用户名: 密码: 验证码:
酒西盆地青西凹陷下沟组湖相“白烟型”喷流岩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结对比国内外喷流岩最新研究成果以及研究区前人研究成果基础上,采用矿相、岩相和地球化学等测试分析手段,并结合相关专业理论知识对酒西盆地青西凹陷下白垩统下沟组广泛发育的纹层状“白云质泥岩”和“泥质白云岩”进行了全面深入的研究。结果表明:
     a.以纹层状“白云质泥岩”和“泥质白云岩”为代表的深—半深湖相“白烟型”喷流岩中矿物成分主要有与热水活动有关的钠长石和铁白云石,其次有石英、方沸石、重晶石、地开石等,还有少量黄铁矿、方铅矿、黄铜矿、闪锌矿等热水金属矿物,且上述热水矿物具有一定的共生组合规律。
     b.这套喷流岩以具微—隐晶结构和纹层状构造为主,局部可出现特征的热水碎屑结构、热水角砾结构和条带状、网脉状、旋涡状构造和同生变形层理,从喷口到盆缘具有如下分带性沉积展布规律:喷流口内发育脉状充填型喷流岩→喷流口处发育水爆角砾型喷流岩→喷流口附近发育盆地沉积型喷流岩→远端发育区域扩散型喷流岩。
     c.热液流体主要为贫金属硫化物,富CO_3~(-2)、SO_4~(-2)、Cl~(-1)和Ca~(2+)、Mg~(2+)、Fe~(2+)、Si~(4+)、A1~(3+)、Na~+等常量元素和络阴离子,以及Zn、Rb、Mo、As、Ni、Co、Sb、Ba和Ag等深源气液型和深部幔源型微量元素组合的高碱性热卤水(下渗水与深部岩浆水的混合热液);热液活动与酒西坳陷早白垩世伸展构造控制的火山喷发和地热异常有关,北东向次级基底断裂为热液流动及喷发提供良好的通道;由火山活动引起的地热梯度场为热液流动提供动力。
     d.否定了前人认为纹层状“白云质泥岩”和“泥质白云岩”是外来的AAW型火山凝灰物质经埋藏成岩改造的产物,或认为是火山凝灰蚀变过程中析出的大量Ca~(2-)、Mg~(2+)离子沉积而形成的观点,并进一步证实了郑荣才教授提出的湖底热水喷流沉积成因观点的科学性和合理性。
     e.喷流岩与同时期相伴生的玄武岩和深—半深湖相黑色页岩具有相似的沉积地球化学特征,显示喷流岩也形成于深—半深湖环境且与玄武岩在物质组分的供给关系上具有很强的亲缘性。
     f.经国内外文献资料检索,湖相“白烟型”喷流岩已见有相关报道,但酒西盆地青西凹陷下沟组发育的湖相热水沉积白云岩却从未见有报道,应属首例。此类热水沉积白云岩属于原生白云岩中的特殊成因类型,且为一类新的湖相白云岩成因类型。
     g.以“白云质泥岩”和“泥质白云岩”为代表的喷流岩兼具烃源岩、储集岩和盖层的多重性质,具备优越的自生、自储、自盖油气配置关系和成藏条件,为玉门油田极具潜力的“深盆”油气勘探开发区。
On the basis of summarizing and comparing with the latest research results of hydrothermal sedimentary rock both at home and abroad and the existed research results of the research district, adopting the analysis means of mineragraphy, petrofacies and geochemistry, etc. and combining with relevant speciality-theory knowledge, the author carries on overall and deep research for extensively distributed lacustrine laminated dolomitic mudstone and muddy dolomite in the Xiagou Formation, Lower Cretaceous of Qingxi sag of Jiuxi basin. The results show:a)The lacustrine "white smoke type" exhalative rock is characterized by the special mineral assemblage including rich claysized-albite and ankerite, a small amount of quartz, analcite, barite and dickite and microcontent iron pyrites, galena, chalcopyrite and blende. Above-mentioned hydrothermal minerals have certain intergrowth assemblage regularity.b)This exhalative rock is mainly characterized by microcrystallite-aphanocrystalline texture and laminated structure, and also shows hydrothermal fragmental texture, hydrothermal brecciated texture, spiral vortex structure and so on. From hydrothermal vent to the margin of basin, the exhalative rock has a depositional spread regularity: filling lode rock type→water bursting breccia type→basin depositing type →region diffusing type.c)The hydrothermal fluid is mainly high alkaline hot brine including poor metal sulphide and rich microelements of CO_3~(-2), SO_4~(-2), Cl~(-1), Ca~(2+), Mg~(2+), Fe~(2+), Si~(4+), Al~(3+), Na~+ and mantle reservoir microelement of Zn,Rb,Mo,As,Ni,Co,Sb,Ba and Ag.The hydrothermal fluid activity is relative to volcanic eruption and geothermal anomaly by Lower Cretaceous extensional fault controlled in Jiuxi basin.north-east secondary fracture zones offer the good pathway for the flow and eruption of hydrothermal fluid. The geothermal gradient caused by volcanic activity offers the power for the flow of hydrothermal fluid.d)The author denies the viewpoint about the genetic analysis of the exhalative rock that extensively distributed lacustrine laminated dolomitic mudstone and muddy dolomite came from deposition processed
引文
1.陈多福,陈先沛.热水沉积作用与成矿效应[J].地质地球化学,1997,4(4):7~12.
    2.陈多福、陈先沛,贵州松桃热水沉积锰矿的地质地球化学特征[J].沉积学报,1992,10(4):35~43.
    3.陈多福、陈先沛,贵州瓮福磷矿中的热水硅化作用[J].沉积学报,1993,11(2):58~65.
    4.陈建平,黄第藩.酒东盆地营尔凹陷油气生成和聚集运移[J].石油勘探与开发,1995,第22卷,第六期.
    5.陈建平、陈建军、张立平等,酒西盆地油气形成与勘探方向新认识(一)[J].石油勘探与开发,2001,28(1),19~22.
    6.陈建平、陈建军,张立平等,酒西盆地油气形成与勘探方向新认识(二)[J].石油勘探与开发,2001,28(2),15~18.
    7.陈建平、陈建军、张立平等,酒西盆地油气形成与勘探方向新认识(二)[J].石油勘探与开发,2001,28(3),12~16.
    8.陈建平、赵文智、黄第藩等,酒东、酒西盆地的异同与油气勘探[J].石油勘探与开发,1997,24(6),12~16.
    9.陈先沛,高计元,陈多福.热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992,10(3):124~132.
    10.陈浩琉,邓燕华译,Barnes H L著.热液矿床地球化学[M]..北京:地质出版社,1985.
    11.戴杰敏等.热水铀矿化作用论评.铀矿地质,1986,2(1):58~65.
    12.杜同军,翟世奎,任建国.海底热液活动与海洋科学研究[J].青岛海洋大学学报,2002,32(4):597~602.
    13.范铭涛,杨麟科等.青西凹陷下白垩统湖相喷流岩成因探讨及其意义[J].沉积学报,2003,21(4),560~564.
    14.范铭涛,杨麟科,方国玉等,2003,青西凹陷下白垩统湖相喷流岩成因探讨及其意义[J],沉积学报,21(4):560~564.
    15.方维萱,芦继英.陕西银硐子—大西沟菱铁银多金属矿床热水沉积岩相特征及成因[J],沉积学报,18(3):431~438.
    16.付伟,周永章等.现代海底热水活动的系统性研究及其科学意义[J].地球科学进展,2005,20(1):82~88.
    17.甘肃地质矿产局.甘肃省区域地质志[M].1989,地质出版社.
    18.甘肃省地质局.1:200000玉门市幅、酒泉幅、肃南幅、旧寺墩幅、天仓幅、玉门镇幅区域地质测量报告[R].
    19.高波,陶明信,王万春.深部热流梯对油气成藏的影响[J],矿物岩石地球化学通报,2001,第20卷,第一期.
    20.侯增谦,莫宣学.现代海底热液成矿作用研究现状及发展方向[J],地学前缘,1996,3(3):3~4.
    21.黄杏珍,邵宏舜等.泌阳凹陷下第三系湖相白云岩形成条件[J].沉积学报,2001,19(2):207~213.
    22.霍永录,谭试典等.酒泉盆地陆相石油地质特征及勘探实践[M].1995,石油工业出版社.
    23.姜在兴.沉积学[M].北京:石油工业出版社,2003.
    24.解广轰,刘丛强,增田彰正,等.青藏高原周边地区新生代火山岩地球化学特征——古老富集地幔存在的证据.见:刘若新主编.中国新生代火山岩:年代学与地球化学.1992,北京:地震出版社,400~427.
    25.解习农,李思田等.热流体活动示踪标志及其地质意义[J].地球科学—中国地质大学学报,1999,24(2):3~8.
    26.金强,翟庆龙.裂谷盆地的火山热液活动和油气生成[J].地质科学,2003,38(3):413~424.
    27.酒泉地质矿产调查队,1995.1:50000旱峡煤矿幅、红柳峡幅、鸭儿峡变电站幅区域地质调查报告[R].
    28.李朝阳等.滇西地区陆相热水沉积成矿作用[J].铀矿地质,1993,9(1):14~22.
    29.李红阳,牛树银,王立峰等.2002.幔柱构造[M].地震出版社.
    30.李江海,初凤友等.河北兴隆中元古带硫化物黑烟囱群发现及其地质成因[J].自然科学进展,2005,15(2):179~191.
    31.李江海,冯军等.华北中元古带硫化物黑烟囱发现的初步报道[J].岩石学报,2003,19(1):167~168.
    32.李江海,牛向龙等.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19(1):17~24.
    33.李明诚.地壳中的热流体活动和油气运移[J].地学前缘,1995,2(4):155~162.
    34.李日辉,侯贵卿.深海热液喷口生物群落的研究进展[J].海洋地质与第四纪地质,1999,19(4):103~108.
    35.李思田,路凤香,林畅松等,中国东部及邻区中新生代盆地演化及地球动力学背景[M].北京:地质出版社,1997.
    36.李有禹.湖南大庸慈利一带下寒武统黑色页岩中海底喷流沉积硅岩的地质特征[J].岩石学报,1997,13(1):121~126.
    37.黎彤.化学元素的地球丰度,地球化学,1976,第1期.
    38.梁华英,王秀璋等.广东大沟谷钠长石岩地球化学特征及成因研究[J].矿物岩石,1998,18(1):113~118.
    39.廖宗廷,杨斌.古海洋中的热水喷口——广西大厂例析[J].同济大学学报,1995,23(5):564~567.
    40.林文洲.现代海底热液成矿作用综述[J].成都理工学院学报(增刊),2000,27(1):264~267.
    41.刘宝珺.沉积岩石学[M].地质出版社,1979.
    42.刘建明,叶杰等.一种新类型热水沉积岩——产在湖相断陷盆地中的菱铁绢云硅质岩[J].中国科学D辑,2001,31(7):570~577.
    43.刘金坤,郑禾杰,郑国栋.酒西盆地玄武岩的岩性特征及时代[J].兰州大学学报(自然科学版),1987,23(3):104~113.
    44.刘岫峰.沉积岩实验室研究方法[M].地质出版社,1990.
    45.卢焕章.现代海底烟囱中流体包裹体的研究[J].岩石学报,19(2):235~241.
    46.罗平,杨式升,苏丽萍等.酒西盆地湖相纹层状泥质白云岩储层的形成条件与特征,油气储层重 点实验室论文集[M].2002,北京:石油工业出版社,32~44.
    47.罗平、杨式升、马龙等.酒西盆地青西坳陷湖相纹层状泥质白云岩中泥级斜长石成因、特征与油气勘探意义[J].石油勘探与开发,2001,28(6),32~33.
    48.卢武长.稳定同位素地球化学[M].成都地质学院,1986.
    49.马国福,魏军,汪满福.酒西盆地青西地区油气藏裂缝研究[J].新疆石油地质,2002,第23卷,第1期.
    50.泌阳凹陷湖相白云岩油气储集性能及勘探潜力[J].江汉石油学院学报,2002,24(1):8~10.
    51.内蒙古地质矿产局.内蒙古区域地质志[M].地质出版社,1991.
    52.南襄盆地泌阳凹陷溶孔溶洞型白云岩储层特征与分布规律[J].地质论评,2004,50(2):162~169.
    53.赖绍聪。青藏高原新生代火山岩矿物成份及其岩石学意义[J]。矿物学报,1999,第19卷,第2期。
    54.庞艳春,林丽,朱利东等.热液喷口生物群的研究现状[J].成都理工大学学报,2002,29(4):448~452.
    55.彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J].岩相古地理,1999,19(2):29~37
    56.戚华文,胡瑞忠等.陆相热水沉积成因硅质岩与超大型锗矿床为例[J].中国科学D辑,2003,33(3):237~246.
    57.任战利,中国北方沉积盆地热演化史的对比[J].石油天然气地质,2000,21(1),33~37.
    58.任战利、刘池阳,张小会等,酒东盆地热演化史与油气关系研究[J].沉积学报,2000,18(4),619~623.
    59.任战利、刘池阳,张小会等,酒泉盆地群热演化史恢复及其对比研究[J].地球物理学报,2000,43(5),635~645.
    60.任战利、赵重远,中生代晚期中国北方沉积盆地地热梯度恢复及对比[J].石油勘探与开发,2001,28(6),1~4.
    61.任战利著,1999.中国北方沉积盆地构造热演化史研究[M].石油工业出版社.
    62.孙省利,郑建京等.地壳热水流体在油气形成过程中的作用[J].天然气地球科学,2004,15(5):520~530.
    63.孙省利,陈践发等.热水流体作用与油气的形成[J].天然气地球科学,2003,14(3):215~219.
    64.孙省利.西成铅锌矿田有机地球化学特征及成矿作用[J].甘肃地质学报,1999,8(2):58~64.
    65.覃建雄.白云岩化研究的新进展[J].地质科技情报,1992,11(2):23~27.
    66.田白.白云岩化研究的新进展——火山作用与白云岩化的关系[J].地球科学进展,1991,6(4):51~52.
    67.田景春,陈洪德等.右江盆地晚古生代白云岩特征及成因研究[J].地球科学与环境学报,2004,26(3):1~6.
    68.田景春,曾允孚等.东营凹陷西部沙河街组三段上部泥岩中白云岩夹层成因研究[J].1997,17(4):61~67.
    69.田景春,曾允孚等.陆相含油盆地泥岩中白云岩夹层的储集性研究——以东营凹陷沙三段上部白 云岩为例[J].成都理工学院学报,2000,27(1):88~92.
    70.汪满福,杨红梅,杨麟科.青西油田下白垩统下沟组泥云岩储集层特征[R].石油勘探开发研究,2003.
    71.王成善,郑荣才,朱利东,等.酒泉盆地沉积特征与层序地层学研究[R].四川:成都理工大学,2003.
    72.王江海、颜文、常向阳等.陆相热水沉积作用[M].北京:地质出版社,1998,1~32
    73.王涛,刘淑文等.热水沉积矿床研究的现状与趋势[J].地球科学与环境学报,2004,26(4):6~10.
    74.王晓丰,张志诚等.酒西盆地南缘旱峡早白垩世火山岩地球化学特征及其构造意义[J].高校地质学报,10(4),569~577.
    75.尉实,傅长生.裂缝性储层研究文集[M].中国石油天然气集团公司西北地质研究所,1999.
    76.夏学惠,刘昌涛,闫飞,李钟模.河北兴隆地区硫化物黑色页岩地球化学及海底喷气成因研究[J].地球化学,1999,28(5):496~504.
    77.肖荣阁,杨忠芳,杨卫东,李朝阳.热水成矿作用[J].地学前缘,1994,1(3~4):140~147.
    78.熊英,程克明等.酒西坳陷油源对比研究新进展[J].石油勘探与开发,2004,13(1):36~39.
    79.薛春纪,祁思敬,郑明华,等.热水沉积研究及相关科学问题[J].矿物岩石地球化学通报,2000,19(3):155~161.
    80.熊永柱.西成矿田泥盆纪热水沉积岩中的生物标志物特征与古环境恢复[S].成都理工大学,2003.
    81.闫伟鹏,朱攸敏,张琴等.柳沟庄—窟窿山油藏储层裂缝类型及特征[J].石油勘探与开发,2002,第29卷,第一期.
    82.颜文,李朝阳.一种新类型铜矿床的地球化学特征及其热水沉积成因[J].地球化学,1997,26(1):54~65.
    83.杨经绥,孟繁聪,张建新等.重新认识阿尔金断裂东段红柳峡火山岩的时代及构造意义[J].中国科学增刊(D辑),2001,31(12):83~89.
    84.杨子元,Lawrence J.Drew等.论白云鄂博矿床含矿围岩——白云岩的热水沉积成因[J].地质找矿论丛,1994,9(1):39~48.
    85.杨树锋、陈汉林等,酒泉盆地构造特征及控油作用[R].浙江大学,2002.
    86.玉门油田勘探开发研究院,1993.河西走廊地区主要沉积盆地油气资源评价(内部资料)[R].玉门.
    87.玉门油田石油地质志编写组.中国石油地质志-卷十三[M].石油工业出版社,1989.
    88.张晓宝.准噶尔盆地南缘东部中二叠统芦草沟组黑色页岩中白云岩夹层的成因探讨[J].沉积学报,1993,11(2):133~138.
    89.张理刚.稳定同位素在地质科学中的应用[M].陕西科学技术出版社,1983.
    90.张汉文.青海铜峪沟铜矿床的矿化特征形成环境和矿床类型[J].西北地质,2001,34(4):30~40.
    91.赵一阳,鄢明才.冲绳海槽海底沉积物汞异常——现代海底热水效应的“指示剂”[J].地球化学,1994,23(2):132~139.
    92.赵应成,周晓峰等.酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J].天然气地球科学,2005,16(1):12~15.
    93.赵应成,酒西盆地含油气系统与油气勘探方向[J].石油实验地质,1998,20(4),362~367.
    94.曾允孚,夏文杰.沉积岩石学[M].地质出版社,1984.
    95.郑荣才,王成善等.酒西盆地首例湖相“白烟型”喷流岩——热水沉积白云岩的发现及其意义[J].成都理工大学学报,2003,30(1),1~8.
    96.周永章,刘建明,陈多福.华南古海洋热水沉积作用研究概述及若干认识[J].矿物岩石地球化学通报,2000,19(2):4.
    97.朱国华.酒西盆地柳沟庄—窟窿山油藏下白垩储层岩类及其成因的若干认识[R].2001,杭州石油地质研究所.
    98. Ai-Aasm Ihsan, 2003. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78~79: 9~15.
    99. Al~Aasm, I. S., Lonnee, J. S., Clarke, J., 2002. Multiple fluid flow events and the formation of saddle dolomite: case studies from the Middle Devonian of the Western Canada Sedimentary Basin. Mar. Pet. Geol. 19, 209~217.
    100. Alfonso P., Prol-Ledesma R. M., 2003. Sulfur isotope geochemistry of the submarine hydrothermal coastal vents of Punta Mita, Mexico. Journal of Geochemical Exploration, 78-79: 301~304.
    101. Barrat J. A., Boulegue J., Tiercelin J. J., &Lesourd M., 2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochimica et Cosmochimica Acta, 64: 287~298.
    102. Blendinger W., 2004. Sea level changes versus hydrothermal diagenesis: origin of Triassic carbonate platform cycles in the Dolomites, Italy. Sedimentary Geology, 169: 21~28.
    103. Bonia M., Iannacea A., Bechstadtb T., Gasparrinib M., 2000. Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain): evidence for late to post-Variscan widespread fluid-flow events, Journal of Geochemical Exploration, 69~70: 225~228.
    104. Bonia M., Parentea G., Bechstadtb T., De Vivoc B., Iannacea A., 2000. Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event. Sedimentary Geology, 131: 181~200.
    105. Bowers T. S., Von Damm K. L., and Edmond J. M. Chemical evolution of mid-ocean ridge hot spring, Geochim et Cosmochim. Acta. 1985, 49: 2239~2252.
    106. Bostrom K, Rydell H, Joensuu O, Langbank: An exhalative sedimentary deposit. Econ Geol, 1979, 74(5): 1002~1011.
    107. Brown A C. Sediment-host of Stratiform Copper Deposits. Geoscience Canada, 1993, 19(3): 125~141.
    108. Canet Carles, Prol-Ledesma Rosa Maria, Joan-Carles Melgarejo, Reyes Agnes, 2003. Methane-related carbonates formed at submarine hydrothermal springs: a new setting for microbially-derived carbonates?Marine Geology, 199: 245~261.
    109. Cavagna, S., Clari, P., Martire, L., 1999. The role of bacteria in the formation of cold seep carbonates: Geological evidence from Montferrato (Tertiary, NW Italy). Sediment. Geol. 126: 253~270.
    110. Chen Daizhao, Qing Hairuo, Yang Chao. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology, 2004, 5: 1029~1051.
    111. Coussement C., Gente P., Rolet J., Tiercelin J. J, Wafula M., and Buku S. (1994) The north Tanganyika hydrothermal fields, East African Rift system: Their tectonic control and relationship to volcanism and rift segmentation. Tectonophysics 237, 155~173.
    112. Crane K., 1991. Hydrothermal vents in Lake Baikal. Nature, 350: 281.
    113. Crerar D. A. Namson J, Chyi M. S., et al. Manganiferous chert of the Franciscan assemblage: General geology ancient and modern analogues and implications for hydrothermal convection at oceanic spresding centers. Econ Geol, 1982, 77(3): 519~540.
    114. Davies, G. R., 1996. Hydrothermal dolomites (HTD) reservoir facies. Can. Soc. Petrol. Geol. Short Course Notes, 167 pp.
    115. Didyk B M, Simoneit B R T., 1989. Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature, 342: 65~69.
    116. Dobson Patrick F., Kneafsey Timothy J, 2003. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. Journal of Volcanology and Geothermal Research, 123: 313~324.
    117. Fadi H. Nader, Rudy Swennen, Rob Ellam, 2004. Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: a two-stage dolomitization model (Jurassic, Lebanon). Sedimentology, 51: 339~360.
    118. Fitzsimons, M. F., Dando, P. R., Hughes, J. A., Thiermann, F., Akoumianaki, I., Pratt, S. M., 1997. Submarine hydrothermalbrine seeps of Milos, Greece: Observations and geochemistry. Mar. Chem. 57, 325~340.
    119. Folk, R. L., Chafetz, H. S., Tiezzi, P. A., 1985. Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, Central Italy. In: Schneidermann, N., Harris, P. (Eds.), Carbonate Cements. Soc. Econ. Paleontol. Hineral. Spec. Publ. 36, pp. 349~369.
    120. Fustec A., 1987. Distributions D. Juniper S K. Deep-sea hydrothermal vent communities at 13~0N on the East Pacific Rise: Microdistribution and temporal variatios. Biological Oceanography, 4: 121~164.
    121. Gasparrinia M., Bakkerb R. J., Bechstadta Th., Bonic M., 2003. Hot dolomites in a Variscan foreland belt: hydrothermal flow in the Cantabrian Zone (NW Spain). Journal of Geochemical Exploration, 78~79: 501~507.
    122. Grassle J F., 1986. The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology, 23: 301~362.
    123. Grassle, J. F., 1985. Hydrothermal vent animals: Distribution and biology. Science, 229, 713~725.
    124. Guidry Sean A., Chafetz Henry S., 2003. Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming, USA. Sedimentary Geology, 157: 71~106.
    125. Halbach M., Halbach P., 2002. Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean. Chemical Geology, 182: 357~375.
    126. Hanafy Holail and Kyger C. Lohmann, 1991. Dolomitization and dedolomitization of upper Cretaceous carbonates: Bahariya Oasis, Egypt, SEPM special publication, No. 34.
    127. Haymon R. M., fornari. D. J. and Von Damm K. L., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45-52′ N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planetary Science Letter, 119: 85~101.
    128. Haymon, R. M., Kastner, M., 1981. Hot spring deposits on the East Pacific Rise at 21~0N: Preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett. 53, 363~381.
    129. Hein, J. R., Koski, R. A., Embley, R. W., Reid, J., Chang, S. W., 1999. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific; Deposit composition. Explor. Min. Geol. 8, 299~322.
    130. Herzig P M, Hannington M D, Fouquet Y, et al., 1993. Gold-rich polymetallic sulphides from the Lau back-arc and implications for the geochemistry of gold in seafloor hydrothermal systems of the southwest Pacific. Economic Geology, 88: 182~209.
    131. Jannasch, H. W., 1984. Microbial processes at deep sea hydrothermal vents. In: Rona, P. A., Botrom, K., Laubier, L., Smith, K. L. (Eds.), Hydrothermal Processes at Seafloor Spreading Centers. New York, pp. 677~709.
    132. Kimura M., 1988. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japin. Tectonophysics, 145(3~4): 319~324.
    133. Kusakabe M., Komoda Y., 2000. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the d34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. Journal of Volcanology and Geothermal Research, 97: 287-307.
    134. Lalou C, Reyss J L, Brichet E. Age of subbottom sulfides samples at the TAG active mound. In: Herzig P M, Humphris S E, Miller D J, eds. Proceedings of The Ocean Drilling Program. Scientific Results, 1998. 158: 111~117.
    135. Lewan M D., 1993. Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: EngelM H, Macko S A. (eds). Organic Geochemistry: Principles and Applications. New York: Plenum Press, 419~442.
    136. Lonnee, J., Al-Aasm, I. S., 2000. Dolomitization and fluid evolution in the Middle Devonian Sulphur Point Formation, Rainbow South Field, Alberta: petrographic and geochemical evidence. Bull. Can. Pet. Geol. 48: 262~283.
    137. Machel H. G., Lonnee J., 2002. Hydrothermal dolomite—a product of poor definition and imagination. Sedimentary Geology, 152: 163~171.
    138. Machel, H. G., 1987. Saddle dolomite as a by-product of chemical compaction and thermo-chemical sulfate reduction. Geology, 15: 936~940.
    139. Malcolm W. Wallace: Origin of dolomitization on the Barbwinre Terrace, Canning Basin, Western Australia, Sedimentology, 1990, Vol. 37, No.1.
    140. Marchig V. Gundlach H, Moller P, et al. Some geological indicators for discrimination between diagenetic and hydrothermal matalliferous sediments. Marine Geology, 1982, 50(3): 241~256.
    141. Michard A. (1989) Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53: 745~750.
    142. Nedachu M., 1992. Hydrothermal ore deposits on the Minami-EnseiKnoll of the Okinawa Trough-Mineral assemblages. In: Proceedings of JAMSTEC Symposium on Deep Sea Research, No 8. Yokosuka: Japan Marine Science and Technology Center, 95~106.
    143. Nelson, G. S. Harris: Epigenetic and deep-burial dolomitization of middle Ordorvician Antelope Valley limestone, centra Nevada, A. A. P. G, 1991, Vol. 75, No. 2.
    144. Nielsen, P., Swennen, R., Muchez, Ph., Keppens, E., 1998. Origin of the Dinantian zebra dolomites south of the Brabant-Wales Massif, Belgium. Sedimentology, 45, 727~743.
    145. Ohta S, Kim D S., 1991. Submersibles observations and composition of the biological communities of the two hydrothermal vents on the Iheya Ridge of the Mid-Okinawa Trough. JAMSTECTR Deepsea Research, 1991, (7): 221~231.
    146. P. Aagard: Dolomitization and dolomite neomorphism in the back of Reef facies of the Bonneterre and Paris formations(Cambrian), Southeastern Missouri, Sed, Pet., 1990, Vol. 60, No. 4.
    147. Parnell J., Baron M., 2003. Oil migration and bitumen formation in a hydrothermal system, Cuba. Journal of Geochemical Exploration 78~79: 409~415.
    148. Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B. T., Heinicke, C., Hoers, J., Reitner, J., 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar. Geol. 177: 129~150.
    149. Pichler T., Veizer J., and Hall G. E. M., 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient sea water. Marine Chemistry, 64: 229~252.
    150. Pichler, T., Dix, G. R., 1996. Hydrothermal venting within a coral reef ecosystem. Ambitle Island, Papua New Guinea. Geology 20, 4335~4338.
    151. Pichler, T., Giggenbach, W. F., McInnes, B. I. A., Buhl, D., Duck, B., 1999. Fe sulfide formation due to seawater-gas-sediment interaction in a shallow water hydrothermal system at Lihir Island, Papua New Guinea. Econ. Geol. 94: 281~287.
    152. Prol-Ledesma, R. M., Canet, C., et al., 2002b. Vent £uid in the Punta Mira coastal submarine hydrothermal system, Mexico. GSA Annual Meeting, Denver, CO, pp. 153.
    153. Qing, H., Mountjoy, E. W., 1994. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presquile barrier, Western Canada Sedimentary Basin. Bull. Am. Assoc. Pet. Geol. 78, 55~77.
    154. Radke, B. H., Mathis, R. L., 1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Petrology, 50, 1149~1168.
    155. Renaut R. W., Jones B., 2002. Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sedimentary Geology, 148: 235~257.
    156. Rona P A, Hannington M D, Raman C V, et al., 1993. Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field, Mid~Atlantic ridge. Economic eology, 88: 1989~2017.
    157. Rona P A, Scott S D., 1993. A special issue on sea2floor hydrothermal mineralization: New perspectives, preface. Economic Geology, 88: 1935~1975.
    158. Rona P A., 2002. Marine minerals for the 21st centry. Episodes, 25: 2~12.
    159. Rona P A., 1986. Mineral deposits from seafloor hot spring. Scientific American, 254: 84~92.
    160. Rona P. A., 1984. Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev, 20: 1~14.
    161. Ronde C. E. J. de, Stoffers P., 2002. Discovery of active hydrothermal venting in Lake Taupo, New Zealand. Journal of Volcanology and Geothermal Research, 115: 257~275.
    162. Scott S., 2002. Minerals on land, minerals in the sea. Geotimes, 47: 1~8.
    163. Scott, S. D., 1997. Submarine hydrothermal systems and deposits. In: Barnes, H. L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. Wiley, New York USA, pp. 797~935.
    164. Searl. A. and Falick A. E., 1990. Dinantian dolomites from East Fife: Hydrothermal overprinting of early mix-zone stable isotopic and Fe/Mn Compositions, Journal of Geology Society, Vol, 147, Part 4.
    165. Sedwick P., and Stuben D., 1996. Chemistry of shallow submarine warm spring in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy. Marine Chemistry, 53: 146~161.
    166. Shanks W C, Callender E., 1992. Thermal springs in Lake Baikal. Geology, 20: 495~497.
    167. Simoneit B R T., 2000. Alteration and m igration process of organicmatter in hydro thermal systems and implications for metallo genesis. In: Glik sonM and MastalerzM (eds). Organic Matter and Mineralisation. Kluwer Academic Publishers: Printed in Great Britain, 13~17.
    168. Simoneit B R T, Fetzer J C., 1996. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the gulf of Califonia and northeast Pacific Ocean. Organic Geochemistry, 24: 1065~1077.
    169. Simoneit B R T, Lonsdale P F., 1982. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 295: 198~202.
    170. Simoneit B R T., 1985. Hydrothermal petroleum: genesis, migration, and deposition in Guaymas basin. Gulf of California. Canadian Journal of Earth Science, 22: 1919~1929.
    171. Stoffers P and Botz R., 1994. Formation of hydrothermal carbonate in Lake Tanganyika,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700