用户名: 密码: 验证码:
含铊黄铁矿利用过程中毒害重金属铊的迁移释放行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铊是稀有分散元素,在地壳中的含量很低,仅为0.75mg/kg,同时铊也是剧毒的重金属元素。我国拥有丰富的含铊矿产资源,在含铊资源开发利用的过程中,大量铊被释放入环境,污染空气、水体和土壤,并通过食物链进入生物和人体,逐步积累,引发人类群体慢性铊中毒事件或地方病。随着我国经济的快速发展,对资源的需求量越来越大,开采和利用量也越来越大,由此带来的铊环境污染隐伏危机也越来越明显。然而到目前为止国内外对含铊资源开采利用所带来的环境污染问题的研究仍很少,含铊资源利用过程中铊的迁移释放机制也不清楚,毒害元素铊也尚未纳入各级环保部门的监测范围。因此,开展含铊资源利用过程中铊迁移释放的研究不仅具有重大的理论价值,而且对我国丰富的含铊矿产资源利用中预防铊污染具有重要的指导意义。
     本论文系统采集了含铊黄铁矿矿石、不同硫酸生产过程工艺环节的废渣和堆渣场周围土壤及背景土壤,利用ICP-MS测定技术和分级提取形态分析手段,对样品中的铊含量和其赋存形态进行了分析研究。研究表明(1)黄铁矿焙烧过程中,铊的赋存形态发生了明显的变化,大量的铊释放到了炉气中,并继而进入废气、废水和废渣中,对环境的危害性很强,因此铊污染控制的关键是从工艺环节上控制铊进入气体的量,从而减弱铊进入废气、废水和废渣的量。(2)冶炼废渣在自然淋滤过程中铊有明显的迁移释放能力,废渣中铊的赋存形态和环境介质条件(pH、温度及废渣矿物组分)是控制其迁移释放能力的主要因素。(3)废渣在长期的自然淋滤过程中已对堆渣场周围土壤构成了明显的铊污染,不同来源的铊在土壤中的迁移与富集行为明显不同,污染来源的铊在土壤中的迁移活动性明显强于自然来源的铊,具有更强的生物有效性,对环境的危害也更强。土壤中不同矿物组分对铊污染物的吸附能力明显不同,土壤pH是影响其结合能力的关键因素,土壤的酸化将明显增强土壤中铊污染物的迁移活动性。
     硫酸废渣年排放量大,且露天堆放,在酸雨淋滤作用下,废渣铊污染物可持续快速的释放入周边环境。此外,在其再次堆积、搬运和利用过程中可造成T1污染范围迅速扩大。由于硫酸厂多位于居民区农田附近,T1污染所引起的生态环境的恶化,直接关系到公众健康利益。因此,含T1黄铁矿利用过程中区域性T1污染的防治已成了一个不容忽视的环境问题。
Thallium (Tl) is a severe toxicity and scattered heavy metals, and has very low concentration in the earth's crust (0.75mg/kg). Abundance of mineral resource containing Tl has been found in our country. Tl could be released into atmosphere, water and soil, and then enter into and accumulated in person and animals body through food chain, induce Tl chronic poisoning or endemic disease to human beings. With the rapid development of economy in our country, the demand for mineral resource will be gradually increase, the degree of exploitation will be increased simultaneity, and the environment crisis of Tl will be caused more and more serious. However, there has no much attention on the Tl pollution problems caused by the exploitation of mineral resource containing Tl in the international world and the mechanism of migration and release of Tl is still unclear now, and toxicity Tl has not been monitored as one pollutants by environmental protection bureau. So the systemic studies the mechanism of migration and release of Tl not only has important theoretic values, but also has magnitude instruct significance for prevent Tl pollution in the exploitation of mineral resource containing Tl.In this work, samples were collected from different pyrite ores, sulfur acid slag collected from different phase of sulfur acid production, soils profiles around the slag pile site and background soil. Tl concentrations and forms in samples were analyzed by ICP-MS and sequential extraction procedure. It indicate that (1) Tl forms changed after pyrite roasting and a lot of Tl released into gas phase, then let into waste gas, wastewater and slag, and will do harm to environment. So the key of controller Tl pollution was control Tl release to gas phase in sulfur acid production, to prevent Tl let into waste gas, wastewater and slag; (2) Thallium in slag has distinct release ability under natural leaching and was affected by its forms and some conditions (such as pH, temperature and components of slag); (3) The soil around the slag pile has been serious polluted by Tl in slag in the process of natural leaching. Thallium from different source has different geochemical behaviors in soils. Anthropogenic Tl has stronger mobility than natural Tl, so has high bioaviability and hazardless for environment. The various soil components have different ability to adsorbed Tl and mainly effected by soil pH. Thallium mobility will be enhanced with soil acidification.The sulfur acid slag has high annul production and piled in air, the Tl pollutant will be rapidly released into environment in the process of leaching. Moreover, thetranslation, piling again and using of slag will extend the range of contamination. The sulfur acid plant usually lies in the residential area, so ecology environment deteriorate by Tl pollutant will directly related with behalf of public health. So the area of Tl prevention and cure become one of a urgent environment problem.
引文
艾军,汤志勇,金泽祥.流动注射-在线萃取-火焰原子吸收法测定化探样品中痕量铊.分析化学,1997,25(8):988.
    曹淑琴,陈杭亭,曾宪津.电感耦合等离子体质谱法测定高纯镉中的杂质元素.光谱学与光谱分析,1999,19(6):854-857.
    曹小安,陈永亨,张诠.测定痕量铊的泡沫塑料吸附分离-镉试剂2B分光光度法.分析测试学报,2000,19(3):11-14.
    曹小安,陈永亨,周怀伟,方德新.邻羟基苯基重氮氨基偶氮苯与铊(Ⅲ)的显色反应及其应用.光谱学与光谱分析,2001,21(3):350-352.
    常向阳,王江海.铊的环境地球化学与粤西环境铊污染.环境地球化学研究进展论文集,广州:华南理工出版社,1996,85-86.
    陈多福,陈光谦,潘晶铭,马绍刚,董维权,高计元,陈先沛.广东云浮大降坪超大型黄铁矿矿床的热水沉积特征.地球化学,1998,27(1):12-19.
    陈金武,曾法刚,沈慧君.甲基异丁基酮负载泡塑富集原子吸收测定岩矿中痕量金银铊隔.岩矿测试,1993,12(2):85-88.
    陈天裕.石墨炉原子吸收光谱法测定碘化铯晶体中铊.分析实验室,1999,18(3):27-30.
    陈永亨,谢文彪,吴颖娟,等.铊的环境生态迁移与扩散.广州大学学报(自然科学版),2002,1(3):62-66.
    陈永亨,谢文彪.吴颖娟,王正辉.中国含铊资源开发与铊环境污染.深圳大学学报(理工版),2001,18(1):57-62.
    程信良,鲍长利,郭旭明.涂钼石墨管石墨炉原子吸收法测定镓、铟、铊热蒸发行为的探讨.分析化学,1994,22(5):512.
    戴树桂主编.环境化学.北京:高等教育出版社,2000,235-296.
    樊邦堂.环境化学,杭州:浙江大学出版社,1991:335-340.
    付爱瑞,罗志定,刘桂玲.萃取火焰AAS法测定地质样品中痕量铊.地质实验室,1995,11(2):91-92.
    郭宝科,杜永峰,李建平.罕见的铅铊合并急性中毒病例分析.中国工业医学杂志,1999,12(5):285-286.
    郭金成,胡旭东,王金城,米宏志.血管重建术前后存活心肌的评价(附27例报告).中华核医学杂志,1998,18(2):97-98.
    胡存杰,刘海玲.聚酰胺富集分离—光度法测定环境中痕量铊.分析实验室,
    
    2000,19(4):30-32.
    黄觉斌,魏镜,李舜伟,等.铊中毒五例临床分析.中华医学杂志,1998,78(8):610-611
    黄丽春,霍学义,郭常清.兴仁县回龙村矿石、废矿渣对周围环境的铊污染调查.工业卫生与职业病,1996,22(3):158-160.
    黄震.兴仁回龙村怪病之谜.2003.11.28,新华网.
    贾天增,蒋恒智.萃取无火焰原子吸收法测定岩矿石中痕量铊.地质实验室,1988,4(5):299-300.
    蒋延惠,胡霭堂,秦怀英.土壤锌、铜、铁、锰形态区分方法的选择.环境科学学报,1990,10(3):280-286
    李海涛,马冰洁.石墨炉原子吸收法测定水中铊.光谱学与光谱分析,1993,13(1):127-130.
    廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992,61-80.
    林景辉,柴晓峰,朱玫等.~(201)Tl再注射心肌显像和再注射后延迟显像检测心肌存活的对比研究.Chin J Nucl Med,1997,17(3):146-149.
    林雨萍,王正珍.乙基紫光度法测定地质样品中痕量铊.地质实验室,1988,15(3):159-161.
    刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,1996,25(6):552-558.
    柳建一,陈大波.阴离子交换树脂分离2.5次微分阳极溶出伏安法测定岩石矿物及化探标样中痕量铊.地质实验室,1987,3(4):254-256.
    卢林周,白朝林.慢性铊中毒致视神经萎缩一例报告.中华眼科杂志,1981,4:247.
    卢荫庥,白金峰.土壤中铊的相态分析.地质实验室,1999,15(4):217-220.
    聂爱国,龙江平.贵州西南地区慢性铊中毒途径研究.环境科学与技术,1997,1:12-14,45.
    佩奇 AL,米勒 RH,等著,闵九康,郝心仁,等译.土壤分析法.北京,1991.
    齐文启,曹杰山,等.铟(In)和铊(Tl)的土壤环境背景值研究.土壤通报,1992,23(1):31-33.
    三门峡日报.河南发现铊中毒罕见病例,患者生理机能趋于好转.2004.03.17,http://www.eph.org.cn/ReadNews.asp?NewsID=3801.
    宋林风.罕见铊中毒.2004.04.14,http://www.39.net/disease/jbzt/ikztc/37885.html.
    谭龙华,汪模辉,廖梦霞,陈鹰.硅胶-TBP反相萃取层析分离法测定金(Ⅲ)与铊(Ⅲ)的研究.分析实验室,1999,18(1):1-4.
    
    
    吴惠明,郭慧清,陈永亨,等.活性炭吸附分离-分光光度法测定硫化矿和土壤中的痕量铊.岩矿测试,2001,20(4):275-277.
    吴颖娟,陈永亨,刘汝锋,等.云浮黄铁矿废渣中铊的模拟淋滤试验.环境化学,2000,19(5):447-454.
    武汉大学等校编,无机化学(上下册,第3版),北京:高等教育出版社,1994.
    谢文彪,陈永亨,陈穗玲,等.硫铁矿焙烧灰渣中铊分布规律及环境效应的研究.矿物岩石地球化学通报,2000,19(3):204-206.
    谢文彪,陈永亨,陈穗玲,等.云浮硫铁矿及其焙烧灰渣中元素铊的组成特征.矿产综合利用,2001a,(2):23-25.
    谢文彪,陈穗玲,陈永亨.云浮黄铁矿利用过程中微量毒害元素的环境化学活动性,地球化学,2001b,30(5):465-469.
    颜文,成杭新,刘孝义.辽宁省土壤中铊的时空分布、存在形态及其环境意义.土壤学报,1998a,35(4):527-533.
    颜文.铊(Tl)的表生地球化学行为及环境效应研究进展.土壤通报,1998b,29(3)143-145.
    杨克敌,赵美英.铊的毒理学研究进展.国外医学卫生学分册.1995,22(4):201-204.
    杨敏之.铊的地球化学.地质科学,1960,3:148-158.
    杨荣勇,曹建劲,康显桂,尹志强.广东云浮硫铁矿地质特征及成因.中山大学学报(自然科学版),1997,36(4):79-83.
    苑金英,孙庆祥,乔明山,等.应用正交实验探讨水中铊的检验方法:火焰原子吸收法.北方环境,1992,(4):27.
    张宝贵,张乾,潘家永.粤西大降平超大型黄铁矿矿床微量元素特征及其成因意义.地质与勘探,1994,30(3):66-71.
    张宝贵,张忠.铊矿床——环境地球化学研究综述.贵州地质,1996,13(1):38-44.
    张虎才.元素表生地球化学特征及理论基础.兰州.兰州大学出版社,1997,p.10,15-22.
    张江峰,曾光明.火焰原子吸收光谱法测定铊铁渣中铊.理化检验-化学分册,1999,35(5):235.
    张勤,刘亚轩,吴建玲.电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊.岩矿测试,2003,22(1):21-27.
    张淑香,董淑萍,颜文.草河口地区沉积物和土壤中铊的地球化学行为.农业环境保护,1998,17(1):113-115.
    张兴茂.云南南华砷铊矿床的的矿床和环境地球化学.矿物岩石地球化学通报,1998,17(1):44-45.
    
    
    张忠,陈国丽,张宝贵,等.滥木厂铊矿床及其环境地球化学研究.中国科学(D辑),1999b,29(5):433-440.
    张忠,陈国丽,张宝贵,等.尿液、头发、指(趾)甲高铊汞砷是铊矿区污染标志.中国环境科学,1999a,19(6):481-484.
    张忠,张宝贵,龙江平,等.富集铊汞砷的生物是滥木厂铊矿床找矿标志.地质与勘探,2000,36(5):27-30.
    张忠,张宝贵,龙江平,等.中国铊矿床开发过程中铊环境污染研究.中国科学(D辑),1997,27(4):331-336.
    周令治,邹家炎.稀散金属手册.中南工业大学出版社,1993.
    周令治,邹家炎.稀有金属近况.有色金属(冶炼部分),1994(1):42-46.
    周正永.云浮硫铁矿矿床成因及成矿环境.化工矿山技术,1997,26(6):47-48,52.
    朱良漪,孙亦梁,陈耕燕.分析仪器手册.化学工业出版社,1997.
    朱玉瑞,单晓斌,江万权,金谷.对偶氮重氮氨基偶氮苯磺酸与铊显色反应的研究.分析实验室,1994,13(6):34-35.
    Adriano DC. Trace elements in the terrestrial environment. New York: Springer-Verlag, 1986. 470.
    Asami T, Mizui C, Shimada T, Kubota M. Determination of Tl in soils by flame atomic absorption spectrometry. Fresenius'J Anal Chem, 1996, 356(5): 348-351.
    Bermond A. Limits of sequential extraction procedures re-examined with emphasis on the role of H~+ ion reactivity. Anal Chim Acta, 2001, 445: 79-88.
    Bidoglio G, Gibson PN, O'Gorman M, Roberts KJ. X-ray absorption spectroscopy investigation of surface redox transformation of thallium and chromium on colloidal mineral oxides. Geochim Cosmochim Acta, 1993, 57: 2389-2394.
    Blowes DW, Jambor JL. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Appl Geochem, 1990, 5: 327-346.
    Boulet MP, Larocque AC. A comparative mineralogical and geochemical study of sulfide mine tailings at two sites in new Mexico, USA. Environ Geol, 1998, 33:130-142.
    Brockhaus A, Dolgner R, Ewerrs V, et al. Intake and health effects of thallium among a population living in the vicinity of cement plant emitting thallium-containing dust. Intern Arch Environ Health, 1981, 44: 375-389.
    Butler J S. Thallium in some igneous rocks. Geokhim (Russ.), 1962, 6: 514-523.
    Cabral A R, Lefebvre G. Use of sequential extraction in the study of heavy metal
    
    retention by silty soils. Water Air Soil Pollut, 1996, 102(3/4): 330-344.
    Cabrera F, Clemente L, Diaz Barrientos E, et al. Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci Total Environ, 1999, 242, 117-129.
    Chandler HA, Scott M. A review of thallium toxicology. J roy nav med Serv, 1986, 72:75-79.
    Chen G, Jackson KW. Low-temperature migration of lead, thallium and selenium onto a palladium modifier during the analysis of solutions and slurries by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B, 1996, 51(12): 1505-1515.
    Ciszewski A, Wasiak W, Ciszewska W. Hair analysis. Part 2. Differential pulse anodic stripping voltammetric determination of thallium in human hair samples of persons in permanent contact with lead in their workplace. Anal Chim Acta, 1997, 343: 225-229.
    Cotlett DLN, Jones SM. Determination of Tl in urine by Graphite Furnace AAS. At Spectroc, 1991, 12(3): 69-75.
    Davidson CM, Ferreira PCS, Ure AM. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially contaminated soil. Fresenius J Anal Chem, 1999, 363:446-451.
    Davidson CM, Hursthouse AS, Tognarelli DM, et al. Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment? Anal Chim Acta, 2004, in press.
    Davis Carter JG, Shuman LM. Influence of texture and pH of kaolinitic soils on Zinc fractions and Zinc uptake by peanuts, Soil Science, 1993, 155(6): 376-384.
    Delastro MAS, Bugagao R, Ebarvia B. Determination of trace amounts of silver, cadmium, molybdenum and thallium in rocks using iodide as an extractant by ETAAS, Geostand Newsl, 1988, 12(1): 47-53.
    Dmowski K, Kozakiewicz A, Kozakiewicz M. Small mammal populations and community under conditions of extremely high thallium contamination in the environment. Environ Research Section B, 1998, 41: 2-7.
    Dolger R. Repeated surveillance of vicinity of a cement plant emitting dust containing thallium. Intern Arch Oceup Environ Health, 1983, 52, 79-94.
    Ergozhin EE, Kurmanaliev M, Kapparov BK. Thallium(Ⅰ) sorption by Grown Ethercontaining Ion-exchangers. Zh Prikl Khim, 1991, 64(1): 196-201.
    Fergusson JE. The heavy elements: chemistry, environmental impact and health effects. Oxford: Pergamon Press, 1990, 614.
    
    
    Flegal AR, Sanudo-Wilhelmy S. Particulate thallium fluxes in the Northeast Pacific. Marine Chem, 1989, 28: 61-75.
    Frengstad B, Skrede AKM, Banks D, et al. The chemistry of Norwegian groundwater: Ⅲ. The distribution of trace elements in 476 crystalline bedrock groundwater, as analysed by ICP-MS techniques. Sci Total Environ, 2000, 246:21-40.
    Grimalt JO, Ferrer M, Macpherson E. The mine tailing accident in Aznalcollar. Sci Total Environ, 1999, 242: 3-11.
    Guo X, Hoashi M, Brooks RR, Reeves RD. Quantification of thallium in rocks and meteorites by graphite furnace atomic absorption spectrometry. Anal Chim Acta, 1992, 266(1): 127-131.
    Hahn L, Mueller-Vogt G, Wend LW, et al. Role of oxygen in the determination of oxide-forming elements by ETAAS. J Anal At Spectrom, 1993, 8(2): 223-227.
    Han FX, Banin A. long-term transformation and redistribution of potentially toxic heavy metals in arid-zone soils: Ⅱ. Incubation at the field capacity moisture content. Water Air Soil Pollut, 1999,114:221-250.
    Hsnen E, Aunela-Tapola L, Kinnunen V, et al. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci Total Environ. 1997, 198: 1-12.
    Heinrichs J, Mayers R. Distribution and cycling of major and trace elements in two Central European forest ecosystems. J Environ Qual, 1977, 6: 402-407.
    Hofer GF, Aichberger K, Hochmair US. Thallium gehalte landwirtschaftlich genutzer Bden Obersterreichs. Die Bodenkulter, 1990, 41: 187-193.
    Holmstrm H, Salmon UJ, Carlsson E, et al. Geochemical investigations of sulfide-bearing tailings at Kristineberg, northern Sweden, a few years after remediation. Sci Total Environ, 2001,273:111-133.
    Ivanova E, Gentscheva G, Havezov I, et al. Atomic absorption spectrophotometric determination of arsenic, cadmium and thallium in cultivated soils. Anal Lab, 1995, 4(1): 14-19.
    Ivanova E, Tsakovski S, Gentscheva G, Havezov I. Anion-exchange enrichment of thallium and cadmium prior to their flume atomic absoption spectrometric determination in soils. Talanta, 1996, 43: 1367-1370.
    Ivanova E, Yan XP, Van Mol W, et al. Determination of thallium in river sediment by flow injection on line sorption preconcentration in a knotted reactor coupled with ETAAS. Analyst (Cambridge, U.K), 1997, 122(7): 667-670.
    Kaplan DI, Adriano DC, Sajwan KS. Thallium toxicity in bean. J Environ Qual, 1990,
    
    19: 359-365.
    Kaplan DI, Mattigod SV. Aqueous geochemistry of thallium. In: Nriagu JO. Thallium in the Environment, New York: Wiley-Interscience Publication, 1998, 15-29.
    Katskov DA, Shtepan AM, Ginshtein IL, et al. Use of an AAS technique to obtain molecular absorption spectra in vapors at high temperature. Zh Anal Khim, 1991, 46(1): 51-55.
    Kelner M. Thallium. In Handbook on Metals in Clinical and Analytical Chemistry (Seiler H, Sigel A, and Sigel H, Eds). New York/Basel: Marcel Dekker,. 1994.
    Kersten M, Forstner U. Chemical fraction of heavy metals in anoxic estuarine and coastal sediments. Water Sci Technol, 1986,18: 121-130.
    Koshima H, Omishi H. Separation of Tl and gold on activated carbon. Anal Sci, 1993, 9(1): 143-149.
    Krishnamurti GSR, Huang PM, Van Rees KCJ, et al. Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst, 1995, 120: 659-665.
    Leblanc M, Petit D, Deram A, et al. The phytomining and environmental significance of hyperaccumulation of thallium by iberis intermedia from Southern France. Economic Geology, 1999, 94(1): 109-114.
    Leblang M, Petit D, Deram A, et al. The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geol, 1999, 94:109-114.
    Lee AG. The chemistry of thallium. Amsterdam: Elsevier, 1971.
    Lehn H, Schoer J. Thallium transfers from soils to plants: correlation between chemical form and plant uptake. Plant Soil, 1987, 97: 253-265.
    Li YH. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments. Geochim Cosmochim Acta, 1982, 46:1053-1060.
    Li ZB, Shuman LM. Heavy metal movement in metal-contaminated soil profiles. Soil Science, 1996,161: 656-666.
    Liao YP, Chen G, Yan D, et al. Investigation of thallium hydride generation using in situ trapping in graphite tube by atomic absorption spectrometry. Anal Chim Acta, 1998, 360: 209-214.
    Lin TS, Nriagu J. Thallium speciation in the Great lakes. Environ Sci Technol, 1999, 33: 3394-3397.
    Lin TS, Nriagu JO. Speciation of thallium in natural waters. In: Nriagu JO, editor. Thallium in the Environment, New York: Wiley-Interscience Publication, 1998, 34-39.
    
    
    López-Garcia I, Navarro E, Vinas P, Hernández-Córdoba M. Rapid determination of lead, cadmium and thallium in cements using electrothermal atomic absorption spectrometry with slurry sample introduction. Fresenius'J Anal Chem, 1997, 357(6): 642-646.
    López-Garcia I, Sánchz-Merlos M, Hernández-Córdoba M. Slurry sampling for the determination of lead, cadmium and thallium in soils and sediments by electrothermal atomic absorption spectrometry with fast heating programs. Anal Chim, 1996, 328(1): 19-25.
    Lukaszewski Z, Zembrzuski W, Piela A. Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry. Anal Chim Acta, 1996, 318: 159-165.
    Mahmood TM, Jackson KW. Wall-to-platform migration in electrothermal atomic absorption spectrometry part 1. Investigation of the mechanism of chloride interference on thallium. Spectrochim Acta Part B: Atomic Spectroscopy, 1996, 51(9/10): 1155-1162.
    Maia SM, Vale MGR, Welz B, Curtius AJ. Feasibility of isotope dilution calibration for the determination of thallium in sediment using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta Part B: Atomic Spectroscopy, 2001, 56(7): 1263-1275.
    Malolepszy J, Deja J. The influence of curing conditions on the mechanical properties of alkali activated slag binders. Silic Ind, 1988, 53(11/12): 179-186.
    Manz M, Castro LJ. The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico. Environ Pollut, 1997, 98(1): 7-13.
    Manzo L, Sabbioni E. In Handbook on Toxicity of Inorganic Compounds, Seiler HG, Sigel H, Ed, New York: Marcel Dekker Znc, 1989.
    Martin HW, Kaplan DI. Temporal changes in cadmium, thallium, and vanadium mobility in soil a phytoavailability under filed conditions. Water Air Soil Pollut, 1998, 101: 399-410.
    Matsusaki K. Matrix modification for the determination of tahllium by graphite furnace atomic absorption spectrometry. Bunseki Kagaku, 1991, 40(8): 413-417.
    Maurice JF, Wibetoe G, Sjstad KE. Longitudinal distribution of thallium in human scalp hair determined by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2002, 17: 485-490.
    McGoldrick PJ, Keays RR, Scott BB. Thallium: a sensitive indicator of rock/seawater interaction and of sulfur saturation of silicate melts. Geochim Cosmochim Acta
    
    1979, 43: 1303-1311.
    McGregor RG, Blowes DW, Jambor JL, et al. The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J Contam Hydro, 1998, 33: 247-271.
    Mestek O, Koplik R, Fingerová H, Suchánek M. Determination of thallium in environment samples by inductively coupled plasma mass spectrometry: comparison and validation of isotope dilution and external calibration methods. J Anal At Spectrom, 2000, 15: 403-407.
    Mikhalyuk PI, Nazarenko AY, Sukham VV. Determination of trace thallium by atomic absorption spectrometry after concentration on polyurethane foam. Zh Anal Khim, 1991,46(12): 2325-2330.
    Moeschlin S. Thallium poisoning. Clin Toxicol, 1980, 17: 133-146.
    Mossop KF, Davidson CM. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal Chim Acta, 2003, 478:111-118.
    Mueller RF. Microbially mediated thallium immobilization in Bench Scale system. Mine Water Environ, 2001, 20: 17-29.
    Mulkey JP, Oehme FW. A review of thallium toxicity. Vet Hum Toxicol, 1993, 35(5): 445-453.
    Muller B, Sigg L. Interaction of trace metals with natural particle surface: Comparison between adsorption experiments and field measurements. Aquatic Sci, 1990, 52: 75-92.
    Nascimento DB, Schwedt G. Polyethylene powder as an absorbent for preconcentrent of aluminium, beryllium and thallium. Mikrochim Acta, 1997, 126(1/2): 159-164.
    Nriagu JO. History, production, and uses of thallium. In: Nriagu JO, editor. Thallium in the Environment. New York: Wiley-Interscience Publication, 1998. 1-14.
    Otruba V, Stepankova J, Sommer L. Selective preconcentration of T1 on modified silica gel for its determination by flame emission and absorption spectrometry. Talanta, 1994, 41(7): 1185-1190.
    Pérez-Ruiz T, Martinez-Lozano C, Tomás V, Casajǘs R. Simple flow injection spectrofluorinetril method for speciation of thallium. Analyst, 1996, 121: 813-815.
    Pozebon D, Dressler VL, Curtius AJ. Determination of volatile elements in biological materials by isotopic dilution ETV-ICP-MS after dissolution with tetranethy-lammonium hydroxide or acid digestion. Talanta, 2000, 51: 903-911.
    Quevauviller Ph, Rauret G, López-Séinchez JF, et al. Certification of trace metal
    
    extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci Total Environ, 1997, 205: 223-234.
    Raksasataya M, Langdon AG, Kim ND. Assessment of the extent of lead redistribution during sequential extraction by two different methods. Anal Chim Acta, 1996, 332: 1-14.
    Rha CY, Kang SK, Kim CU. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions. J Hazard Mater, 2000, B73: 255-267.
    Rounaghi C, Eshagi Z, Ghiamati E. Study of the complex formation between 18C6 Crown ether and Tl~+, Pb~(2+) and Cd~(2+) in binary non-aqueous solvents using differential pulse polarography. Talanta, 1996, 43: 1043-1048.
    Sager M. Speciation of thallium in river sediments by consecutive leaching techniques. Mikrochim Acta, 1992,106:241-251.
    Sahuquillo A, López-Sánchez JF, Rubio R, Rauret G. Use of a certified reference material for extractable trace metals to assess source of uncertain in the BCR three-stage sequential extraction procedure. Anal Chim Acta, 1999, 382:317-327.
    anar J, Milai R, Straar M, Budca O. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci Total Environ, 2000, 250: 9-19.
    Schiewer S, Volesky B. Modeling multi-metal ion exchange in biosorption. Environ Sci Technol, 1996, 30: 2921-2927.
    Schoer J. Thallium. In the Handbook of environmental chemistry, Hutzinger O, ed, Berlin: Springer Verlag, 1984, 143-214.
    Scholl W. Bestimmung von Thallium in verschiedenen anorgannischen und organischen Matrices. ein einfaches photometrisches Routineverfahren mit Brillantgrün. Landw Forsch, 1980, 37: 275-286.
    Schramel P, Wendler I, Angerer J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry. Int Arch Occup Health, 1997, 69: 219-223.
    Sengupta AK, Clifford D. Important process variables in chromate ion exchange. Environ Sci Technol, 1986, 20: 149-155.
    Shah XQ, Ni ZM, Zhang L. Application of matrix-modification in determination of thallium waste water by graphite furnace atomic absorption spectrometry. Talanta, 1984, 31(2): 150-152.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic
    
    distances in halides and chalcogenides. Acta Cryst, 1976, A32, 751-767.
    Shaw DM. The geochemistry of gallium, indium, and thallium-A review. Phys Chem Earth, 1957, 2: 164-211.
    Shaw DM. The geochemistry of thallium. Geochim Cosmochim Acta, 1952, 2: 118-154.
    Shi C. Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res, 1996, 26: 1789-1799.
    Shuttler I, Schulze H. The performance of the multi-elements ETAAS. Analysis Europa, 1994, (1): 44-49.
    Simón M, Martin F, Ortiz I, et al. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. Sci Total Environ, 2001, 279:63-74.
    Sittig M. World-wide limits for toxic and hazardous chemicals in air, water and soil. New Jersey: Noyes, 1994. 719.
    Smith IC, Carson BL. Trace metals in the environment, I. Thallium. Ann Arbor, Michigan: Ann Arbor Science, 1977.
    Suthedand RA, Tack FMG. Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Anal Chim Acta, 2002a, 454: 249-257.
    Sutherland RA. Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Appl Geochem, 2002b, 17: 353-365.
    Suzuki S, Katsuragi H. Determination of trace amounts of thallium in some sediments by Graphite Furnace AAS after preconcentration as xanthogenae complex on activated carbon. Bunseki Kagaka, 1991, 40(5): 251-256.
    Taylor SR, McLennan SM. The continental crust, its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific Publishing, 1985.
    Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51: 844-851.
    Teutsch N, Erel Y, Halicz L, Banin A. Distribution of natural and anthropogenic lead in Mediterranean soils. Geochim Cosmochim Acta, 2001, 65: 2853-2864.
    Thomas MN, Mehra MC. Reductive enrichment and atomic absorption determination of trace amounts of copper, palladium and thallium ions in solution. Orient J Chem, 1990, 6(3): 135-141.
    
    
    Thomas RP, Ure AM, Davidson CM, Littlejohn D. Three-stage sequential extraction procedure for the determination of metals in river sediments. Anal Chim Acta, 1994, 286: 423-429.
    Tremel A, Masson P, Garraud H, et al. Thallium in French agrosystems-Ⅱ. Concentration of thallium in field-grown rape and some other plant species. Environ Pollut, 1997b, 97: 161-168.
    Tremel A, Masson P, Stercheman T, et al. Thallium in French agrosystems-Ⅰ. Thallium contents in arable soils. Environ Pollut, 1997a, 95: 293-302.
    Tsakovski S, Ivanova E, Havezov I. Flame AAS determination of thallium in soils. Talanta, 1994, 41(5): 721-724.
    Tu Q, Shan XQ, Qian J, Ni ZM. Trace metal redistribution during extraction of model soils by acetic acid/sodium acetate. Anal Chem, 1994, 66: 3562-3568.
    Ure AM, Quevauviller Ph, Muntau H, Griepink B. Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem, 1993, 51:135-142.
    Vale MGR, Silva MM, Welz B, Nowka R. Control of spectral and non-spectral interferences in the determination of thallium in trver and marine sediments using solid sampling electrothermal atomic absorption spectrometry. J Anal At Spectrom, 2002, 17: 38-45.
    Vartak SV, Shinde VM. An extraction study of gallium, indium and thallium using TPASO as an extraction. Talanta, 1998, 45: 925-930.
    Vink BW. Thallium in the (sub)surface environment: its mobility in terms of Eh and pH. In: Nriagu JO. Thallium in the Environment, New York: Wiley-Interscience Publication, 1998, 56-57.
    Vink BW. The behavior of thallium in the (sub)surface environment items of Eh and pH. Chem Geol, 1993, 109:119-123.
    Wei MT, Jiang SJ. Determination of thallium in sea-water by flow injection hydride generation isotope dilution inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1999, 14: 1171-1181.
    Welz B, Schlemmer G, Mudakavi JR. Investigation and elimination of chloride interference on thallium in graphite furnace atomic absorption spectrometry. Anal Chem, 1988, 60: 2567-2572.
    Welz B, Vale MGR, Silva MM, et al. Investigation of interferences in the determination of thallium in marine sediment reference materials using
    
    high-resolution continuum-source atomic absorption spectrometry and electrothermal atomization. Spectrochim Acta Part B: Atomic Spectroscopy, 2002, 57: 1043-1055.
    Whalley C, Grant A. Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment. Anal Chim Acta, 1994, 291: 287-295.
    Williams G Thallium poisoning: diagnosis may be elusive but alnico is the clue. BMJ, 1993, 306: 1527-1529.
    Xiao TF, Boyle D, Guha J, et al. Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou province, China. Appl Geochem, 2003, 18:675-691.
    Xiao TF, Guha J, Boyle D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci Total Environ, 2004, 318: 223-244.
    Xiao TF, Guha J, Boyle D, et al. Naturally occurring thallium: a hidden geoenvironmental health hazard? Environ Int, 2004, in press.
    Yukselen MA. Characterization of heavy metal contaminated soils in Northern Cyprus. Environ Geol, 2002, 42: 597-603.
    Zhang Z, Zhang BG, Long JP, et al. Thallium pollution associated with mining of thallium deposits. Sci China (Ser D), 1998, 41(1): 75-81.
    Zhou DX, Lin DN. Chronic thallium poisoning in a rural area of Guizhou Province, China. J Environ Health, 1985, 48(1): 14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700