用户名: 密码: 验证码:
中条裂谷构造与成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中条山区是我国重要的铜矿集中区,矿床类型多,成矿作用复杂,成矿地质条件优越,进一步找矿前景较好。在地质找矿难度越来越大的情况下,用过去传统找矿模式已难以实现地质找矿的突破,只有对中条山不同类型铜矿形成的诸多因素进行综合研究,提升理论认识水平,调整找矿思路,才是实现地质找矿突破的重要途径。
     中条山区为裂谷成矿环境,成矿作用与构造活动关系密切。本文在分析中条山区成矿地质背景的基础上,以裂谷形成演化过程中的岩浆活动热事件及区域性的变形变质作用为主线,运用构造动力成矿和成矿系统理论,从成矿作用过程来研究不同铜矿床类型之间的内在联系,分析成矿规律,总结成矿模式。
     本次研究划分出了两期主要的热事件,分别为新太古代绛县期的双峰式火山岩喷发和古元古代中条期的区域动力变质作用及伴随的较大规模基性岩的侵入,反映了裂谷中两次主要的伸展构造运动,其与地幔热柱活动有关。对区域航磁和重力资料研究表明,中条裂谷有两种边界断裂,分布位于裂谷的两侧,一侧为深大边界断裂,一侧为剥离断层,成矿主要与深大断裂有关。中条裂谷的发展过程不平衡,其南东支未形成典型的裂谷,成矿作用主要为优地槽环境下的细碧岩型铜铁矿,西南支以发育双峰式火山岩为特征,为典型的裂谷,成矿作用以喷流沉积为主。通过对喷流沉积和矿石稳定同位素及成矿年龄的研究表明,成矿作用明显分为两期,早期(24亿年和21亿年)成矿物质来源于上地幔或地壳深部,主要形成了矿源层,其赋存于边界深大断裂下降盘形成的次级盆地中;晚期(18亿年)成矿作用与区域动力变质作用有关,决定了矿体的最终定位,是中条铜矿的主要成矿期。地幔热柱活动是成矿作用的主要动力。
     中条山区域成矿的有利地段为裂谷边界断裂的下降盘附近和分支断裂的交汇部位。根据构造动力成矿模式,划分出了绛县里册峪-平陆三门铜金铅锌多金属成矿预测区、垣曲铜矿峪-绛县后山村铜矿预测区、垣曲同善-落家河铜铁矿成矿预测区、垣曲阎家池-闻喜东峪沟铜矿成矿预测区。通过对成矿后的地质作用研究表明,中条山区铜矿绝大部分未遭受强烈剥蚀作用,处于隐伏或半隐伏态,在预测区运用先进有效的勘查方法,有希望找到大型隐伏铜矿床。
The Zhongtiao mountain is one of the major copper ore concentrated area in China. It has more mineral deposited styles;its ore formation is very complexity;its geological condition of ore formation is very superiority and its foreground of further ore prospecting is very good. A long time ago the geological study work was developed in the Zhongtiao mountain area. Most anciently study were sum up geological phenomenon, it's not enough to study with ore formation and deep action process of earth;It's ore formation forecast was built up on deduction through already know chemical anomaly and mineralize, it's not enough to direction ore prospecting use modern ore formation theory. In case of ore prospecting are more difficulty, it's hard to carry out breakthrough in ore prospecting that using already know ore deposited to ore finding. The only way of carry out breakthrough in ore prospecting is study more factors of different copper ore and enhance theory level in the Zhongtiao mountain area.The ore formation condition is rift metallogenesis in the Zhongtiao mountain area. The relation is very closed between metallogenesis and tectogenesis, and the tectogenesis is belong to rift metallogenesis systerm. Tectono-dynamic metallogenesis and dynamic metallogenic model believe that tectonism pierce through mineral matter and hydro-liquid of deep part of earth. Lower crust and upper mantle are source area of mineral matter, heat energy and power. This dissertation provide forecast area based on study metallogenesis geologic background in the Zhongtiao mountain, that take the advantage of theory of tectono-dynamic metallogenesis and ore formation system, and analysis the metallogenesis rule between different copper ore style.This dissertation analysis magmata activity thermal event of formation rift evolves process and territorial metamorphism and deformation action, and mark off two stage major thermal events that one is Jiangxian stage basic volcanic rock eruption in upper archaeozoic and the other is Zhongtiao stage territorial dynamic metamorphism with larger scale basic rock irruption. Basic rock is the result of discordogenic fault activity in the rift borderline, territorial dynamic metamorphism show one stage larger scale extensional tectonics activity in rift, these all related with mantle plume activity. The all process of rift evolve have happened metallogenesis, the major metallogenesis related with greater thermal event, the mantle plume is major dynamic force of metallogenesis.
    Analysis the mineral deposit space regularities of distribution showing that vantage deposit of territorial metallogenesis is fracture's bottom wall and braid fracture's interjunction position in the Zhongtiao mountain;analysis the characteristics of occurrence regime and the characteristic of orebody conformation that already know, which showing that orebodies have been controlled by shear structure belt (Tong-kuangyu style) and dogleg side of interbedded fold (Hubi style). Using the theory of tectono-dynamic metallogenesis system analysis how to form vantage deposit of territorial metallogenesis with many factor superposition each other, such as analysis the metallogenesis material source, the mineral removing and concentration channelway, and the ore formation location, etc. some forecast area has been proposed. They are Jiangxian Liceyu-Pinglu Sanmcndong copper, gold, plumbum, zinc metallogenesis forecast area, Yuanqu Tongkuangyu-Jiangxian Houshancun copper metallogenesis forecast area, Yuanqu Tongshan-Luojiahe copper and iron metallogenesis forecast area, Yuanqu Yanjiachi-Wenxi Dongyugou copper metallogenesis forecast area, and Yuncheng Xiezhou-Xiyao gold and copper metallogenesis forecast area. Analysis geologic function of after metallogenesis showing that most Zhongtiao mountain area's copper ores do not suffer from stronger denudation but located insidiousness regime or half insidiousness regime. Some larger scale insidiousness regime copper ores could be found if using advanced effective methodology of mineral exploration.
引文
[1] 白瑾,黄学光,王惠初,等.中国前寒武纪地壳演化(第二版)[M].北京:地质出版社,1996.179~182.
    [2] 白瑾,余致信,颜耀阳,等.中条山前寒武纪地质[M].天津:天津科学技术出版社,1997,126~130.
    [3] 白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用[M].北京:地质出版社。1993.1~132.
    [4] 曹荣龙,朱寿华.地幔流体与成矿作用[J].地球科学进展.1995,10(4):324~329.
    [5] 邓军,方云,周显强.等.山东省胶西北金矿成矿构造应力场反演及其控制矿作用[J].1995,3:235~260.
    [6] 邓军,吕古贤,杨立强.等.构造应力场转换与成矿界面[J].地质学报,1998,3(19):244~250.
    [7] 邓军,孙忠实,王建平,等.太古宙过渡分界及成矿动力体制转换[J].地球科学,2003,1(28):87~96.
    [8] 邓军,杨立强,孙忠实,等.构造体制转换与流体多层循环成矿动力学.2000, 4(25):398~400.
    [9] 邓军,翟裕生,杨立强,等.构造演化与成矿系统动力学[J].地学前缘,1999,2(6):315~323.
    [10] 范成模,余致信.中条山前寒武纪胡篦型铜矿[M].天津:天津科学出版社,1997.61~63.
    [11] 韩润生.初论构造成矿动力学及其隐伏矿定位预测容和方法[J].地质与勘探,2003,29(1):5~9.
    [12] 侯增谦,韩发,夏林圻,等.现代与古代海水成矿作用[M].地质出版社,2003:316~363.
    [13] 胡受奚,林潜龙,陈泽铭.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1988.1~541.
    [14] 冀树楷.中条山铜矿成矿模式及勘查模式[M].北京:地质出版社.1992. 21~45.
    [15] 李德威.构造动力成矿作用研究的新进展[J],地学前缘,1994,1(3~4):184~190.
    [16] 李红阳,侯增谦.初论幔柱构造成矿体系[J].矿床地质,1998,3(17),:247~254.
    [17] 李俊建,罗镇宽,刘晓阳,等.胶东中生代花岗岩及大型-超大型金矿床形成的地球动力学环境[J].2005,4(24):361~372.
    [18] 李人澍.成矿系统分析的理论与实践[M].北京:地质出版社,1996.19~20.
    [19] 刘丛强,黄智龙,李和平,等,地幔流体及其成矿作用[J].地学前缘,2001,4(8):231~240.
    [20] 吕古贤,邓军,郭涛,等.玲珑-焦家式金矿构造变形岩相形迹大比例尺填图与构造成矿研究[J].1998,2(19):178~186.
    [21] 牛树银,李红阳,孙爱群,等.幔枝构造理论与找矿实践[M].北京:地震出版社,2002.1~43.
    [22] 裴荣富,吴良士.特大型矿床与成矿环境和成矿作用异常[J].第五届全国矿床会议论文集.北京:地质出版社,1993:127~129.
    [23] 裴荣富.在我国开展寻找超大型矿床的若干基础研究问题的讨论[J].矿床地质.1990,9(3):287~289.
    [24] 芮宗瑶,施林道,方如恒,等.华北陆块及邻区有色金属矿床地质[M].北京:地质出版社,1994.1~576.
    [25] 宋叔和,韩发.火山岩型铜多金属硫化物矿床知识模型[M].北京:地质出版社,1994.1~60.
    [26] 宋叔和.中国一些主要金属矿床类型及其时空分布规律问题[J].矿床地质.1991,10(1):10~18.
    [27] 孙海田,葛朝华.中条山式热液喷气成因铜矿床[M].北京:北京科学技术出版社.1990.1~123.
    [28] 孙海田.中条山层控铜矿床条纹状电气石英岩及容矿富硼化学沉积岩系的发现及意义[J].科学通报,第17期,1988,1(1):1334~1337。
    [29] 孙继元,刑集善.华北板内深部构造与区域成矿[J].山西地质,1994,1(9):74~85.
    [30] 孙继源,冀树楷,真允庆.中条裂谷铜矿床[M].北京:地质出版社.1995.1~176.
    [31] 孙启祯.边缘成矿概论[M].北京:地质出版社.2001.16~87.
    [32] 孙月丰,石准立.试论幔源C-H-O流体与大陆板内某些地质作用[J].地学前缘,1995,2(1-2):167~174.
    [33] 涂光炽.超大型矿床的探寻与研究的若干问题[J].地学前缘,1994,1(3):45~52.
    [34] 涂光炽.关于超大型矿床的寻找和理论研究[J].地球科学进展,1989,(6):14~20.
    [35] 邢光福,陶奎元.在壳幔作用过程中Sr含量对岩浆岩sr同位素组成的影响[J] :火山地质与矿产,19(1):25~29.
    [36] 徐学义,杨军录.地幔柱理论研究根述[J].西安地质学院学报,1979,19(2):46~51.
    [37] 薛克勤,邓军,商培林,等.中条山铜成矿带地球化学特征及成矿预测[J].物探与化探,29(6):481~486.
    [38] 薛克勤,邓军,商培林,等.中条山西南段中生代热液成矿系统分析[J].地质与勘探,42(2):7~12.
    [39] 於崇文,岑况,鲍征宇,等.成矿作用动力学[M].北京:地质出版社,1998.1~23.
    [40] 於崇文.成矿作用动力学—理论体系和方法论[J].地学前缘,1994,1(3),54~82.
    [41] 翟裕生,邓军,李晓波.区域成矿学[M].北京:地质出版社.1999.1~287.
    [42] 翟裕生,彭润民,邓军,等.成矿系统分析与新类型矿床预测[J].地学前缘,2000,7(1):123~132.
    [43] 翟裕生.成矿系统的结构框架和模型-中国资源环境科学学术讨论会论文集[M].北京:科学出版社,1998.77~82.
    [44] 翟裕生.关于构造-流体-成矿作用研究的几个问题[J].地学前缘,1996,3(4):230~236.
    [45] 翟裕生.论成矿系统[J].地学前缘,1999,6(1):13~26.
    [46] 张铭杰,王先彬,李立武.地幔流体组成[J].地学前缘,2000,7(2):401-412.
    [47] 张元厚译,吴福元校.板块构造、板块运移机制及裂谷作用[J].世界地质,13(1):12~23.
    [48] 赵国春,吴福元.热幔柱国——一种新的大地构造理论[J].世界地质,1994,13(1):25~32.
    [49] 赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律[M].地质出版式社。 2004:63~97.
    [50] 真允庆.中条裂铜矿床稳定同位素地球化学[J].桂林工学院学报,1998,18(3):215~227.
    [51] 真允庆.中条幔柱构造的岩浆活动与成矿[J].桂林工学院学报,2005,25(1):1~8
    [52] Anderson T. Magmatic fluids in the Fen carbonatite-complex, SE Norway: Evidence of mid-crustal fractionation 15 from solid and fluid inclusions in apatite[J]. Contrib Mineral Petrol, 1986, 93: 491~533.
    [53] Anderson, C A. Massive sulfide deposits and volcanism[J]. Econ. Geol. 1969, 64: 129~146.
    [54] Bell. K, Simonetti A, Carbonatite magmatism and plume activity: implications from Nd, Pb, and Sr istope systematics of Oldoinyo Lengai.[J], Journal of Petrology, 1996, 37: 1321~1339.
    [55] Boorder, H. de, Spakman, W., White, S.H. et al., Late Genozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt: Earth and Planetary Science Letters, 1998, 164: 569~5
    [56] Burnham C W, Energy release in subvolcanic environments: Implications for breccia formation [J], Econ, Geol, 1985, 80: 1515—1522.
    [57] Church A. A, Jones A. P, Silicate-carbonatite immiscibility at Oldoinyo Lengai. [J], 1995, 36:869-889.
    [58] Conrad J. E, Mckee E H, 40Ar/39Ar dating of vein amphibole from the Bayan Obo iron-rare earth element-niobium deposit, China: constraints on mineralization and deposition of the Bayan Obo Group [J], Econ, Gesl,1992, 87:185-188.
    [59] Dawson J B, Pinkerton H. June 1993 eruption of Oldoinyo Lengai., Tanzania: exceptionally visous and large carbonatite lava flows and evidence for coexisting silicate and carbonatite magmas [J], Geology, 1994 22:799—802.
    [60] Deines P. Stable isotope variations in carbonatites. In: Bell K ed., In Carbonatites: genesis and evolution [M]. London: Unwin Hyman, 1989,301-359
    [61] Dobls M et al..Detachment faulting and late Paleozoic epithermal Ag-base-metal mineralization in Spanish central system. Geology, 1988,16:800-803
    [62] Douvlle E, Bienvenu P, Charlou JL, etal. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 1999, 63(5):627—643.
    [63] Foster, R. P., Gold mineralization in Europe, Characteristics and tectonic setting:Mierals Industry International, September, 1997, 24—31.
    [64] Franklin, J M, Lydon, J W and Sangster, D F. Volcanic-associated massive sulfide deposits [J]. Economic geology. 1981, 75(anniv): 485—627.
    [65] Hayashi, S. On the genetic relation between the Baramori volcanic rocks and ore deposits of the Kosaka mine, Akita Prefecture, Japan [J]. Mining Geology, 1962, 11: 433-442.
    [66] Hoefs J. Stable Isotope Geochemistry (3rd ed) [M] Berlin Springer-Verlag 1987.
    [67] Hutchinson, R W and Searle, D L. Stratabound pyrite deposits in the Cyprus and relations to other sulfide ores[J]. Soc. Mining Geologists Japan, Spec. 1971 issue 3: 198~205.
    [68] Hutchinson, R W. Genesis of massive sulfides reconsidered by comparison to Cyprus deposits[J]. Canadian inst. Mining Metallurgy. Trans, 1965, 681: 286~300.
    [69] Hutchinson, R W. Massive base metal sulphide deposits as guides to tectonic evalution. In: Strangway, D Weds. The continental crust and Its Mineral Deposits[J]. Geological Asso. Canada Special paper, 1980, 20: 659~679.
    [70] Hutchinson, R W. Volcanic sulfide deposits and their metallogenic significance[J]. Econ. Geol. 1973, 68: 1223~1246.
    [71] Kensaku Tamaki. Two modles of back-arc spreading. Geology, 1985, 13(7): 475~478.
    [72] Klinkhammer G P, Elderfield H, Mitra A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1 994, 58(23): 5105~5113.
    [73] Le Bas M J, Carbonatite magmas, Mineralogical Magazine[J], 1981, 44: 133~140
    [74] Le Bas M J, Keller J, Tao Kejie, et al. Carbonatite Dykes of Bayan Obo in Inner Mogolia[J], China. Geology and Petrology, 1992, 46: 195~228.
    [75] Mattey D, Lowty D, Macpheron C G. Oxygen istope compesition of mantle periodtite[J], Earth. Sci. Lett., 1994, 128: 231~241.
    [76] Michard A. Rare earth element systematics in hydrothermal fluids. Cosmochim. Acta, 1989, 53: 745~750.
    [77] Mitchell A.H.G., Distribution and genesis of some epizonal Zn-Pb and Au provinces in the Carpathian-Balkan region: Transction of the institute of Mining and Metallogy, 1996, 105: 127~138.
    [78] Oftedahl, C. One exhalative-sedimentary ores[J]. Geol. Foren. Stockholm Forh, 1958, 80: 1~19.
    [79] Ohmoto, H. Systematic of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits Econ. Geo. Vol. 67, no. 5, 1972.
    [80] Otagaki, T, Abe, Y, Tuskada, Y, Kimura, A, Osada, T and Fujioka, H. Geology and ore deposits of the Shakanai mine, (4) On the occurrence of ore deposit and pyroclastic rocks near the ore bodies [J]. Mining Geology, 1970, 20: 3151-327.
    [81] Otagaki, T, Tsukada, Y, Osada, T and Suzuki, H. Geology and ore deposits of the Shakanai mine. (1) On the model of occurrence of Kuroko (Blac Ore) in the Daiichi ore deposit [J]. Mining Geology, 1968 18: l~10.
    [82] Roeder E. Fluid inclusions from the fluorite deposits associated with carbonatite of Amba Dongar, India, and Okorusu, South-west Africa [J]. Inst Mining Metall Transe, sect, 1973, 199:135—137.
    [83] Roscoe, s m. Geochemical and istopic studies, Noranda and Matagarmi areas [J], Canadian Inst. Mining Metallurgy Trans. 1965, 68: 279~285.
    [84] Samson I M, Liu W, Williams-Jones A E. The nature of orthomagmatic hydrothermal fluid in the Oka carbonatite, Quebec, Canada: Evidence from fluid inclusions [J]. Geoch et Cos Acta, 1995, 59(10): 1963—1977.
    [85] Scott M R, Scott R B, Morse JW et al. Metal- enriched sediments from the TAG hydrothermal field. Nature, 1978,276:811—813.
    [86] Scott M R, Scott R B, Rona P A et al. Rapidly accumulating manganese deposit from the median valley of the Mid- Atlantic Ridge. Geophys Res Lett. 1974,1:355-358.
    [87] Shearme S, Cronan D S, Rona P A. Geochemistry of sediments from the TAG hydrothermal field, MAR at Iatitude2 6° N. Mar Geo 1. 1983,51:269—291.
    [88] Stanton, R L. General features of conformable "pyretic" orebodies, pt. 3: Field association, pt. Ⅱ: Mineralogy. Can[J]. Inst. Min. Metal. Trans, 1960, 63: 573-574.
    [89] Stanton, R L. Lower Palaeozoic mineralization near Barthust. New south wales [J]. Econ. Geol. 1954, 50.
    [90] Staudigel H, Davies G R, Hart S R, et al. Large scale isotopic Sr, Nd and 0 istopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418[J]. Earth Planet Sci Lett, 1995,130:169-185.
    [91] Sverjensky D A. Europium redox equilibria in aqueous solution. Earth Planet Sci Lett. , 1984,67:70~78.
    [92] Ting W, burke E A J, Rankin A H, et al. Characteristics and petrogenetic significance of C02, H20 and CH4 fluid inclusions in apatite from the Sukulu carbonatite, Uganda [J]. Eur J Mineral, 1994, 6:787~803.
    [93] Wall F, Williams C T, Woolley A R. Pyrochlore from weathered carbonatite at Lueshe, Zaire [J], Min Mag, 1996, 60:731~750.
    [94] White, D E. Environments of generations of some bast-metal ore deposits [J]. Econ. Geol. 1968, 63: 301—335.
    [95] Wohletz K H, Mechanisms of hydrovolcanic pyroclast formation: grain-size, scaning electron microscopy, and experimental studies [J], Volcanol. Geotherm. Res. 1983, 17: 31-63.
    [96] Wood S A. The aqueous geochemistry of the rare- earth elements and yttrium, 1. Review of available low- temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol., 1990,82:159-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700