用户名: 密码: 验证码:
酒泉盆地青西凹陷湖相“白烟型”热水沉积岩地质地球化学特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热水沉积岩为当前地质学研究领域最前沿的热点之一,其中涉及湖相热水沉积岩的研究成果甚少,酒泉盆地青西凹陷下白垩统下沟组发育的湖相暗色“白云质泥岩”和“泥质白云岩”已被证实为罕见的湖相“白烟型”热水沉积岩而成为本文独一无二的经典研究素材。本论文受国家自然科学基金(编号:40672073)和教育部高校博士点专项科研基金(编号:20060616014)共同资助,在总结对比国内外热水沉积岩最新研究成果基础上,采用岩相、矿相鉴定技术以及碳氧同位素、锶同位素、微量元素、稀土元素和流体包裹体等测试手段,对这套特殊的湖相“白烟型”热水沉积岩进行了系统研究,获得以下结论和成果:
     1)从湖相“白烟型”热水沉积岩中识别出的热水矿物以钠长石和铁白云石为主,其次有石英、方沸石、重晶石、地开石、萤石等,还有少量黄铁矿、方铅矿、黄铜矿、闪锌矿等热水金属矿物,且具有7种不同热水矿物共生组合类型。以铁白云石和钠长石为代表的热水矿物具有半自形—自形晶结构的镶嵌状或堆晶状,显示以结晶沉淀为主的化学沉积特征。确定了典型的岩石组构以具微—隐晶结构和纹层状构造为主,其次可见特征的热水碎屑结构、热水角砾结构和网脉状、旋涡状构造和同生变形层理。其中的热水碎屑和热水角砾结构可根据不同矿物类型各可识别出7种类型,部分岩石组构类型十分罕见,具有特殊成因意义。
     2)碳、氧同位素研究结果证实,泥晶铁白云石沉淀时湖泊相对封闭,且成矿流体温度较高,热流体在循环和上升过程中,可能与围岩进行了碳、氧同位素交换,吸收了深部重碳而导致流体δ~(13)C值较高;分散的碳、氧同位素组成特征应该与地壳浅部下渗湖水对上地壳各类岩石淋滤萃取演化而成的热流体有关。
     3)锶同位素研究发现,纹层状泥微晶热水沉积岩锶同位素比值变化范围较小,可代表均一化的热卤水池流体锶同位素组成特征,发育于同一位置的水爆角砾与其胶结物锶同位素组成基本一致,说明两者属具相同成因意义的同期热水喷流沉积产物。总体上湖相热水沉积岩~(87)Sr/~(86)Sr比值远高于同期海水和下沟组玄武岩,略高于代表早白垩世湖水锶同位素组成的藻灰岩,但低于基底壳源硅铝质岩,反映热流体与海水无关,也不可能为单纯的湖水或幔源岩浆水,推测为富集硅铝质基岩高放射性成因Sr的下渗湖水与少量上升幔源岩浆水的混合热流体。
     4)稀土元素地球化学特征具备LREE>HREE的热水沉积建造特点,其高丰度的∑REE、稀土配分模式、正δCe异常和负δEu异常,虽有悖于海相热水沉积岩,但与同层位的碱性拉斑玄武岩非常一致,说明下沟组热水沉积岩与同层位的玄武岩有很强的亲缘关系,热流体/湖水混合过程的Eu/Sm—La/Ce模拟反映了下沟组湖底的热水沉积作用发生在具备还原、偏碱性条件的深源热卤水池环境中。
     5)流体包裹体分析并结合C-O-Sr同位素、微量元素地球化学和稀土元素特征,认为青西凹陷早白垩世湖底热流体应与火山喷发有关,整体上应属于深循环下渗湖水与岩浆水混合形成的中低温(90~200℃)、中等盐度(8~22wt%NaCl)、中等密度(0.97~1.2g/cm~3))的NaCl-H_2O体系高碱性热卤水,并具有贫金属硫化物,富CO_3~(2-)、SO_4~(2-)、Cl~-、F~-和Ca~(2+)、Mg~(2+)、Fe~(2+)、Ba~(2+)、Si~(4+)、Al~(3+)、Na~+等常量元素和络阴离子,以及Zn、Rb、Mo、As、Ni、Co、Sb、Ba和Ag等深源气液型和深部幔源型微量元素组合。整体显示,不同类型热水沉积岩的成矿热流体自主喷流通道、分支喷流通道经喷流口至附近及远端的盆地热卤水区存在温度、盐度、密度和压力等物理化学参数逐渐降低的规律性变化。
     6)提出热流体运移驱动力主要有三种:重力驱动力、压实驱动力和岩浆热能驱动力,这三种驱动力共同作用使热流体循环流动,并不断萃取岩层中的成矿化学物质,并可能存在四种超压热流体失衡回返运移机制,其中构造抬升泵吸作用、断裂搓动浅部构造减压和阵发性火山岩浆热液水热增压作用这三种机制在研究区占主导,并促使热流体沿断裂回返上升并突破上覆沉积物发生沸腾爆炸,低温低盐度湖水迅速混入冷却,并破坏了热流体的化学平衡,使得氯络合物解离,热水矿物化学沉淀聚集形成一系列不同成因类型的湖相“白烟型”热水沉积岩。
     7)青西凹陷下沟组湖相“白烟型”热水沉积岩可划分出4种成因类型,其中的热水沉积白云岩据国内外资料检索,属极其罕见的湖相原生白云岩中的特殊成因类型,具有特定的成因特征和识别标志。
     8)建立了青西凹陷湖相“白烟型”热水沉积岩分带性热水沉积模式:主喷流口内主要发育水爆角砾型热水沉积岩(铝硅酸盐矿物+硫酸盐矿物+微量金属硫化物矿物组合)→与主喷流通道连通的分支喷流口内主要发育脉状充填型热水沉积岩(碳酸盐矿物+铝硅酸盐矿物+硫酸盐矿物组合)→主喷流口附近发育碎屑状热水沉积岩(碳酸盐矿物+铝硅酸盐矿物+硫酸盐矿物组合)→分支喷流口附近或相对远的卤水池内发育盆地沉积型热水沉积岩(碳酸盐矿物+铝硅酸盐矿物组合)→远端发育区域扩散型热水沉积岩(单一碳酸盐矿物组合)。
Hydrothermal sedimentary rock is becoming one of the research hot spots in the geoscience field.However,little achievement has been done with the hydrothermal sedimentary rock formed in the lacustrine basin.The dark argillaceous dolomite and dolomitic mudstone in the Xiagou Formation of Lower Cretaceous in Qingxi sag, Jiuxi basin have been identified as infrequent lacustrine white smoke type hydrothermal sedimentary rocks.This is the particular subject dissertation.The subject is supported by Natural Science Foundation(NO.40672073)and Ministry of Education university special scientific research fund for doctor (NO.20060616014).Based on rock-mine identify,carbon and oxygen isotope,Sr isotopic,trace elements,rare earth elements,solution inclusion and other experimental tests,combining with the latest research achievements home and abroad,some results of the lacustrine white smoke type hydrothermal sedimentary rock are got as follow:
     1)The hot water minerals in the lacustrine white smoke type hydrothermal sedimentary rock of Xiagou Formation are mainly albite and ankerite,quartz,analcite, barite,dickite and fluorite are its secondary mineral components,and pyrite,galena, chalcopyrite,zinc blende occur in the rock occasionally.Seven paragenetic associations of hot water minerals in the hydrothermal sedimentary rocks of the Xiagou Formation are recognized.The hot water minerals represented as albite and ankerite are cyclopean and cumulate of hypautomorphic-automorphic structure.It shows that crystallization and precipitation are the mainly chemical sedimentation of the hydrothermal sedimentary rock of Xiagou Formation.The hydrothermal sedimentary rock is of micritic-aphanitic texture,and shows laminated structure mainly,with hot water clastic texture,hot water breccia texture,network vein structure,vortex structure and deformation bedding only partially in the rocks.The hot water clastic and hot water breccia texture can be identified seven types as different minerals associations,some of which are rare and of special significance.
     2)It is proved that the micrite ankerite of Xiagou Formation is precipitated in a relatively closed environment with a high temperature mineralizing solution from the carbon and oxygen isotopes analyses.The solution interchanges carbon and oxygen isotopes with the surrounding rocks in the rising and circulating,as a result the hot solution gets heavy carbon as to has a higher value ofδ~(13)C.The characteristic of carbon and oxygen isotopes of Xiagou Formation may be caused by the hot solution, which is formed in the process that supracrustal rocks are leached and extracted by descending lacustrine water in the surface crust.
     3)Through Strontium isotope test,the ~(87)Sr/~(86)Sr ratio of the laminated hot water sedimentary rock only has minor changes.It can represent homogenization ~(87)Sr/~(86)Sr ratio in the hot brine pool.The composition of Sr-isotope of hydrothermal breccia and cementation are almost consistent,which shows that both of them are the same period and the same resource eruptive flow sediments.The ~(87)Sr/~(86)Sr ratio of hydrothermal sedimentary rock in the study area is much higher than the ~(87)Sr/~(86)Sr ratio of seawater and basalt of corresponding period and a little higher than the ~(87)Sr/~(86)Sr ratio of the algal limestone,which represents the strontium isotopes composition of lake water in early cretaceous,but lower than the ~(87)Sr/~(86)Sr ratio of underlying silicon-aluminum rock.It shows that the thermal solution is neither related with seawater nor simplex lake water or mantle magmatic water.It is primarily speculated that early Cretaceous sublacustrine hydrothermal solution in the area is the mixed hydrothermal solution which is constituted of deep circulating lake water and a little of mantle-derived magmatic water and full of high radiogenic Strontium of underlying silicon-aluminum basement rock.
     4)It was shown that the hydrothermal sedimentary rock of Xiagou Formation has basal characteristics of hydrothermal depositional formation of LREE>HREE, with high abundance∑REE,exceptional distribution pattern of REE,positiveδCe and negativeδEu,which is different from characteristics of marine exhalative rock,but is highly similar to the characters of alkalescent tholeiitic basalt in the same layer,the hydrothermal sedimentary rock of Xiagou Formation was considered to be closely related to the origin of basalt in the same horizon.The Eu/Sm-La/Ce simulation in the mixing process of hot solution and lacustrine water shows that the deep hot water sedimentation of Xiagou Formation is in hot brine pool which is in the condition of reducing and alkalescence.
     5)It is concluded that the hot solution of Lower Cretaceous in Qingxi sag is relevant with volcanic eruption from solution inclusion,C-O-Sr isotope,trace elements geochemistry and rare earth elements tests.The hot solution,which is descending lacustrine water mixed with magmatic water,is moderate-to-low temperature(90~200℃),moderate-to-low salinity(8~22wt%NaCl),and moderate density(0.97~1.2g/cm~3)strongly alkaline hot brine water.It is short of metal sulfides, rich in CO_3~(2-),SO_4~(2-),Cl~-,F~-,Ca~(2+),Mg~(2+),Fe~(2+),Ba~(2+),Si~(4+),Al~(3+),Na~+ and other major elements and anionic complexes,and contains Zn,Rb,Mo,As,Ni,Co,Sb,Ba,Ag and other deep source gas-liquid or mantle source trace elements associations.The temperature,salinity,density and pressure of the mineralizing hot solution of hydrothermal sedimentary rocks in different location decreases outwards by the order: main exhalative-channel—branch exhalative-channel—exhalative mouth—near exhalative mouth—distal basin.
     6)There are three driving forces for hot solution movement:gravity driving force,compaction driving force and magma heat driving force.The three forces cause the circulation of hot solution together,and extract metallogenetic chemistry materials from surrounding rocks.There may be four kinds of mechanisms of overpressure hot solution overbalance returning movement,three of the mechanisms are structural uplift pump,decompression in the shallow fault and supercharge of surging volcanic magma hot water,and they cause hot solution moving upward to breakout against overlying sediments with boiling and bursting along faults.It is mixed with the lower tempreture and salinity lacustrine water,and cooled suddenly.Then the chemical balance of the hot solution is broken and chlorine complex compounds are liberated. As a result,hydrothermal minerals are precipitated forming a series of lacustrine white smoke type hydrothermal sedimentary rock of different kinds.
     7)The lacustrine white smoke type hydrothermal sedimentary rock of Xiagou Formation of Lower Cretaceous in Qingxi sag,Jiuxi basin can be divided into four genetic types.By consulting available data about hydrothermal sedimentary rock published in China and abroad,this kind hydrothermal sedimentary rock belongs to rare lacustrine orthodolomite,which has particular genetic features and identification signs.
     8)The sedimentary model of the lacustrine white smoke type hydrothermal sedimentary rock of Xiagou Formation of Lower Cretaceous in Qingxi sag is founded: main exhalative mouth→branch exhalative-channel connecting to the main exhalative-channel→near main exhalative mouth→near branch exhalative mouth or further brine pool→distal basin.In the main exhalative mouth,hot water breccia hydrothermal sedimentary rock(aluminum silicate minerals + sulfate minerals + trace metal sulfide minerals association)develops;In the branch exhalative mouth,network vein hydrothermal sedimentary rock(carbonate minerals + aluminum silicate minerals + sulfate minerals)develops;Near main exhalative mouth,clastic hydrothermal sedimentary rock(carbonate minerals + aluminum silicate minerals + sulfate minerals) develops;Near branch exhalative mouth or in further brine pool,sedimentary type hydrothermal sedimentary rock(carbonate minerals + aluminum silicate minerals association)develops;At distal basin diffuse type hydrothermal sedimentary rock (only carbonate minerals association)develops.
引文
1. Al-Aasm, I.S.,2003.Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin[J]. Journal of Geochemical Exploration, 78—79: 9—15.
    2. Al-Aasm,I.S.,Lonnee,J.S.,Clarke,J.,2002.Multiple fluid flow events and the formation of saddle dolomite: case studies from the Middle Devonian of the Western Canada Sedimentary Basin[J]. Mar. Pet. Geol. 19,209-217.
    3. Allen,J.R.L.,1990.The Severn Estuary in Southwest Britain; its retreat under marine transgression, and fine-sediment regime[J].Sedimentary Geology, 66(1-2): 13-28.
    4. Anderson,M.S. ,1990.Reactivity of San Andres Dolomite[J]. Soc. Pet. Eng., 247-254.
    5. Barker,B.J.,Gulati,M.S.,Bryan, M.A.,Riedel,K.L.,1992.Geysers reservoir performance. In: Stone, C. (Ed.),The Geysers Geothermal Field, Davis California[J].Geothermal Resources Council, Special Report, vol. 17, pp. 167~177.
    6. Bernstein,R.E.,Byrne,R.H.,2004.Acant harians and marine barite[J].Marine Chemistry ,,86: 45-50.
    7. Bertram,C.J. ,Elderfield,H. ,Aldridge,R.J. ,1992.87Sr/86Sr,143Nd/144Nd and REEs in Silurian phosphatic fossils[J].Earth and Planetary Science Letters, 113(1~2):239~249.
    8. Blendinger,W.,2004.Sea level changes versus hydrothermal diagenesis: origin of Triassic carbonate platform cycles in the Dolomites, Italy[J].Sedimentary Geology, 169:21 ~28.
    9. Bodnar,R.J.,1983.A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids[J].Economic Geology, 18(3):535~542.
    10. Bodnar,R.J., 1993.Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochim Cosmochim Acta, 57:683-684.
    11. Boni,M.,Iannacea,A.,Bechstadtb,T.,Gasparrinib,M.,2000.Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain):evidence for late to post-Variscan widespread fluid-flow events[J].Journal of Geochemical Exploration ,69~70:225~228.
    12. Boni,M.,Parentea,G.,Bechstadtb,T.,De,V.B.,2000.Hydrothermal dolomites in SW Sardinia (Italy) :evidence for a widespread late-Variscan fluid flow event[J].Sedimentary Geology,131:181~200.
    13. Bostrom,K.,Rydell,H.,Joensuu,O.,1979.Langbank:An exhalative sedimentary deposit[J]. Econ Geol,74(5):1002-1011.
    14. Branchu,E.P.,Marcel,C.H.,Deschamps,P.,et al.,2005.Early diagenesis impact on precise U-series dating of deep-sea corals; example of a 100-200-year old Lophelia pertusa sample from the Northeast Atlantic[J].Geochimica et Cosmochimica Acta,69(20):4865~4879.
    15. Brand,U., 1991.Strontium isotope diageneais of blogenic aragonite and low-Mg calcite[J].Geochim Cosmochim Acta,55:505—513.
    16. Brass,G.W. ,1976.The variation of the marine 87Sr / 86Sr ratio during Phanerozoic time[J]. Geoehim Cosmochim Acta, 40: 721—730.
    17. Brown,A.C., 1993.Sediment-host of Stratiform Copper Deposits[J]. Geoscience Canada,19(3):125~141.
    18. Burke,W.H.,Denison,R.E.,Hetherington,E.A.,et al., 1982.Variation of 87Sr / 86Sr throughour Phanerozoic time[J].Geology, 10,516~519.
    19. Canet,C., Alfonso,P., Melgarejo,J.C., etal., 2004.Geochemical evidences of sedimentary exhalative origin of the shale—hosted PGE—Ag Au—Zn—cu occurrences of the Prades Mountains(Catalonia, Spain): trace—element abundances and Sm—Nd isotopes[J]. Journal of Geochemical Exploration, 82: 17—33.
    20. Canet,C.,Maria,P.R.,Melgarejo ,J.C.,Reyes Agnes,2003.Methane-related carbonates formed at submarine hydrothermal springs:a new setting for microbially-derived carbonates?[J]Marine Geology, 199:245-261.
    21. Cervato,C.,1990.Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the Southern Alps (Italy); relation to tectonics and volcanism[J]. Geology, 18(5): 458-461.
    22. Chen,D.z.,Qing,H.,Yang,C.,2004.Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China[J].Sedimentology,5: 1029-1051.
    23. Clayton,R.N. ,1972.Oxygen isotope composition of the Luna 16 soil[J],13(2):455~456.
    24. Coplen T. B., 1995. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances[J], Geothermics,24(5-6):707~712.
    25. Crame,J.A.,McArthur,J.M.,Pirrie,D.,et al., 1999.Strontium isotope correlation of the basal Maastrichtian Stage in Antarctica to the Ruropean and US biostratigrapic scheme[J].Jorunal of the Geological Society, London ,156 :957~964.
    26. Crane,K., 1991.Hydrothermal vents in Lake Baikal. Nature,350:281.
    27. Davis,J.F.,Prevec,S.A.,Whitehead,R.E.,et al.1998.Variations in REE and Sr-isotope chemistry of carbonate gangue, Castellanos Zn-Pb deposit, Cuba[J].Chem. Geol., 144: 99—119.
    28. Deffeyes,K.S.,Lucia,F.J. ,Weyl ,P.K., 1965.Dolomitization of Recent and Plio-Pleistocene sediments by marine evaporite waters on Bonaire, Netherlands Antilles[J].Special Publication, 71-88.
    29. Denison,R.E.,Koepnick,R.B.,Burke,W.H,et al.,1994.Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr / 86Sr curve[J].Chem Geol.,112:145—167.
    30. Derry,L.A.,Keto,L.S.,Jacobsen,S.B.,et al.,1989.Sr isotope variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J]. Geochim Cosmochim Acta,53:2331 —2339.
    31. Drew,L.J. ,Schuenemeyer,J.H. ,Mast,R.F. ,1994.Application of a discovery process model to the 1995 U.S.National Oil and Gas Assessment[J].Intemational Association for Mathematical Geology,111~116.
    32. Fadi,H.N.,Rudy,S.,Rob,E.,2004.Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: a two-stage dolomitization model (Jurassic, Lebanon)[J].Sedimentology, 51:339—360.
    33. Faure,G.,1986.Principles of isotope geology (2nd ed.)[M].New York:John Wiley and Sons, 160-230.
    34. Folk,R.L.,Land,L.S.,1975.Mg/Ca Ratio and Salinity; Two Controls over Crystallization of Dolomite[J].AAPG Bulletin,59(1): 60-68.
    35. Fouquet,Y., 1999.Where are the large hydrothermal sulphide deposits in the oceans? [J].Cambridge University Press, Cambridge, United Kingdom,211-224.
    36. Fukao,Y.,Maruyama,S.,Obayashi,M.,et al.,1994.Geologic implication of the whole mantle P-wave tomography[J].Chishitsugaku Zasshi = Journal of the Geological Society of Japan, 100(1):4~23.
    37. Galimov,E.M, Petersil'ye,I.A. ,1968.Isotopic composition of carbon from bitumens in igneous and metamorphic rocks[J].Acad. Sci. USSR, Dokl., Earth Sci. Sect. 182 181-183.
    38. Garven,G., Freeze,R.A., 1984.Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, Mathematical and numerical model[J]. American Journal of Science, 284( 10): 1085-1124.
    39. Garven,G.,et al.,1984.Theoretic analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. American Journal of Science, 284:1085
    40. Gilbert,G.K.,1875.The recency of certain volcanoes of the western United States[J].American Association for the Advancement of Science, Proceedings,29~32.
    41. Goodfellow,W.G..,Franklin,J.M.,1993.Geology,mineralogy and chemistry of sediment hosted clastic massive sulfides in shallow cores ,Middle Valley , Northern Juan de Fuca Ridge[J].Economic Geology, 88 :2037~2068.
    42. Grassle,J.F.,1985.Hydrothermal vent animals: Distribution and biology[J]. Science,229,713~725.
    43. Guidry,S.A.,Chafetz,H.S.,2003.Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming, USA[J].Sedimentary Geology ,157: 71-106.
    44. Haas,J.L. ,Fisher,J.R. ,1976.Simultaneous evaluation and correlation of thermodynamic data[J]. American Journal of Science, 276(4):525~545.
    45. Halbach,R.M.,Blum,N.,Munch,U.,et al., 1998.Formation and decay of amodern massive sulfide deposit in the Indian Ocean[J].Mineralium Deposita,33:302~309.
    46. Halbach,R.M.,Halbach,P.,2002.Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the Central Indian Ocean[J].Chemical Geology, 182:357—375.
    47. Hall,D.L.,Stemer,S.M.,Bodnar,R.J.,1988.Freezing point depression of NaCl-KCl-H2O solutions[J].Econ Geol, 83(1): 197-202.
    48. Hanshaw,B.B.,Back, W., 1971.On the origin of dolomites [J].Fla.,Bur. Geol., Tallahassee.
    49. Heinrich,C.A.,Ryan,C.G.,Memagh,T.P., et al. ,.1992.Segregation of ore metals between magmatic brine and vapor: A fluid inclusion study using PIXE microanalysis[J].Eeonomic Geology, 87, 1566-1583.
    50. Hess,J.,Stott,L.D.,Bender,M.L.K,et al., 1989.The Oligocene marine microfossil record : age assessments using strontium isotopes[J]. Paleoceanography,4 :655—679.
    51. Holmes,G.B.,1928.A bibliography of the conodonts with descriptions of early Mississippian species[J].Proceedings of the United States National Mu), 72 38 pp.
    52. Hou,Z.Q.,Zhan,G.Q.,1998.CO2 Hydrocarbon fluids of the Jade hydrothermal field in the Okinaw a trough : fluid inclusion evidence [J].SCIENCE IN CHINA (Series D).,41(4):408-415
    53. Howarth,R.J.,McArthur,J.M., 1997.Statistics for strontium isotope stratigraphy : a robust LOWESS fit to marine Sr isotope curve for 0 to 206 Ma ,with look2up table for derivation of numeric age [J].J . Geol. ,105: 441-456.
    54. Hsu,K.J.,Siegenthaler,C., 1969.Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. 12(1~2):11-25.
    55. Humphris,S.E.,Herzig,P.M.,Miller,D.J.,1995.The internal structure of an active seafloor massive sulphide deposit[J]. Nature,377:713—716.
    56. Jones,C.E.,Jenkyns,H.C.,Coe,A.L.,et al., 1994.Strontium isotopic variations in Jurassic and Cretaceous seawater[J].Geochim Cosmochim Acta,58:3061 —3074.
    57. Kaufman,A.J.,Jacobsen,S.B.,Knoll,A.H., 1993.The Vendtan record of Sr and C isotopic variations in seawater. Implications for tectonic and paleoclimate[J]. Earth Planet,SciLETT, 120:409-430.
    58. Kelley,D.S.,Karson,J.A.,Blackman,D.K.,et al.,2001.An offaxis hydrothermal vent field near the midatlantic Ridge at 30°N[J].Nature ,412:145-149.
    59. Kelts,K. ,Yang,C.S., 1990.Comparative lacustrine sedimentation in China; Part 1[J]. China Earth Sciences, 1(3):281 pp.
    60. Koschinsky,A.,Seifert,R.,Knappe,A.,et al.,2007.Hydrothermal fluid emanations from the submarine Kick'em Jenny volcano, Lesser Antilles island arc[J]. Marine Geology,244(1-4):129~141.
    61. Lalou,Muench,U.,Halbach,P.,Reyss,J.L.,1998.Different periods of hydrothermal activity at the MESO Zone,Central Indian Ridge[J] .Annales Geophysicae (1988), 16, Suppl. 1 293.
    62. Land,L.S. ,1985.The origin of massive dolomite[J]. Journal of Geological Education, 33(2): 112-125.
    63. Large,R.R.,Bull,S.W.,McGoldrick,P.J.,2000.Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits : Part 2. HYC deposit, McArthur river , Northern Territory[J].Journal of Geochemical Exploration,68( 1 —2): 105 ~ 126.
    64. Little,C.T.S.,Cann,J.R.,Herrington,R.J.,et al.,1999.Late Cretaceous hydrothermal vent communities from the Troodos ophiolite,Cyprus[J]. Geology,27:1 027~ 1030.
    65. Lonsdale,P., 1985.Nontransform offsets of the Pacific-Cocos plate boundary and their traces on the rise flank[J].GSA Bulletin, 96: 313-327.
    66. Luczaj,J.A.,Harrison,W.B.,Williams,N.S.,2006.Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin[J].AAPG Bulletin,90:1787-1801.
    67. Machel, H.G., Lonnee J. ,2002.Hydrothermal dolomite—a product of poor definition and imagination[J]. Sedimentary Geology, 152:163—171.
    68. Marchig ,V.G. H.,Moller ,P.,et al. ,1982. Some geological indicators for discrimination between diagenetic and hydrothermal matalliferous sediments[J]. Marine Geology, 50(3):241-256.
    69. McArthur, J. M. , Kennedy ,W. J. , Chen ,M ., et al., 1994.Strontium isotope stratigraphy for the Late Creataceous : direct numerical age calibration of the Sr2isotope curve for the U. S. Western interior Seaway. Palaeogeogr. Palaeoclim[J].Palaeoecol ,108 :95—119.
    70. Michard,A. ,Albarede,F. ,Michard,G. ,et al., 1983.REE and U concentrations in high temperature hydrothermal waters from the East Pacific Rise at 13 degrees N[J]. Eos, Transactions, American Geophysical Union, 64(18):333.
    71. Miller,K.G.,Feigenson ,M .D., Wright, J .D., et al., 1991. Miocene isotope reference section , Deep Sea Drilling Project Site 608 : an evaluation of isotope and biostratigraphic resolution[J]. Paleoceanography , 6:33—52.
    72. Mitchell,A.A.,Scoon,R.N.,1986.The Merensky Reef at Winnaarshoek, Eastern Bushveld Complex: A Primary Magmatic Hypothesis Based on a Wide Reef Facies[J].Economic Geology, 102(5): 971-1009.
    73. Morad,S. ,Felitsyn,S. ,2001.Identification of primary Ce-anomaly signatures in fossil biogenic apatite : implication for the Cambrian oceanic anoxia and phosphogenesis[J]. Sedimentary Geology, 143: 259-264.
    74. Murray ,R .W. ,1994. Chemical criteria to identify the depositional environment of chert : General principles and application[J]. Sedimentary Geology , 90 : 213—232.
    75. Nader,F.H.,Swennen,R.,Ellam,R., 2004.Reflux stratbound dolostone and hydrothermal volcanism-associated dolostone; a two-stage dolomitization model (Jurassic, Lebanon) [J].Sedimentology, 51(2):339~360.
    76. Oslick ,J .S. , Miller K. G, Feigenson M D ,Clement B M.1994.OligoceneMiocene Sr isotopes ; correlations to an inferred glacioeustatic record[J].Eos, Transactions , American Geophysical Union , 75 (16 , Suppl) :202.
    77. Palmer,M.R,Elderfield,H.,1985.Sr isotope composition of sea water over t he past 75 Ma[J] . Nature, 314: 526-528.
    78. Parnell,J.,Carey,P.,Duncan,W.,1998.H istory of hydrocarbon charge on the A tlantic margin: evidence from fluid inclusion studies[J], west of Shetland. Geology, 26 (9): 807~810.
    79. Paytan,A.,Kastner,M.,Chavez,F.P., 1996.Glacial to Interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite[J]. Science,274:1355-1357.
    80. Paytan,A.,Kastner,M.,Martin,E.E.,et al.1993.Marine barite as a monitor of seawater strontium isotope composition[J]. Nature,366: 445-449.
    81. Paytan,A.,Kastner,M.,Marton,E.E.,,et al. ,1993.Marine barite as a montier of seawater strontium isotope compostion[J].Nature,366(6454):445~449.
    82. Peter,J.M. , Goodfellow,W.D., Leyboume,M.l . ,1994.Fluid iaelusion petrography and raierotherraoraetry of the middle valley hydrothermal system, northern Juan de Fuca ridge Proc[J]. ODP, Scl. Resuhs, 139: 411-425.
    83. Phillipsona,S.E.,.Romberger,S.B.,2004.Volcanic stratigraphy,structural controls,and mineralization in the san Cristobal Ag Zn Pb deposit, southern Bolivia[J]. Journal of South American Earth Sciences, 16:667—683.
    84. Pichler,T.,Veizer,J.,Hall ,G.E.M. ,1999.The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient sea water[J]. Marine Chemistry, 64:229—252.
    85. Popp,N.B.,Podosek,F.A.,Brannon,J.C.,et al.,1986. 87Sr/86Sr in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells[J].Geochimica at Cosmochimica Acta.50:1321~1328.
    86. Renaut,R.W.,Jones,B.,2002.Sublacustrine precipitation of hydrothermal silica in rift lakes:evidence from Lake Baringo, central Kenya Rift Valley[J]. Sedimentary Geology,148:235-257.
    87. Reyes,A.G., Massoth,G.,Ronde.,C. De., et al., 2006.Hydrothermal mineralization in arc-type submarine volcanoes[J].Geochimica et Cosmochimica Acta,70(18):A528
    88. Roberts,H.H.,1997.Camey R.S. .Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope[J]. Economic Geology, 92:863-879.
    89. Rollinson,H.R. ,1993.Using geochemical data; evaluation, presentation, interpretation[J]. Longman Scientific & Technical,352 pp.
    90. Rona,P.A.,1986. Mineral deposits from seafloor hot spring[J]. Scientific American,254:84— 92.
    91. Rona,P.A.,2002.Marine minerals for the 21 stcentry [J].Episodes,25:2~12.
    92. Rona,P.A.,Hannington, M .D ., Raman ,C. V. , et al. ,1993.Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field ,Mid ~ Atlantic ridge[J]. Economic eology,88:1989-2017.
    93. Ronde,C.E.J.de, Stoffers ,P.,2002.Discovery of active hydrothermal venting in Lake Taupo,New Zealand[J].Journal of Volcanology and Geothermal Research,115:257—275.
    94. Russell,M.J., 1996.The generation at hot springs of sedimentary ore deposits, microbialiates and life[J]. Ore Geology Reviews, 10: 199—214.
    95. Schardt,C., Yang ,J., Large,R. ,2003.Formation of massive sulfide ore deposits on the seafloor: Constraints from numerical heat an d fluid flow modeling[J]. J Geochem Explor, 78—79: 257-259.
    96. Schwinn,G,Wagner,T.,Baatartsogt,B,et al.,2006.Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses[J]. Geochimica et Cosmochimica Acta, 70(4):965~982.
    97. Scott,S.D., 1997.Submarine hydrothermal systems and deposits. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits[J]. Wiley, New York USA, pp. 797—935.
    98. Scott,S.D.,2002.Minerals on land, minerals in the sea[J]. Geotimes,47:1— 8.
    99. Shanks,W.C.,Callender,E.,1992.Thermal springs in Lake Baikal[J]. Geology,20: 495-497.
    100. Sherlock,D.,Weir,G., Dodds, K.,2005.Analog reservoir modelling of channel sands[J].APPEA Journal,45(1):439~448.
    101. Sherlock,R.L.,2005.The relationship between the Mclaughlin gold-mercury deposit and active hydrothermal systems in the Geysers-Clear Lake area, northern Coast Ranges, California[J].Ore Geology Reviews,26:349~382.
    102. Shi,C.H.,Hu,R.Z.,2005.REE geochemistry of Early Cambrian phosphorites from Gezhongwu Formation at Zhijin, Guizhou Province, China[J].Chinese Journal of Geochemistry,24(2): 166-172.
    103. Shikazono,N.,Kawabe,H. , Ogawa, Y.,2006.Interpretation of occurrence of barite and quartz in the submarine hydrothermal ore deposits in terms of a coupled fluid flow—Precipitation kinetics model[J].Geochimica et Cosmochimica Acta,70(18): A584.
    104. Sibley,D.F.,Blatt,H.,1976.Intergranular pressure solution and cementation of the Tuscarora orthoquartzite[J].Journal of Sedimentary Research,46(4): 881-896.
    105. Simeone, R. , Simmons, S. F. ,1999.Mineralogical and fluid inclusion studies of low-sulfidation epithermal veins at Osilo (Sardinia), Italy[J]. Mineralium Deposita, 34(7):705~717.
    106. Simoneit,B.R.T., Lonsdale, P. F.,1982.Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin[J].Nature, 295: 198-202.
    107. Simoneit,B.R.T.,2002.Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Middle Valley ,Northeastern Pacific Ocean[J].Applied Geochemistry, 17( 11): 1429-1433.
    108. Simoneit,B.R.T.,Fetzer,J.C, 1996. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the gulf of Califonia and northeast Pacific Ocean[J]. Organic Geochemistry,24:1065—1077.
    109. Stearns,H.T., 1935.eruption of Mauna Loa volcano, Hawaii, and its bearing on fissure eruptions[J].Proceedings of the Geological Society of America (June 1938), 253
    110. Stiller,M., Rounick,J.S., Shasha,S., 1985.Extreme carbon-isotope enrichments in evaporite brines[J]. Nature,316: 434-435.
    111. Stoffers,P.,Botz.R., 1994.Formation of hydrothermal carbonate in Lake Tanganyika , East Central Africa[J]. Chemical Geology, 115 (1 -2): 117-122.
    112. Teagle,D.A.H., Alt,J.C., 2004.Hydrnthermal Alteration of Basalts beneath the Bent Hil Massive Sulfide Deposit, Middie Valley, Juan de Fuca Ridge[J]. Econ Geol, 99(3): 561 — 584.
    113. Thierch,P.C,Williams,A.E.,Clark,J.R., 1997.Epithermal mineralization and ore controls of the Shasta Au-Ag deposits, Toodoggone District, British Columbia,Canada[J]. Mineralium Deposita, 32(1):44—57.
    114. Tiercelin,J.J.,Pflumio,C.,Castrec,M.,et al., 1993.Hydrothermal vents in lake Tanganyika, East African rift system[J].Geology,21:499~50.
    115. Torres,M.E.,Gerhard,B., Erwin,S.,1996.Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone[J].Earth and Planetary Science Letters, 144(3 — 4):469~481.
    116. Tritlla,J.,Cardellach ,E. , 2001.Origin of vein hydrothermal carbonates in triassic limestones of the Espadan Ranges Iberian Chain, E Spain[J].Chemical Geology, 172:291—305.
    117. Turekian,K.K. ,Wedepohl,K. H. ,1961.Distribution of the elements in some major units of the earth's crust[J].Geological Society of America Bulletin, 72(2): 175—191.
    118. Vail,P.R.,Mitchum,R .M., Thompson, M. S. ,1977.Seismic stratigraphy and global changes of sea level, Part 4:Global cycles of relative changes of sea level. In: Seismic Stratigraphy. Applications to Hydrocarbon Exploration.Edited by Ch E Payton[J]. BuIl.A.A.P.G. Memoir,26:83~97.
    119. Veizer,J. ,Hoefs J. ,1976.The nature of O 18 /O 16 and C13/C12secular trends in sedimentary carbonate rocks[J].Geochimica et Cosmochimica Acta.,40( 11): 1387-1395.
    120. Veizer,J. ,Holser,W.T.,Wilgus,C. K.,1980.Correlation of 13 C/ 12 C and 34 S/ 32 S secular variations[J]. Geochimica et Cosmochimica Acta., 44(4):579~588.
    121.Veizer,J.,Ala,D.,Azmy,K.B.,et al.,1999.87Sr/86Sr,δ13C and δ180 evolution of Phanerozoic seawater[J].Chem.Geol,161:59-88.
    122.von der Borch,C.C.,1976.The stratigraphy of modern carbonate sediments of the Coorong area,South Australia[J].International Geological Congress,Abstracts-Congres Geologique Internationale,25(3):848.
    123.Watts,B.,Ryan,W.B.F.,1976.Flexure of the lithosphere and continental margin basins[J].Tectonophysics,36(1-3):25-44.
    124.Wen H G,Zheng R C,Geng W,et al.,.2007.Characteristics of rare earth elements of lacustrine exhalative rock in the Xiagou Formation of Lower Cretaceous in Qingxi sag,Jiuxi basin.Frontiers of Earth Science in China,Springer,1(3):333-340
    125.Whitehead,R.E.,Davies,J.F.,Valdes-Nodarse,E.L.,et al.,1996.Mineralogical and chemical variations.Castellanos Shale-hosted Zn-Pb-Ba deposit,northwestern Cuba[J].Econ.Geol.,91:713-722.
    126.Wickman,F.E.,1948.1sotope ratios:a clue to the age of certain marine sediments[J].J Geol.56:61-66.
    127.Wrighta,W.R.,Johnsonb,A.W.,Sheltonb,K.L.,et al.,2000.Fluid migration and rock interactions during dolomitisation of the Dinantian Irish Midlands and Dublin Basin[J],Journal of Geochemical Exploration,69-70:159-164.
    128.Yamamoto,S.,1987.1nvestigating hot water springs[J].Journal of the Geological Society of India,29(1):192-194.
    Farmer,G.L.,Glazner,A.F.,Manley,C.R.,2002.Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada,California?[J]GSA Bulletin,114:754-768.
    129.Yardley,B.W.D.,Bottrell,S.H.,1992.Silica mobility and fluid movement during metamorphism of the Connemara Schists.Ireland.Journal of Metamorphic Geology,10:453-464.
    130.Zarate del Valle,P.F.,2005.Volcanogenic massive sulphide deposits in western Mexico;an overview[J].Program with Abstracts-Geological Association of Canada;Mineralogical Association of Canada:Joint Annual Meeting(2005),30 216.
    131.Zhu,G.H.,.2002.Genes is of Low-Res ist iv ity O il layers from Cretaceous Systemin Luxi Area and Its Geological Significance[J].Journal of China University of Mining &Technology,12(1):69-71.
    132.Zierenberg,R.A,Fouquet,Y.,Miller,D.J.,et al.,1998.The deep structure of a seafloor hydrothermal deposit[J].Nature,392:485-488.
    133.包中旭,周怀阳.彭晓彤,等.Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征[J],地球化学,2007,36(3):303-310.
    134.常凤琴,张虎才,等.柴达爪盆地察尔汗古湖贝壳堤剖面碳酸盐利瓣鳃化石碳氧稳定同位素[J].第四纪研究,2007,27(3):427-436.
    135.陈翠华,何彬彬,顾雪祥,等.一种典型的同生沉积型微细浸染型金矿床--桂西北高龙金矿床[J].吉林大学学报(地球科学版),2003,3(3):290-295.
    136.陈大经,李毅,等.广西古潭热水沉积重晶石矿床中硅质岩的地质-地球化学特征[J],2005,19(5):461-464.(出处)
    137.陈多福,陈先沛.热水沉积作用与成矿效应[J].地质地球化学,1997,4(4):7-12.
    138.陈建平,陈建军,张立平,等.酒西盆地油气形成与勘探方向新认识(二)-烃源岩成烃演化与主力油源确认[J].石油勘探与开发,2001,28(2):15-18.
    139.陈建平,陈建军,张立平,等.酒西盆地油气形成与勘探方向新认识(三)-油气运移、成藏规律与勘探方向[J],石油勘探与开发,2001,28(3):12-16.
    140.陈建平,陈建军,张立平,等.酒西盆地油气形成与勘探方向新认识(一)-基本石油地质条件及生油潜力[J],石油勘探与开发,2001,28(1):19-22.
    141.陈骏,仇纲,杨杰东.黄土碳酸盐 Sr 同位素组成与原生和次生碳酸盐识别[J].自然科学进展,1997,7(6):731-734.
    142.陈骏,王鹤年.地球化学[M].科学出版社,2004,1-417.
    143.陈先沛,高计元,陈多福.热水沉积作用的概念和几个岩石学标志[J].沉积学报,1992,10(3):124-132.
    144.褚有龙.中国重晶石矿床的成因类型[J].矿床地质,1989,8(4):91-96.
    145.丁振举,刘丛强.碧口群古热水系统发育的富铁硅岩稀土元素地球化学证据[J].自然科学进展,2000,10(5):427-434.
    146.范铭涛,杨麟科,方国玉,等.青西凹陷下白垩统湖相喷流岩成因探讨及其意义[J].沉积学报,2003,21(4):560-564.
    147.方维萱,胡瑞忠,苏文超,等.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景[J].岩石学报,2002,18(2):247-256.
    148.方维萱,胡瑞忠,谢桂青,等.墨江镍金矿床(黄铁矿)硅质石的成岩成矿时代[J].科学通报,2001,46(10):857-860.
    149.方维萱,张国伟,胡瑞忠,等.陕西二台子铜金矿床钠长石碳酸(角砾)岩类特征及形成构造背景分析[J].岩石学报,2000,16(3):392-400.
    150.方维萱,张国伟,黄转莹.银硐子-大西沟特大型银多金属矿床中重晶石岩类特征及成岩成矿作用[J].岩石学报,1999,15(3):484-491.
    151.冯军,李江海,程素华,2007.河北兴隆中元古代古海底黑烟囱中微生物化石的发现及其意义[J].微体古生物学报,24(2):205-209.
    152.冯胜斌,邢矿,周洪瑞,等.北秦岭二郎坪群重晶石岩热水沉积地球化学证据及其成矿意义[J].世界地质,2007,26(2):199-207.
    153.冯胜斌,周洪瑞,燕长海,等.东秦岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义[J].沉积学报,2007,25(4):564-573.
    154.冯胜斌,周洪瑞,燕长海,等.东秦岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义[J].沉积学报,2007,25(4):564-573.
    155.付绍洪,王苹.川西北马脑壳金矿床流体包裹体研究及对成矿条件的制约[J].岩石学报,2000,16(4):569-574.
    156.高波,程克明,熊英,等.酒西坳陷天然气的地球化学特征及成因[J].新疆石油地质,2004,25(3):259-261.
    157.高波,程克明,张大江,等.酒西坳陷青南次凹烃源岩的热演化及生烃史[J].石油与天然气地质,2004,25(3):288-293.
    158.高永丰,侯增谦,魏瑞华,等.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束[J].岩石学报,2006,22(3):547-557.
    159.顾雪祥,刘建明,郑明华,等.湖南沃溪钨-锑-金建造矿床海底喷流热水沉积成因的组构学和地球化学特征[J].矿物岩石地球化学通报,2000,19(4):235-238.
    160.韩贵琳,刘丛强.贵阳地区雨水化学与Sr同位素地球化学[J].第四世纪研究,2003,23(2):231.
    161.何俊国,周永章,聂凤军,等.西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义[J].矿物岩石地球化学通报:研究成果,2007,26(1):74-81.
    162.贺秀斌.微量元素锶及其同位素的地球化学研究与应用前景[J].地球科学进展,1997,12(1):15-19.
    163.黄菲,金成洙,姚玉增,赵玉山,温守钦.山西耿庄金矿重晶石巨晶中多相态包裹体研究[J].吉林大学学报:地球科学版,2005,35(3):313-319.
    164.黄思静,QING Hairuo,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报,2006,22(8):2123-2132.
    165.黄思静,石和,刘洁,等.锶同位素地层学研究进展[J].地球科学进展,2001,16(2):195-200.
    166.黄思静,石和,张萌,等.上扬子石炭-二叠纪海相碳酸盐的锶同位素演化与全球海平面变化[J].沉积学报,2001,19(4):481-487.
    167.黄思静,孙治雷,吴素娟,等.三叠纪全球海水的锶同位素组成及主要控制因素[J].矿物岩石,2006,26(1):43-48.
    168.黄思静,吴素娟,孙治雷,等.中新生代海水锶同位素演化和古海洋事件[J].地学前缘,2005,12(2):133-141.
    169.黄思静.川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义[J].岩石学报,1993,9(增刊):214-221.
    170.黄文辉,杨敏,于炳松,等.塔中地区寒武系-奥陶系碳酸盐岩sr元素和sr同位素特征[J].地球科学--中国地质大学学报,2006,31(6):839-845.
    171.霍永录,谭试典等.酒泉盆地陆相石油地质特征及勘探实践[M].1995,石油工业出版社.
    172.季宏兵,王世杰,李朝阳,等.松潘-甘孜造山带中巴西金-矽卡岩矿床成矿热液系统演化的(REE、Sr、O)证据[J].矿物学报,1997,17(4):412-421.
    173.江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩的碳、锶同位素特征及其对海平面变化的响应[J].中国科学(D辑),2002,32(1):36-42.
    174.解习农,李思田等.热流体活动示踪标志及其地质意义[J].地球科学-中国地质大学学报,1999,24(2):3-8.
    175.金章东,朱金初,李福春.德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据[J].矿床地质,2002,21(4):341-349.
    176.赖绍聪,邓晋福,赵海玲.柴达木北缘奥陶纪火山作用与构造机制[J].西安地质学院学报,1996,18(3):8-14.
    177.赖绍聪,秦江锋,李永飞,等.青藏高原木苟日王新生代火山岩地球化学及Sr-Nd-Pb同位素组成--底侵基性岩浆地幔源区性质的探讨[J].中国科学(D辑),2007,37(3):308-318.
    178.黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7.
    179.李朝阳等.滇西地区陆相热水沉积成矿作用[J].铀矿地质,1993,9(1):14-22.
    180.李奋其,王成善,王崇孝.酒泉早白垩世盆地群构造特征和成因[J].地质学报,2006,80(2):181-191.
    181.李红,柳益群,朱玉双.新疆三塘湖盆地二叠系湖相白云岩形成机理初探[J].沉积学 报,2007,25(1):75-81.
    182.李江海,初凤友,等.河北兴隆中元古带硫化物黑烟囱群发现及其地质成因[J].自然科学进展,2005,15(2):179-191.
    183.李江海,冯军,等.华北中元古带硫化物黑烟囱发现的初步报道[J].岩石学报,2003,19(1):167-168.
    184.李江海,牛向龙,等.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19(1):17-24.
    185.李胜荣,高振敏.华南下寒武统黑色岩系中的热水成因硅质岩[J].矿物学报,1996,16(4):416-422.
    186.李思田.联合古陆演化周期中超大型含煤及含油气盆地的形成[J].地学前缘,1997,4(3-4):229-304.
    187.李文博,黄智龙,张冠.云南会泽铅锌矿田成矿物质来源:Pd、S、C、H、O、sr同位素制约[J].岩石学报,2006,22(10):2567-2580.
    188.李祥辉,王成善,JENKYNS H.C.,等.西藏南部上白垩统高分辨率全岩碳同位素地层学[J].地质论评,2006,52(3):304-313.
    189.梁华英,王秀璋,程景平,等.大沟谷钠长石岩及金矿床形成分析[J].贵金属地质,1997,6(4):255-260.
    190.梁华英,王秀璋,程景平,等.广东大沟谷钠长石岩地球化学特征及成因研究[J].矿物学报,1998,18(1):113-118.
    191.梁华英,王秀璋,程景平.吉林四平银(金)矿床Rb-Sr定年及热液活动的时间跨度[J].大地构造与成矿学,2001,25(2):194-198.
    192.梁华英,王秀璋,程景平.粤北大沟谷热水沉积钠长石岩岩石化学及稀土元素[J].沉积学报,2001,19(3):415-420.
    193.梁华英,王秀璋.大沟谷钠长石岩型金矿床Pb、S、Sr同位素特征初探[J].矿物学报,2001,21(2):246-250.
    194.廖宗廷,陈焕疆,罗德宣,等.广西大厂泥盆纪海底热水喷口的发现及其意义.海洋科学,1994.(3):71-72.
    195.林丽.拉尔玛金矿矿源层--太阳顶群硅质岩的有机地球化学研究[J].矿物岩石地球化学通报,1996,15(2):101-105.
    196.刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,1-290.
    197.刘传联,成鑫荣.渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据[J].科学通报,1996,41(10):908-910.
    198.刘建明,叶杰,等.一种新类型热水沉积岩--产在湖相断陷盆地中的菱铁绢云硅质岩[J].中国科学(D辑),2001,31(7):570-577.
    199.刘建清,贾保江,杨平,等.碳、氧、锶同位素在羌塘盆地龙尾错地区层序地层研究中的应用[J].地球学报,2007,28(3):253-260.
    200.刘文均,郑荣才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质.2000,19(2):173-181.
    201.刘秀明,王世杰,孙承兴,等.(古)盐度研究的一种重要工具--锶同位素[J].矿物学报,2000,20(1):91-96.
    202.刘焱光,孟宪伟,付云霞.冲绳海槽Jade热液场烟囱物稀土元素和锶、钕同位素地球化学特征[J].海洋学报,2005,27(5):67-72.
    203.刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
    204.卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
    205.卢焕章.美国Culberson重晶石-硫磺矿中流体包裹体的研究[J].岩石学报,2006,22(2):485-490.
    206.卢焕章.现代海底烟囱中流体包裹体的研究[J].岩石学报,2003,19(2):235-241.
    207.吕志成,段国正,郝立波.内蒙古额仁陶勒银矿床石英的矿物标型特征研究[J].矿物学报,2001,21(2):251-258.
    208.吕志成,刘丛强,刘家军,等.南秦岭毒重石成矿带矿床中的生物成因重晶石及其意义[J].自然科学进展,2004,14(8):892-897.
    209.罗平,杨式升,马龙,等.酒西坳陷青西坳陷湖相纹层状泥质白云岩中泥级斜长石成因、特征与油气勘探意义[J].石油勘探与开发,2001,28(6):32-33.
    210.罗平,杨式升,苏丽萍.2002.酒西盆地湖相纹层状泥质白云岩储层的形成条件与特征.油气储层重点实验室论文集(M).北京:石油工业出版社,32-44
    211.毛德宝,钟长订,陈志宏.冀北洞子沟银矿床:一个中元古代的浅成低温热液矿床来自矿物学和地球化学的证据[J].矿物岩石,2003,23(2):16-21.
    212.倪志耀,莫怀毅.四川冕宁前寒武纪重晶石岩的地球化学特征[J].地球化学,1996,25(5):512-519.
    213.牛洁,张虎才,常凤琴,等,2007.柴达木察尔汗贝壳堤剖面Sr同位素及其环境意义[J].高校地质学报,13(1):14-22.
    214.潘家永,张乾,马东升,等.滇西羊拉铜矿区硅质岩特征及与成矿的关系[J].中国科学(D 辑),2001,31(1):10-16.
    215.潘良云,谢结来,李明杰,等.酒泉盆地白垩纪-新生代区域构造演化与油气勘探[J].石油与天然气地质,2006,27(1):62-69.
    216.彭建堂,胡瑞忠,邓海琳,等,2001.湘中锡矿山锑矿床的Sr同位素地球化学[J].地球化学,30(3):248-256.
    217.彭军,夏文杰,伊海生.湖南新晃贡溪重晶石矿床地质地球化学特征及成因分析[J].成都理工学院学报,1999,26(1):92-96.
    218.彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J].岩相古地理,1999,(2):29-37.
    219.彭润民,翟裕生,王志刚.内蒙古东升庙、甲生盘中元古代SEDEX矿床同生断裂活动及其控矿特征[J].地球科学,2000,25(42):404-409.
    220.彭润民,翟裕生.内蒙古狼山-渣尔泰山中元古代被动陆缘热水喷流成矿特征[J].地学前缘,2004,11(1):257-268.
    221.戚华文,胡瑞忠,等.陆相热水沉积成因硅质岩与超大型锗矿床为例[J].中国科学(D 辑),2003,33(3):237-246.
    222.戚华文,胡瑞忠,苏文超,等.陆相热水沉积成因硅质岩与超大型锗矿床的成因--以临沧锗矿床为例[J].中国科学(D辑),2003,33(3):236-246.
    223.冉波,王成善,朱利东,等.酒泉盆地早白垩世沉积相特征与构造样式浅析[J].大地构造与成矿学,2006,30(2):189-192.
    224.任战利,刘池阳,张小会,等.酒泉盆地群热演化史恢复及其对比研究[J].地球物理学报,2000,43(5):635-645.
    225.任战利,刘池阳,张小会,等.酒泉盆地群热演化史恢复及其对比研究[J].地球物理学报,2000,43(5):635-645.
    226.任战利,赵重远,陈刚.沁水盆地中生代晚期构造热事什[J].石油与天然气地质,1999,20(1):46-48.
    227.施春华,胡瑞忠,王国芝,等.贵州织金磷矿岩元素地球化学特征[J].矿物学报,2006,25(2):169-174.
    228.苏建平,吴保祥,雷怀彦,等.甘肃酒西白垩纪盆地沉积构成及盆地演化动力学分析[J].沉积学报,2002,20(4):568-573.
    229.孙省利,曾允孚.西成矿化集中区热水沉积岩物质来源的同位素示踪及其意义[J].沉积学报,2002,20(1):41-46.
    230.孙学通,姚慧.湖南应溪重晶石矿床地球化学特征及矿床成因[J].新疆地质,2005,23(1):50-54.
    231.田景春,曾允孚等.东营凹陷西部沙河街组三段上部泥岩中白云岩夹层成因研究[J].矿物岩石,1997,17(4):61-67.
    232.佟景贵,李胜荣,李向辉,等.单颗有孔虫化石 Sr 同位素测定及定年[J].科学通报,2006,51(15):1817-1820.
    233.王长明,张寿庭,邓军,等.内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J].岩石矿物学杂志,2007,26(5):409-417.
    234.王崇孝,马国福,周在华.酒泉盆地地中、新生代构造演化及沉积填充特征[J].石油勘探与开发,2005,32(1):33-36.
    235.王大锐.塔里木盆地中、上奥陶统烃源岩的碳同位素宏观证据[J].地质评论,2000,46(3):328-334.
    236.王大勇,陆现彩,徐士进,等.深海沉积重晶石在古海洋研究中的应用[J].海洋地质与第四纪地质,2006,26(4):67-71.
    237.王江海,颜文,常向阳,等.陆相热水沉积作用[M].北京:地质出版社,1998,1-32.
    238.王凯怡,范宏瑞,谢奕汉.白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示[J].岩石学报,2002,18(3):340-348.
    239.王世杰,董丽敏,林文祝,李春来,汪品先,赵泉鸿,吴锡浩.泥河湾组有孔虫化石群的锶同位素研究[J].科学通报,1995,40(22):2072-2074.
    240.王守旭,张兴春,秦朝建,等.滇西北中甸普朗斑岩铜矿流体包裹体初步研究[J].地球化学,2007,36(5):467-478.
    241.王涛.花岗岩研究与大陆动力学[J].地学前缘,2000,增刊(7):137-136
    242.王晓丰,张志诚,郭召杰,等.酒西盆地南缘旱峡早白垩世火山岩地球化学特征及其构造意义[J].高校地质学报,2004,10(4):570-577.
    243.魏春生,郑永飞.强烈热液交代金矿石 Rb-Sr 等时线意义讨论[J].地球学报,1997,18(3):290-298.
    244.温汉捷,裘愉卓,凌宏文,等.中国早古生代若干高硒黑色岩系中层状硅质岩的地球化学特征及其成因意义[J].沉积学报,2003,21(4):619-626.
    245.文华国,郑荣才,叶泰然,等.酒西盆地青西凹陷下白垩统沉积特征与有利勘探区预测[J].沉积与特提斯地质,2005,25(4):71-77.
    246.文华国.酒西盆地青西凹陷下沟组湖相白烟型喷流岩研究.四川:成都理工大学,2005.
    247.夏菲,马东升,潘家永,等.贵州天柱大河边和玉屏重晶石矿床热水沉积成因的锶同位素证据[J].科学通报,2004,49(24):2592-2595.
    248.肖荣阁,陈卉泉,袁见齐.云南中新生代地质与矿产[M].北京:海洋出版社.1993
    249.肖荣阁,杨忠芳,杨卫东,等.热水成矿作用[J].地学前缘,1994,1(3-4):140-147.
    250.肖荣阁,张汉城,陈卉泉.热水沉积岩及矿物岩石标志[J].地学前缘,2001,8(4):379-385.
    251.谢桂青,胡瑞忠,方维萱,等.云南墨江金矿热水喷流沉积成岩成矿的地质地球化学证据[J].沉积学报,2002,20(3):387-393.
    252.徐九华,谢玉玲,张巨华,等.大青山东段九龙湾银-多金属矿床的次火山热液成因--流体包裹体证据[J].岩石学报,2006,22(6):1735-1743.
    253.徐兴旺,蔡新平,肖骑彬,等.滇西北衙地区热水岩溶作用及其伴生的地质灾害.地球科学进展,2003,18(6):912-920
    254.薛春纪,姬金生,张连昌,等.北祁连镜铁山海底喷流沉积铁铜矿床[J].矿床地质,1997,16(1):21-30.
    255.薛春纪,刘淑文,冯永忠,等.南秦岭旬阳盆地下古生界热水沉积成矿地球化学[J].地质通报,2005,24(10-11):927-934.
    256.薛春纪,刘淑文,王涛,等.南秦岭下古生界铅锌矿床成矿环境[A].见:刘建明主编.矿床学理论与实践[C].北京:科学出版社,2004,58-67.
    257.薛春纪,祁思敬,郑明华,等.热水沉积研究及相关科学问题[J].矿物岩石地球化学通报,2000,19(3):155-161.
    258.颜铁增,俞云文,陈江峰,等.浙江省西北部白垩纪火山岩 Nd-Sr 同位素特征[J].中国地质,2005,32(3):417-423.
    259.颜文,李朝阳.一种新类型铜矿床的地球化学特征及其热水沉积成因[J].地球化学,1997,26(1):54-65.
    260.杨富全,王义大,毛景文,杜红星.新疆阿合奇县布隆石英重晶石脉型金矿地质特征和硫、氦、氩同位素研究[J].地质论评,2004,50(1):87-98.
    261.杨海生,周永章,杨志军,等.华南热水成因硅质岩建造的稀土元素地球化学特征[J].矿物岩石地球化学通报,2003,22(1):61-64.
    262.杨海生,周永章,杨志军,等.热水沉积硅质岩地球化学特征及意义--以华南地区为例[J].中山大学学报(自然科学版),2003,42(6):111-115.
    263.杨建国,杨林海,任有祥,等.北祁连山寒山金矿床成矿作用同位素地质年代学[J].地球学报,2005,26(4):315-320.2
    64.杨剑,易发成,侯兰杰.黔北黑色岩系的岩石地球化学特征和成因[J].矿物学报,2004,24(3):285-289.
    265.杨经绥,孟繁聪,张建新.重新认识阿尔金断裂东段红柳峡火山岩的时代及构造意义[J].中国科学(D辑),2001,31(增刊):12.
    266.杨瑞东,鲍淼,魏怀瑞,等.贵州天柱寒武系底部重晶石矿床中热水生物群的发现及意义[J].自然科学进展,2007,17(9):1304-1309.
    267.杨瑞东,朱立军,高慧,等.贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征[J].地质论评,2005,25(5):481-492.
    268.杨瑞琰,马东升,鲍征宇,等.双扩散对流与成矿元素富集的机制[J].自然科学进展,2004,14(10):1135-1141.
    269.杨树锋、陈汉林等,酒泉盆地构造特征及控油作用[R].浙江大学,2002.
    270.杨郧城,文冬光,侯光才,等.鄂尔多斯白垩系自流水盆地地下水锶同位素特征及其水文学意义[J].地质学报,2007,81(3):405-412.
    271.杨振强.大宝山块状硫化物矿床成因:泥盆纪海底热事件[J].华南地质与矿产,1997,(1):7-17.
    272.杨志明,谢玉玲,李光明,等.西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J].矿床地质,2005,24(6):584-594.
    273.叶杰,刘建明,张安立,等.沉积喷流岩的岩石学证据[J].岩石学报,2002,18(04):585-592.
    274.叶萍,周爱国,刘存富,等.Genesis of sr Isotopes in Groundwater of Hebei Plain[J].Journal of China University of Geosciences,2007,18(2):177-184.
    275.叶萍,周爱国,刘存富,等.河北平原地下水水-岩作用新证据--锶同位素示踪演变特征[J].水文地质工程地质,2007,(4):41-60.
    276.伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意[J].古地理学报,2007,9(3):303-312.
    277.于增慧,翟世奎.海底热液沉积物中流体包裹体的研究进展[J].海洋地质与第四纪地质,2000,20(1):93-96.
    278.玉门油田石油地质志编写组.中国石油地质志-卷十三[M].石油工业出版社,1989.
    279.玉门油田勘探开发研究院,1993.河西走廊地区主要沉积盆地油气资源评价(内部资料)[R].玉门.
    280.曾令森,刘福来,梁凤华,等.苏鲁榴辉岩钾长石-石英聚合体中重晶石矿物及其意义[J].科学通报,2007,52(19):2312-2318.
    281.曾普胜,蒙义峰,杨竹森,等.安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩[J].矿床地质,2004,23(3):334-343.
    282.曾志刚,秦蕴珊.大洋钻探对海底热液活动研究的贡献[J].地球科学进展,2003,18(5):764-769.
    283.翟世奎,于增慧,杜同军.冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J].海洋学报,2007,29(1):59-65.
    284.翟裕生.地球系统科学与成矿学研究[J].地学前缘.2004,11(1):1-10.
    285.张宝琛,覃功炯,王凤阁.辽宁省岫岩县东堡子金矿流体包裹体研究[J].现代地质,2002,16(1):26-30.
    286.张本仁,傅家谟.地球化学进展[M].化学工业出版社,2005,1-439.
    287.张虎才,雷国良,杨明生,等.古湖相碳酸盐沉积和化石贝壳的 87Sr/86Sr 及其意义[J].地球学报,2005,26(增刊):237-238.
    288.张铭杰,唐俊红,张同伟,等.流体包裹体在油气地质地球化学中的应用[J].地质论评,2004,50(4):397-406.
    289.张文淮,陈紫英主编.流体包裹体地质学[M].武汉:中国地质大学出版社,1993,1-246.
    290.张晓宝.准噶尔盆地南缘东部中二叠统芦草沟组黑色页岩中自云岩夹层的成因探讨[J].沉积学报,1993,11(2):133-138.
    291.张永北,徐成彦,肖明远,等.滇中易门里士北部水下碳酸质火山一喷流岩铁、铜矿化及其大型隐伏矿床找矿研究[J].岩石学报,2005,21(5):1396-1498.
    292.张志斌,李忠权,李朝阳,等.中天山下石炭统马鞍桥组重结晶灰岩热水沉积成因的地球化学初步分析[J].矿物岩石,2007,27(2):70-77.
    293.张志斌,叶霖,李文铅,等.新疆霍什布拉克铅锌矿床地质、地球化学特征研究[J].大地构造与成矿学,2007,31(2):205-217.
    294.赵省民,聂凤军,江思宏,等.内蒙古东七一山萤石矿床的稀土元素地球化学特征及成因[J].矿床地质,2002,21(3):311-317.
    295.郑大中,郑若锋.萤石成矿机制的探讨[J].四川地质学报,2005,25(3):149-155.
    296.郑荣才,刘文均.龙门山泥盆纪层序地层的碳、锶同位素效应[J].地质论评,1997,43(3):264-272.
    297.郑荣才,王成善,朱利东,等.酒西盆地首例湖相“白烟型”喷流岩-热水沉积白云岩的发现及其意义[J].成都理工大学学报:自然科学版,2003,30(1):1-8.
    298.郑荣才,文华国,范铭涛,等.酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J].岩石学报,2006,22(12):3027-3038.
    299.郑荣才,文华国,高红灿,柯光明.酒西盆地青西凹陷下沟组湖相喷流岩稀土元素地球化学特征[J].矿物岩石,2006,26(4).41-47.
    300.郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社.2000
    301.周爱国,甘义群,刘存富,等.河北平原地下水锶同位素特征[J].地球学报,2005,26(增刊):279-282.
    302.周厚云,迟宝泉,关华政.洞穴次生碳酸盐沉积的 Sr 同位素组成研究:历史与前景[J].中国岩溶,2007,26(1):18-23.
    303.周怀阳,叶瑛,沈忠悦,等.东太平洋表层沉积物中热水矿物组合的发现及其意义[J].海洋科学,2001,25(12):27-30.
    304.周永章,刘建明,陈多福.华南古海洋热水沉积作用研究概述及若干认识[J].矿物岩石地球化学通报,2000,19(2):4.
    305.周永章,涂光炽,Chown E.H..粤西古水剖面震旦系顶部层状硅岩的热水成因属性:岩石学和地球化学特征[J].沉积学报,1994,12(3):1-11.
    306.朱弟成,潘桂棠,莫宣学,等.青藏高原及邻区新生代火山岩Sr-Nd-Pb同位素特征[J].沉积与特提斯地质,2003,23(3):1-11.
    307.朱国华.酒西坳陷柳沟庄-窟窿山油藏下白垩储层岩类及其成因的若干认识[R].2001,杭州石油地质研究所.
    308.朱利东,王成善,郑荣才,等.青藏高原东北缘酒泉盆地的演化特征与宽台山-黑山断裂的性质[J].2005,24(9):837-840.
    309.朱利东.青藏高原北部隆升与盆地和地貌记录[M],2004.1-208.
    310.祝朝辉,张乾,邵树勋,等.云南白牛厂银多金属矿床成因[J].世界地质,2006,25(4):353-359.
    311.祝新友,邓吉牛,王京彬,等.锡矿山喷流沉积矿床卤水与海水的相互作用[J],地质论评,2007,53(1):52-64.
    312.祝新友,汪东波等.西成地区碳酸盐岩 REE 特征及厂坝矿床白云岩成因[J].矿床地质,2005,24(6):613-618.
    313.左力艳,张德会,李建康,等.江西德兴铜厂斑岩铜矿成矿物质来源的再认识--来自流体包裹体的证据[J].地质学报,2007,81(5):685-695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700