]Yang J, Liu H W, Martens W N, Frost R L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C,2010,114(1):111-119.
    [270]张鉴清.电化学测试技术.北京:化学工业出版社,2010.
    [271]李荻.电化学原理(修订版).北京:北京航空航天大学出版社,1999.
    [272]查全性.电极过程动力学导论.北京:科学出版社,2002.
    [273]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004.
    [274]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [275]Koinuma M, Hirae T, Matsumoto Y. Electrochemical preparation of cobalt oxide using an autoclave electrolytic cell. J. Mater. Res.,1998,13(4):837-839.
    [276]Moghaddam A B, Esmaieli M, Khodadadi A A, Ganjkhanlou Y, Asheghali D. Direct electron transfer and biocatalytic activity of iron storage protein molecules immobilized on electrodeposited cobalt oxide nanoparticles. Microchim. Acta,2011, 173(3-4):317-322.
    [277]Tak Y, Yong K. A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method. J. Phys. Chem. C,2008,112(1):74-79.
    [1]曾华梁,吴仲达,陈钧武,吕佩仁,秦月文.电镀工艺手册(第二版).北京:机械工业出版社,1997
    [2]宫娇娇.先进二氧化钛纳米管阵列的构筑、表面修饰及光电解水制氢研究:[博士学位论文].厦门:厦门大学,2011
    [1]Tarascon J M, Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature,2001,414:359-367.
    [2]Li W Y, Xu, L N, Chen J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv. Funct. Mater.,2005,15:851-857.
    [3]Li Y, Tan B, Wu Y. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett.2008,8,265-270.
    [4]Ryu J, Kim S W, Kang K, Park C B. Synthesis of Diphenylalanine/Cobalt Oxide Hybrid Nanowires and Their Application to Energy Storage. ACS Nano,2010,4: 159-164.
    [5]Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010,4: 3187-3194.
    [6]Nam K T, Kim D W, Yoo P J, Chiang C, Meethong N, Hammond P T, Chiang Y, Belcher A M. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science,2006,312:885-888.
    [7]Hu L, Peng Q, Li Y. Selective Synthesis of Co3O4 Nanocrystal with Different Shap and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc.,2008,130:16136-16137.
    [8]Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene. J. Am. Chem. Soc.,2010,132:2608-2613.
    [9]Xie X, Li Y, Liu Z, Haruta M, Shen W. Low-temperature oxidation of CO catalysed by Co304nanorods. Nature,2009,458:746-749.
    [10]Li Y, Tan B, Wu Y. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays. J. Am. Chem. Soc.,2006,128:14258-14259.
    [11]Xia X H, Tu J P, Zhang J, Xiang Y, Wang X L, Zhao X B. Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties. ACS Appl. Mater. Interfaces,2010,2:186-192.
    [12]Yu T, Zhu Y, Xu X, Shen Z, Chen P, Lim C, Thong J T, Sow C. Controlled Growth and Field-Emission Properties of Cobalt Oxide Nanowalls. Adv. Mater., 2005,17:1595-1599.
    [13]Varghese B, Hoong T C, Zhu Y, Reddy M V, Chowdari V V R, Wee A T S, Vincent T B C, Lim C T, Sow C. Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties. Adv. Funct. Mater.,2007,17:1932-1939.
    [14]Lu A H, Salabas E L, Schiith F. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed.,2007,46:1222-1244.
    [15]Chen Y, Zhang Y, Fu S. Synthesis and Characterization of Co3O4 Hollow Spheres. Mater. Lett.,2007,61:701-705.
    [16]Chen C H, Abbas S F, Morey A, Sithambaram S, Xu L P, Garces H F, Hines W A, Suib S L, Controlled Synthesis of Self-Assembled Metal Oxide Hollow Spheres via Tuning Redox Potentials:Versatile Nanostructured Cobalt Oxides. Adv. Mater., 2008,20:1205-1209.
    [17]Chernavskii P A, Pankina G V, Zaikovskii V I, Peskov N V, Afanasiev P. Formation of Hollow Spheres Upon Oxidation of Supported Cobalt Nanoparticles. J. Phys. Chem. C,2008,112:9573-9578.
    [18]Rumplecker A, Kleitz F, Salabas E L, Schueth F. Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4. Chem. Mater.,2007,19:485-496.
    [19]Casella I G. Electrodeposition of Cobalt Oxide Films from Carbonate Solutions Containing Co(II) Tartrate Complexes. J. Electroanal. Chem.,2002,520:119-125.
    [20]Keng P Y, Kim B Y, Shim I B, Sahoo R, Venenman P E, Armstrong N R, Yoo H, Pemberton J E, Bull M M, Griebel J J, Ratcliff E L, Nebesny K G, Pyun J. Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires ACS Nano,2009,3:3143-3157.
    [21]Kim B Y, Shim I B, Araci Z O, Saavedra S S, Monti O L A, Armstrong N R, Sahoo R, Srivastava D N, Pyun J. Synthesis and Colloidal Polymerization of Ferromagnetic Au-Co Nanoparticles into Au-Co3O4 Nanowires. J. Am. Chem. Soc., 2010,132:3234-3235.
    [22]Xu R, Zeng C. Dimensional Control of Cobalt-hydroxide-carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co3O4 Nanoparticles. J. Phys. Chem. B,2003,107:12643-12649.
    [23]Shao Y, Sun J, Gao L. Hydrothermal Synthesis of Hierarrchical Nanocolumns of Cobalt Hydroxide and Cobalt Oxide. J. Phys. Chem. C,2009,113:6566-6572.
    [24]Hou Y, Kondoh H, Shimojo M, Kogure T, Ohta T. High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterization. J. Phys. Chem. B,2005,109:19094-19098.
    [25]Yang J, Liu H, Martens W N, Frost, R. L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C,2010,114:111-119.
    [26]Xu R, Zeng H C. Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4 Nanocubes at 95 oC. J. Phys. Chem. C,2003,107:926-930.
    [27]He T, Chen D, Jiao X, Wang Y, Duan Y. Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals. Chem. Mater.,2005,17:4023-4030.
    [28]Tuysuz H, Liu Y, Weidenthaler C, Schuth F. Pseudomorphic Transformation of Highly Ordered Mesoporous Co3O4 to CoO via Reduction with Glycerol. J. Am. Chem. Soc.,2008,130:14108-14110.
    [29]Wei T Y, Chen C H, Chang K H, Lu S Y, Hu C C. Cobalt Oxide Aerogels of Ideal Supercapacitives Properties Prepared with an Epoxide Synthetic Route. Chem. Mater.,2009,21:3228-3233.
    [1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367.
    [2]Li W Y, Xu L N, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater.,2005,15:851-857.
    [3]Chen C H, Abbas S F, Morey A, Sithambaram S, Xu L P, Garces H F, Hines W A, Suib S L. Controlled synthesis of self-assembled metal oxide hollow spheres via tuning redox potentials:versatile nanostructured cobalt oxides. Adv. Mater.,2008,20: 1205-1209.
    [4]Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Chen Z, Zhou G Li F, Cheng H M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano,2010,4: 3187-3194.
    [5]Wang D, Wang H, Wang T. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg. Chem.,2011,50:6482-6492.
    [6]Ryu J, Kim S W, Kang K, Park C B. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 2010,1: 159-164.
    [7]Hu L, Peng Q, Li Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc.2008,130:16136-16137.
    [8]Jia C J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Weckhuysen B M, Schiith F. Co3O4-SiO2 nanocomposite:A very active catalyst for CO oxidation with unusual catalytic behavior. J. Am. Chem. Soc.,2011,133:11279-11288.
    [9]Zhu J, Kailasam K, Fischer A, Thomas A. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal.,2011,1: 342-347.
    [10]Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J. Am. Chem. Soc.,2010,132:2608-2613.
    [11]Xie X, Li Y, Liu Z Q, Haruta M, Shen W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature,2009,458:746-749.
    [12]Li Y, Tan B, Wu Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc.,2006,128:14258-14259.
    [13]Teng F, Yao W, Zheng Y, Ma Y, Xu T, Gao G, Liang S, Teng Y, Zhu Y. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor for combustible gases. Tananta,2008,76:1058-1064.
    [14]Li C C, Yin X M, Wang T H, Zeng H C. Morphogenesis of highly uniform CoCO3 submicrometer crystals and their conversion to mesoporous Co3O4 for gas-sensing applications. Chem. Mater.,2009,21:4984-4992.
    [15]Salimi A, Hallaj R, Soltanian S, Mamkhezri H. Nanomolar detection of hydrogen peroxide on glassy carbon electrode Anal. Chim. Acta,2007,594:24-31.
    [16]Yu T, Zhu Y, Xu X, Shen Z, Chen P, Lim C T, Thong J T L, Sow C H. Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv. Mater.,2005,17:1595-1599.
    [17]Varghese B, Hoong T C, Zhu Y, Reddy M V, Chowdari B V R, Wee A T S, Vincent T B C, Lim C T, Sow C H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater.,2007,17: 1932-1939.
    [18]Feng J, Zeng H C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater., 2003,15:2829-2835. [19] Varghese B, Zhang Y, Dai L, Tan V B C, Lim C T, Sow C H.
    Structure-mechanical property of individual cobalt oxide nanowires. Nano Lett.,2008, 8:3226-3232.
    [20]Keng P Y, Kim B Y, Shim I B, Sahoo R, Veneman P E, Armstrong N R, Yoo H, Pemeberton J E, Bull M M, Griebel J J, Ratcliff E L, Nebesny K G, Pyun J. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano,2009,3:3143-3157.
    [21]Hou Y, Kondoh H, Shimojo M, Kogure T, Ohta T. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B,2005,109:19094-19098.
    [22]Xu R, Zeng C. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95℃. J. Phys. Chem. B,2003,107:926-930.
    [23]Xie X, Shen W. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale,2009,1:50-60.
    [24]He T, Chen D, Jiao X, Wang Y, Duan Y. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater.,2005,17:4023-4030.
    [25]Salabas E L, Rumplecker A, Kleitz F, Radu F, Schuth F. Exchange anisotropy in nanocasted Co3O4 nanowires. Nano Lett.,2006,6:2977-2981.
    [26]Kim B Y, Shim I B, Araci Z O, Saavedra S S, Monti O L A, Armstrong N R, Sahoo R, Srivastava D N, Pyun J. Synthesis and colloidal polymerization of ferromagnetic Au-Co nanoparticles into Au-Co3O4 nanowires. J. Am. Chem. Soc., 2010,132:3234-3235.
    [27]Nam K M, Shim J H, Han D W, Kwon H S, Kang Y M, Li Y, Song H, Seo W S, Park T. Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals:Their interconversion and tuning of phase and morphology. Chem. Mater.2010,22:4446-4454.
    [28]Jana N R, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater.,2004,16: 3931-3935.
    [29]Jiang J, Liu J P, Huang X T, Li Y Y, Ding R M, Ji X X, Hu Y Y, Chi Q B, Zhu Z H. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates. Cryst. Growth Des.,2010,10:70-75.
    [30]Li Y, Tan B, Wu Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett.,2008,8:265-270.
    [31]Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem. Commun.2011,47:3469-3471.
    [32]Xia X H, Tu J P, Zhang J, Xiang J Y, Wang X L, Zhao X B. Cobalt oxide ordered bowl-like arrays films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties. ACS Appl. Mater. Interfaces,2010,2:186-192.
    [33]El-Batlouni H, El-Rassy H, Al-Ghoul M. Cosynthesis, coexistence, and self-organization of α-and β-cobalt hydroxide based on diffusion and reaction in organic gels. J. Phys. Chem. A,2008,112:7755-7757.
    [34]Shao Y, Sun J, Gao L. Hydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxide. J. Phys. Chem. C,2009,113:6566-6572.
    [35]Zhou W J, Zhang J, Xue T, Zhao D D, Li H L. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem.,2008,18:905-910.
    [36]Binotto G, Larcher D, Prakash A S, Urbina R H, Hegde M S, Tarascon J-M. Synthesis, characterization, and Li-electrochamical performance of highly porous Co304 powders. Chem. Mater.,2007,19:3032-3040.
    [37]Yang J, Liu H, Martens W N, Frost, R. L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C,2010,114:111-119.
    [1]Bocca C, Cerisola G, Magnone E, Barbucci A. Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution. Int. J. Hydrog. Energy, 1999,24(8):699-707.
    [2]Castro E B, Gervasi C A. Electrodeposited Ni-Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrog. Energy, 2000,25(12):1163-1170.
    [3]Hamdani M, Pereira M I S, Douch J, Addi A A, Berghoute Y, Mendonca M H. Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis. Electrochim. Acta,2004,49(9-10):1555-1563.
    [4]Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis. J. Phys. Chem. C,2009,113(33):15068-15072.
    [5]Yeo B S, Bell A T. Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society, 2011,133(14):5587-5593.
    [6]Li Y G, Hasin P, Wu Y Y. Ni(x)Co(3-x)O(4) Nanowire Arrays for Electrocatalytic Oxygen Evolution. Advanced Materials,2010,22(17):1926-1929.
    [7]Lu B, Cao D, Wang P, Wang G, Gao Y. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. Inter. Hydro. Energ.,2011, 36:72-78.
    [8]Wen T C, Kang H M. Co-Ni-Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solution. Electrochim. Acta,1998,43(12-13):1729-1745.
    [9]Musiani M, Guerriero P. Oxygen evolution reaction at composite anodes containing Co3O4 particles-Comparison of metal-matrix and oxide-matrix composites. Electrochim. Acta,1998,44(8-9):1499-1507.
    [10]Singh S P, Samuels S, Tiwari S K, Singh R N. Preparation of thin Co3O4 films on Ni and their electrocatalytic surface properties towards oxygen evolution. Int. J. Hydrog. Energy,1996,21(3):171-178.
    [11]Castro E B, Gervasi C A, Vilche J R. Oxygen evolution on electrodeposited cobalt oxides. Journal of Applied Electrochemistry.1998,28(8):835-841.
    [12]Singh N K, Singh J P, Singh R N. Sol-gel-derived spinel Co3O4 films and oxygen evolution:Part Ⅱ. Optimization of preparation conditions and influence of the nature of the metal salt precursor. Int. J. Hydrog. Energy,2002,27(9):895-903.
    [13]Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk D A, Park S M, Fujishima A. Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J. Electrochem. Soc.,2003,150(7):E337-E341.
    [14]Musiani M. Anodic deposition of PbO2/Co3O4 composites and their use as electrodes for oxygen evolution reaction. Chem. Commun.,1996, (21):2403-2404.
    [15]Yan L, Zhang X M, Ren T, Zhang H P, Wang X L, Suo J S. Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chem. Commun.,2002, (8):860-861.
    [16]Rashkova V, Kitova S, Konstantinov I, Vitanov T. Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction. Electrochim. Acta,2002,47(10):1555-1560.
    [17]Li Y L, Zhao J Z, Dan Y Y, Ma D C, Zhao Y, Hou S N, Lin H B, Wang Z C. Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J.,2011,166(1):428-434.
    [18]傅献彩,沈文霞,姚天扬.物理化学(第四版)下册.北京:高等教育出版社,2004年.
    [19]Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev.2012,41, (2):797-828.
    [20]李荻.电化学原理(修订版).北京:北京航空航天大学出版社,1999.
    [21]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [22]查全性.电极过程动力学导论.北京:科学出版社,2002.
    [1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367.
    [2]Amine K, Belharouak I, Chen Z H, Tran T, Yumoto H, Ota N, Myung S T, Sun Y K. Nanostructured Anode Material for High-Power Battery System in Electric Vehicles. Advanced Materials,2010,22, (28):3052-3057.
    [3]Xiong H, Slater M D, Balasubramanian M, Johnson C S, Rajh T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. Journal of Physical Chemistry Letters,2011,2, (20):2560-2565.
    [4]Pfanzelt M, Kubiak P, Wohlfahrt-Mehrens M. Nanosized TiO2 Rutile with High Capacity and Excellent Rate Capability. Electrochemical and Solid State Letters, 2010,13,(7):A91-A94.
    [5]Qiao H Wang Y W, Xiao L F, Zhang L Z. High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres. Electrochemistry Communications,2008,10(9):1280-1283.
    [6]Wu F X, Li X H, Wang Z X, Guo H J, Wu L, Xiong X H, Wang X J. A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. Journal of Alloys and Compounds,2011,509(8):3711-3715.
    [7]Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 1990,9:209
    [8]Wang D H, Choi D W, Yang Z G, Viswanathan V V, Nie Z M, Wang C M, Song Y J, Zhang J G, Liu J. Synthesis and Li-Ion insertion properties of highly crystalline mesoporous rutile TiO2. Chemistry of Materials,2008,20(10):3435-3442.
    [9]Su X, Wu Q, Zhan X, Wu J, Wei S, Guo Z. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci.,2012,47:2519-2534.
    [10]Das S K, Bhattacharyya A J. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries. Materials Chemistry and Physics,2011, 130(1-2):569-576.
    [11]Vijayakumar M, Kerisit S, Wang C M, Nie Z M, Rosso K M, Yang Z G, Graff G, Liu J, Hu J Z. Effect of Chemical Lithium Insertion into Rutile TiO2 Nanorods. Journal of Physical Chemistry C,2009,113(32):14567-14574.
    [12]Nam S H, Shim H S, Kim Y S, Dar M A, Kim J G, Kim W B. Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 2010,2(7):2046-2052.
    [13]Wang H E, Cheng H, Liu C P, Chen X, Jiang Q L, Lu Z G, Li Y Y, Chung C Y, Zhang W Y, Zapien J A, Martinu L, Bello I. Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. Journal of Power Sources,2011,196(15):6394-6399.
    [14]Kubiak P, Froschl T, Husing N, Hormann U, Kaiser U, Schiller R, Weiss C K, Landfester K. Wohlfahrt-Mehrens M. TiO2 Anatase Nanoparticle Networks: Synthesis, Structure, and Electrochemical Performance. Small,2011,7(12): 1690-1696.
    [15]Beuvier T, Richard-Plouet M, Mancini-Le Granvalet M, Brousse T, Crosnier O, Brohan L. TiO2 (B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance. Inorganic Chemistry,2010,49(18): 8457-8464.
    [16]Wang Y D, Smarsly B M, Djerdj I. Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials,2010,22(24): 6624-6631.
    [17]Yang X J, Teng D H, Liu B X, Yu Y H, Yang X P. Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries. Electrochemistry Communications,2011,13(10):1098-1101.
    [18]Hibino M, Abe K, Mochizuki M, Miyayama M. Amorphous titanium oxide electrode for high-rate discharge and charge. Journal of Power Sources,2004, 126(1-2):139-143.
    [19]Wagemaker M, Kentgens A P M, Mulder F M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature,2002,418(6896): 397-399.
    [20]Liu Z, Hong L, Guo B. Physicochemical and electrochemical characterization of anatase litanium dioxide nanoparticles. J. Power Sources,2005,143:231-235.
    [21]Lin Y M, Abel P R, Flaherty D W, Wu J, Stevenson K J, Heller A, Mullins C B. Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2 Electrodes. Journal of Physical Chemistry C,2011,115(5): 2585-2591.
    [22]Lee K H, Song S W. One-Step Hydrothermal Synthesis of Mesoporous Anatase TiO2 Microsphere and Interfacial Control for Enhanced Lithium Storage Performance. Acs Applied Materials & Interfaces,2011,3(9):3697-3703.
    [23]Baudrin E, Cassaignon S, Koesch M, Jolivet J P, Dupont L, Tarascon J M. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochemistry Communications,2007,9(2):337-342.
    [24]Setiawati E, Hayashi M, Takahashi M, Shodai T, Saito K. Effect of annealing on the electrochemical properties of ramsdellite-type lithium titanium oxide. Journal of Power Sources,2011,196(23):10133-10140.
    [25]Li J, Tang Z, Zhang Z. Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes. Electrochemical and solid-state Letters,2005,8(6): A316-A319.
    [26]Hu Y S, Kienle L, Guo Y G, Maier J. High lithium electroactivity of nanometer-sized rutile TiO2. Advanced Materials,2006,18(11):1421-1426.
    [27]Dong S M, Wang H B, Gu L, Zhou X H, Liu Z H, Han P X, Wang Y, Chen X, Cui G L, Chen L Q. Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries. Thin Solid Films,2011,519(18):5978-5982.
    [28]Armstrong A R, Armstrong G, Canales J, Garcia R, Bruce P G. Lithium-ion intercalation into TiO2-B nanowires. Advanced Materials,2005,17(7):862-865.
    [29]Zhang J, Yan X, Zhang J, Cai W, Wu Z, Zhang Z. Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries. J. Power Sources,2012,198:223-228.
    [30]Jiang C H, Hosono E, Zhou H S. Nanomaterials for lithium ion batteries. Nano Today,2006,1(4):28-33.
    [31]Liu D W, Zhang Y H, Xiao P, Garcia B B, Zhang Q F, Zhou X Y, Jeong Y H, Cao G Z. TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation. Electrochimica Acta,2009,54(27):6816-6820.
    [32]Meng X B, Geng D S, Liu J A, Li R Y, Sun X L. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology,2011,22(16):16502.
    [33]Huang H, Zhang W K, Gan X P, Wang C, Zhang L. Electrochemical investigation of TiO2/carbon nanotubes nanocomposite as anode materials for lithium-ion batteries. Materials Letters,2007,61(1):296-299.
    [34]Lee D H, Park J G, Choi K J, Choi H J, Kim D W. Preparation of brookite-type TiO2/Carbon nanocomposite electrodes for application to Li ion batteries. European Journal of Inorganic Chemistry,2008(6):878-882.
    [35]Lan Y, Gao X P, Zhu H Y, Zheng Z F, Yan T Y, Wu F, Ringer S P, Song D Y. Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials,2005,15(8):1310-1318.
    [36]Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem. Commun.2011,47:3469-3471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700