用户名: 密码: 验证码:
掺锗直拉硅中的杂质缺陷及其光伏应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能发电被认为是解决能源短缺最有效的途径之一,近10年来,其产业规模正以超过30%的速度增长。为了满足大规模的应用,传统晶体硅太阳电池面临着高转化效率,长使用寿命,低制造成本,尤其是薄片化带来的挑战。由于掺Ge能够增强硅片强度,抑制体内空洞型缺陷,促进直拉硅中氧沉淀以及内吸杂能力,特别是能够减少破片和翘曲,使得掺Ge直拉硅具有薄片太阳电池上有很好的应用前景。
     本文在本研究组发明的微量掺锗直拉硅单晶生长的基础上,系统地研究了掺Ge直拉硅基于光伏应用的原生材料特性,以及在电池工艺过程中的杂质缺陷行为,不仅具有较强的理论研究意义,而且对实际电池制备和材料应用具有重要的指导作用。其主要创新成果如下:
     系统研究了掺Ge直拉硅原生晶体的少子寿命及电学活性中心的分布规律。实验指出:掺Ge能够改变原生晶体中的电活性缺陷(包括热施主和Ge关复合体)的形成规律,并改变少子寿命沿晶体生长方向的分布。通过热施主的形成实验证实:低浓度和高浓度掺Ge都能抑制热施主的形成,随着Ge浓度升高抑制作用更加明显,高浓度掺Ge还能够改变热施主的电学特性,使热施主对应的红外吸收峰转变为吸收带;高温预处理能够改变热施主的形成速率,在低掺Ge直拉硅中,高温RTA分解原生氧沉淀后,热施主的形成能在短期内增强甚至超过普通直拉硅,在随后的热处理中增强效应迅速消失;另外,Ge关复合体对O_(2i)的俘获对抑制热施主形成起主要作用。
     系统研究了掺Ge直拉硅原生晶体中BO复合体相关的光照寿命衰减现象。研究证实:掺Ge能够有效减少BO复合体的饱和密度,对硅片的少子寿命起到了稳定的作用。掺Ge不改变O_(2i)的迁移能,但在略高于室温的条件下,BO复合体的稳定性和分解速率和Ge掺杂有关。研究认为:Ge关复合体对O_(2i)的俘获,以及Ge对BO复合体结构的扰动,是减少光照衰减的主要原因。
     研究了Fe和Cu沾污的掺Ge直拉硅单晶的少子寿命特征。掺Ge能够抑制FeB的分解和形成过程。在掺Ge直拉硅中,低温下Cu沾污后硅片的寿命较普通直拉硅样品低,但在高温下Cu沾污后的少子寿命高于普通直拉硅样品,被认为与掺Ge引起的原生空位型缺陷行为等影响有关。
     系统研究了直拉单晶硅片的表面金字塔织构的结构转变和光学性质。研究发现:金字塔的长大是通过{111}表面原子的逐层剥离实现的,大的金字塔倾向于占据小金字塔的长大空间,因此会导致金字塔的分化和消失。根据几何光学计算,随机金字塔织构具有较低的反射率下限,800nm对应的反射率仅为0.083。实际金字塔的不规则表面和棱边,以及大量亚微米级的小金字塔都是造成反射率上升的原因。研究表明:硅片的微缺陷(BMD)能够影响金字塔织构的性能,高密度的BMD会促进金字塔的异质形核并抑制其均匀形核,导致金字塔分布稀疏和大小不均,密度达到10~7cm~(-3)以上的BMD能够明显增加织构硅片的反射率,使织构性能下降。研究进一步发现:掺杂浓度(10~(16)~5×10~(19)cm~(-3))的Ge对直拉硅在碱溶液中的腐蚀速率没有影响,当掺Ge原生硅片中的BMD密度小于10~7cm~(-3)时,掺Ge不改变原生直拉硅片的织构特性。
     通过对比普通太阳电池,研究了掺Ge对直拉硅太阳电池性能的影响。5×10~(19)cm~(-3)浓度的Ge掺入直拉硅后,能够增加在硅禁带边缘的红外吸收和转化效率,从而提高太阳电池的短路电流,在BSR电池中增幅可达2%。掺Ge对电池的开压和填充引起并没有明显的影响。与此同时,I_(02)的减小和R_(sh)的增加得益于掺Ge对基体内二次缺陷的抑制,总体而言,掺Ge对太阳电池性能的影响不明显。
The photovoltaic(PV)energy market is witnessed by a booming rate beyond 30%per year recently.Silicon(Si)continues to have a prominent place in the PV energy market,with about 90%share of the current PV production.A major factor in the rapid growth in PV energy production is a steady decline of production costs,resulting from increasing solar-cell efficiencies.The cost of the starting wafers has a strong influence on the final cost of$/W.To cut the cost,thinner wafers are going to be utilized.New materials have been investigated for solar cells.Among them Si-rich SiGe alloys shows some potential to improve the efficiency in comparison to the normal silicon solar cell,but the vast use of germaium(Ge)raises the cost.Ge doped silicon also shows some advantages beyond normal silicon.It can strengthen up the wafers by locking disloactions, inhibit void-type defects and promote the oxygen precipitation etc.Low warpage and breakage can be gained for thin Ge-doped silicon wafers.To understand the properties of Ge-doped silicon from the view of PV application not only makes sense for the knowledges,but also can help to fabricate low-cost and high-efficiency solar cells.Up to now,there is no systematic study reported.
     In this thesis,the as-grown Ge-doped Czochralski silicon(CZ Si)character, the effects of Ge on the behavior of grown-in defects and the process induced defects,as well as intentionally induced Fe and Cu metallic impurites,the effect of Ge-doping on the texturisation of wafers and performance of solar cells were systematically studied by means of Microwave photoconductance Decay (MWPCD),Fourier-Transform Infrared(FTIR),Scanning Infrared Microscope (SIRM)and Field-Emitting Scanning Electron Microscope(FE-SEM)techniques.
     In as-grown silicon,MWPCD study revealed that the minority carrrier lifetime distribution varied with the ingot position due to the Ge-doping level.The main traps detected were thermal donors and Ge-related defects.The effect of Ge-doping level on the formation of thermal donors with and without pretreatment was also investigated.A short-time enhancement of thermal donors by lightly Go-doping was observed after RTA pretreatment.Based on the experimental results,a reaction that oxygen dimmer(O_(2i))was captured ty Go-related defects was proposed to explain the inhibition of Go on thermal donors.
     Under illumination,Go-doping could stabilize the minority carrier lifetime of wafers by reduce light induced degradation(LID)attributed to the BO complex. Go-doping hardly changed the migration barrier of O_(2i),while the stability of BO was slightly reduced at 100℃.The capture of O_(2i)by Go-related defects and the disturbance to BO configuration by Go-doping both contributed to the decrease of LID.
     In Go-doped CZ silicon with artificial Fe and Cu contaminations,it was found that the disovation and formation of FeB complex was retarded.At the meantime,the lifetime ratioτ_(GCZ4)/τ_(CZ3)of Cu contaminated wafers was smaller than 1 below critical temperature about 700℃while larger than 1 above 700℃. 1250℃/50 s RTA protreatment can increase the critical temperature to about 900℃.The interaction between Go-Vacancy-related defects and Cu resulted into the lifetime character below critical temperature.At higher temperature,the inhibition of Cu precipitation mostly duo to the locking of dislocations by Go-doping resulted into a higher lifetime in Go-doped silicon.
     During the texutrisation of silicon wafers in alkaline aqueous solution, pyramids grew up by peeling atom layers from {111} surfaces of pyramids. Larger ones tended to hold larger space while the smaller ones would decrease or even disappear.Based on the comparison of the experimental reflecting spectra to the calculation results,a dominating reflecting pathway was found out which shew a very low reflectance 0.083.In practice,the reflectance was rised up by nonideal structures of pyramids as well as the very small ones.Texture on wafers with high density of BMD also had higher reflectance.The BMD in wafers beyond 10~7 cm~(-3)could change the nucleation of pyramids further resulted into the non-uniformity of them.Go-doping at 10~(16)~5×10~(19)cm~(-3)level had no obvious effect on the etching rate of silicon in alkaline aqueous solution.And the texturiation character had never been changed when BMD density was smaller than 10~7 cm~(-3)in Ge-doped silicon.
     In comparison with conventional CZ Si,Ge doped CZ Si with Ge content 5×10~(19)cm~(-3)was used to fabricate solar cells by the same processes.It was found that the short-circuit current I_(sc)and conversion efficiency of Ge-doped Si solar cells(GSCs)was slightly higher than that of the conventional solar cells(SCs), while the open-circuit voltage and fill factor of both the solar cells was almost the same.The better saturation current I_(02)and shunting resistance R_(sh)for GSCs were gained.
引文
1.M.Ya.Dashevskii,A.A.Dokuchaeva,S.I.Sadilov,"On the solubility of oxygen in silicon doped with germanium",Izvestiya Akademii Nauk SSSR,Neorganicheskie Materialy,25(1989)673-674.
    2.T.Taishi,X.Huang,I.Yonenaga,K.Hoshikawa,"Dislocation behavior in heavily germanium-doped silicon crystal",Materials Science in Semiconductor Processing 5(2003)409-412.
    3.T.Taishi,X.Huang,I.Yonenaga,K.Hoshikawa,"Dislocation behavior in heavily germanium-doped silicon crystal",Mater.Sci.in Semi.Proc.,5(2002)409-412.
    4.J.Chen,D.Yang,H.Li,X.Ma,Duanlin Que,"Enhancement effect of germanium on oxygen precipitation in Czochralski silicon",J.Appl.Phys.99(2006)073509.
    5.J.Chen,D.Yang,X.Ma,H.Li,D.Que,"Intrinsic gettering Based on rapid thermal annealing in germanium-doped Czochralski silicon",J.Appl.Phys.101(2007)033526.
    6.J.Chen,D.Yang,X.Ma,W.Wang,Y.Zeng,D.Que,"Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer",J.Appl.Phys.101(2007)113512.
    7.G.D.Watkins,"Defects in irradiated silicon:EPR of the tin vacancy pair",Phys.Rev.B 12(1975)4383.
    8.A.Brelot,"Radiation Damage and Defects in Semicon",Inst.Conf Ser.No.16.IOP,London(1973)191.
    9.E.Borne,J.P Boyeaux,A.Laugier,"Efficiency improvement of silicon solar cells by absorption enhancement with germanium",lst WCPEC,Hawaii,1994,pp.1637-1639.
    10.W.Pan,K.Fujiwara,N.Usami,T.Ujihara,K.Nakajima,R.Shimokawa,"Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution",J.Appl.Phys.96(2004)1238.
    11.J.P Dismukes,W.M.Yim,"A survey of interface stability criteria in the elemental alloy systems:Ge-Si,Bi-Sb,And Se-Te",J.Cryst.Growth,22(1974)287-294.
    12.A.Goetzberger,J.Knobloch,B.Voss,"Crystalline Silicon Solar Cells:Technology and Systems Applications",John Wiley & Sons,1998,p.67.
    13.Daniel S.H.Daniel,Jacob C.H.Phang,"Analytical methods for the extraction of solar cel single and double diode model parameters from Ⅰ-ⅤCharacteristics",IEEE Trans.Electr.Dev.,34(1987)286-293.
    14.Ⅰ.Yonenaga,M.Sakurai,"Bond lengths in Gel-xSix crystalline alloys grown by the Czochralski method",Phys.Rev.B 64(2001)113206-9
    15.T.Fukuda,A.Ohsawa,"Mechanical strength of silicon crystals with oxygen and/or germanium impurities",Appl.Phys.Lett.60(1992)1184.
    16.Ⅰ.Yonenaga,T.Taishi,X.Huang,K.Hoshikawa,Dynamic characteristics of dislocations in Ge-doped and(Ge+B)codoped silicon,J.Appl.Phys.,93(2003)265-269.
    17.阙端麟,陈修治.“硅材料科学与技术”,浙江大学出版社
    18.Ⅰ.Yonenaga,K.Sumino,"Mechanical strength of GeSi alloy",J.Appl.Phys.80(1996)3244-3247.
    19.Ⅰ.Yonenaga,K.Sumino,K.Hoshi,'Mechanical strength of silicon crystals as a function of the oxygen concentration",J.Appl.Phys.58(1984)2346-2350.
    20.Ⅰ.Yonenaga,K.Sumino,"Influence of oxygen precipitation along dislocations on the strength of silicon crystals",J.Appl.Phys.80(1996)734-738.
    21.G.D.Watkins,"A microscopic view of radiation damage in semiconductors using EPR as a probe",IEEE Trans.Nucl.Sci.NS-16(1969)13-18.
    22.V.P Markevich,A.R.Peaker,J.Coutinho,R.Jones,V.J.B.Torres,S.Oberg,P.R.Briddon,L.I.Murin,L.Dobaczewski,N.V.Abrosimov,"Structure and properties of vacancy-oxygen complexes in Sil-xGex alloys",Phys.Rev.B 69(2004)125218-10.
    23.L.I.Khirunenko,Y.V.Pomozov,M.G.Sosnin,M.O.Trypachko,V.J.B.Torres,J.Coutinhob,R.Jones,P.R.Briddon,N.V.Abrosimov,H.Riemann,"Vacancy-dioxygen centers in Si-rich SiGe alloys",Materials Science in Semiconductor Processing 9(2006)520-524.
    24.K.Schmalz,V.V.Emtsev,"Radiation-induced defects in Czochralski-grown silicon doped with germanium",Appl.Phys.Lett.65(1994)1575-1577.
    25.G.D.Watkins,"Intrinsic defects in silicon",Materials Science in Semiconductor Processing 3(2000)227-235.
    26.D.Yang,X.Yu,X.Ma,J..Xu,L.Li,D.Que,"Germanium effect on void defects in Czochralski silicon",Journal of Crystal Growth 243(2002)371-374.
    27.D.Yang,"Defects in germanium-doped Czochralski silicon",phys.stat.sol.(a)202(2005)931-938.
    28.D.Yang,J.Chen,"Germanium in Czochralski Silicon",Defect and Diffusion Forum Vols.242-244(2005)169-184.
    29.D.Yang,J.Chen,H.Li,X.Ma,D.Tian,L.Li,D.Que,"Germanium effect on oxygen-related defects in Czochralski silicon",phys.stat.sol.(a)203(2006)685-695.
    30.H.Yamada-Kaneta,"Infrared absorption by interstitial oxygen in germanium-doped silicon crystals",Phys.Rev.B,47(1993)9338-9345.
    31.L.I.Khirunenko,Yu.V.Pomozov,M.G.Sosnin,V.K.Shinkarenko,"Oxygen in silicon doped with isovalent impurities ",Physica B 273(1999)317-321.
    32.A.Borghesi,B.Pivae,A.Sassella,A.Stella,"Oxygen precipitation in silicon ",J.Appl.Phys.,77(1995),4169.
    33.A.Borghesi,B.Pivac,A.Sassella,A.Stella,"oxygen precipitation in silicon",J.Appl.Phys.77(1995)4169-4244.
    34.W.Kaiser,P.H,Keck,C.F.Lange,"Infrared Absorption and Oxygen Content in Silicon and Germanium",Phys.Rev,101(1956)1264-.
    35.L.Jastrzebski,R.Soydan,J.McGinn,R.Kleppinger,M.Blumenfeld,G Gillespie,N.Armour,B.Goldsmith,W.Henry,S.Vecrumba,"A comparison of internal gettering during bipolar,CMOS,and CCD(high,medium,low temperature)process",J.Electrochem.Soc,134(1987)1018.
    36.F.S.Ham,"Theory of diffusion-limited precipitation," J.Phys.Chem.Solids,6(1958)335-350.
    37.L.I.Murin,T.Hallberg,V.P Markevich,J.L.Lindstrom,"Experimental Evidence of the Oxygen Dimer in Silicon",Phys.Rev.Lett.80(1998)93-96.
    38.J.Schmidt,K.Bothe,"Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon",Phys.Rev.B 69(20O4)024107.
    39.D.Yang,D.Li,L.Wang,X.Ma,D.Que,"Oxygen in Czochralski silicon used for solar cells",Solar Energy Materials & Solar Cells 72(2002)133-138.
    40.N..I.Puzanov,A.M.Eidenzon,"The effect of thermal history during crystal growth on oxygen precipitation in Czochralski-grown silicon",Semicond.Sci.Technol.7(1992)406-413.
    41.S.Kobayashi,"A model for oxygen precipitation in Czochralski silicon during crystal growth",J.Cryst.Growth,174(1997)163-169.
    42.K.Sueoka,M.Akatsuka,H.Katahama,N.Adachi,"Effect of Oxide Precipitate Sizes on the Mechanical Strength of Czochralski Silicon Wafers",Jpn.J..Appl.Phys.36(1997)7095-7099
    43.M.V.Whelan,"Leakage currents of n+p silicon diodes with different amounts of dislocations".Solid State Electron.,12(1969)963-968.
    44.S.P.Murarka,T.E.Seidel,J.V.Dalton,J.M.Dishman,M.H.Read,"A study of stacking faults during CMOS processing:Origin,elimination and contribution to leakage".J.Electrochem.Soc.,127(1980)717-724.
    45.R.A.Craven,H.W.Korb,"Internal gettering in silicon",Microelectronics Reliability,22(1982)906.
    46.R.A.Craven,"Internal gettering in Czochralski silicon",Microelectronics and Reliability,26(1986)1197.
    47.H.Shimizu,T.Watanabe,Y Kakui,"Warpage of Czochralski-Grown Silicon Wafers as Affected by Oxygen Precipitation",Jpn.J.Appl.Phys.24(1985)815-821
    48.H.Li,D.Yang,X Yu,X Ma,D.Tian,L.Li,D.Que,"Effect of Germanium Doping on oxygen donors in Czochralski-grown Silicon",J.Phys.:Condens.Matter 16(2004)5745-5750.
    49.H.J.Stein,S.K.Hahn,"Hydrogen-accelerated thermal donor formation in Czochralski silicon",Appl.Phys.Lett.,56(1990)63-65.
    50.T.Hallberg,J.L.Lindstrom,"The bistability of the thermal donors in silicon",Appl.Phys.Lett.,Vol.68(1996)3458-3460.
    51.V.V.Emtsev,G.A.Oganesyan,K.Schmalz,"Formation of deep thermal donors in heat-treated Czochralski silicon",Appl.Phys.Lett.,68(1996)2375-2377.
    52.C.A.Londos,M.J Binns,A.R.Brown,S.A.McQuaid,R.C.Newman,"Effect of oxygen concentration on the kinetics of thermal donor formation in silicon at temperatures between 350 and 500℃",Appl.Phys.Lett.62(1993)1525-1526.
    53.W.Wijaranakula,"Formation kinetics of oxygen thermal donors in silicon ",Appl.Phys.Lett.,59(1991)1608-1610.
    54.J.L.Lindstrom,T.Hallberg,"Vibrational infrared-absorption bands related to the thermal donors in silicon",J.Appl.Phys.,77(1995)2684-2690.
    55.T.Hallberg,J.L.Lindstrom,"Infrared vibrational bands related to the thermal donors in silicon",J.Appl.Phys.,79(1998)7570-7580.
    56.M.Ya.Dashevskii,S.G Lymar,A.A.Dokuchaeva et al,"Influence of germanium on the behavior of oxygen in silicon",Izvestiya Akademii Nauk SSSR,Neorganicheskie Materialy,21(1985)pp 1827-1830.
    57.Yu.M.Babitskii,N.I.Gorbacheva,P.M.Grinshtein et al.,"Kinetics of generation of low-temperature oxygen donors in silicon containing isovalent impurities",Fizika i Tekhnika Poluprovodnikov,22(1988)307-312.
    58.A.Ourmazd,W.Schroter,A.Bourret,"Oxygen-related thermal donors in silicon:A new structural and kinetic model",J.Appl.Phys.,56(1984)1670-1681.
    59.D.Mathiot,"Thermal donor formation in silicon:A new kinetic model based on self-interstitial aggregation",Appl.Phys.Lett.,51(1987)904-906.
    60.E.P Neustroev,I.V.Antonova,V.P.Popov,D.V.Kilanov,A.Misiuk,"Enhanced formation of thermal donors in oxygen-implanted silicon annealed at different pressures",Physica B,293(2000)44-48.
    61.Bengt G.Svensson,J.Lennart Lindstrom,"Thermal donor formation in electron-irradiated Czochralski silicon",Appl.Phys.Lett.,49(1986)1435-1437.
    62.E.P Neustroev,I.V.Antonova,V.P.Popov,V.F.Stas,V.F.Stas,V.A.Skuratov,"Thermal donor formation in crystalline silicon irradiated by high energe ions",Nuclear Instruments and Methods in Physics Research B,171(2000)443-447.
    63.D.K.Schroder,C.S.Chen,J.S.Kang,X.D.Song,"Number of oxygen atoms in a thermal donor in silicon",J.Appl.Phys.,63(1988)136141.
    64.U.Gosele,T.Y Tan,"Oxygen Diffusion and Thermal Donor Formation in Silicon",Appl.Physics A,28(1982)79-92.
    65.U.Gosele,K.Y Ahn,B.P.R.Marioton,T.Y.Tan,S.T.Lee,"Do Oxygen Molecules Contribute to Oxygen Diffusion and Thermal Donor Formation in Silicon",Appl.Physics A,48(1989)219-228.
    66.M.Claybourn,R.C.Newman,"Thermal donor formation and the loss of oxygen from solution in silicon heated at 450℃",Appl.Phys.Lett.52(1988)2139-2141.
    67.S.Hahn,H.J.Stein,S.C.Shatas,F.A.Ponce,"Thermal donor formation and annihilation in oxygen-implanted float-zone silicon",J.Appl.Phys.,72(1992)1758-1765.
    68.M.Pesola,Y J.Lee,J.von Boehm,M.Kaukonen,R.M.Nieminen,"Structures of Thermal Double Donors in Silicon",Phys.Rev.Lett.,84(2000)5343-5346.
    69.R.Jones,J.Coutinho,P.R.Briddon,"Thermal double donors in Si and Ge";Physica B,308-310(2001),8-12.
    70.Y J.Lee,J.von Boehm,M.Pesola,R.M.Nieminen,"Aggregation Kinetics of Thermal Double Donors in Silicon",Phys.Rev.Lett.,86(2001)3060-3063.
    71.D.J.Chadi,"Core Structure of Thermal Donors in Silicon",Phys.Rev.Lett.,77(1996)861-864.
    72.Y.J.Lee,J.von Boehm,R.M.Nieminen,"Simulation of the kinetics of oxygen complexes in crystalline silicon",Phys.Rev.B,66(2002)165221-11.
    73.H.Fischer,W.Pschunder,"Investigation of photon and thermal induced changes in silicon solar cells",Proceedings of the 10th IEEE Photovoltaic Specialists Conference,Palo Alto,CA(IEEE,New York,1973),p.404.
    74.J.H.Reiss,R.R.King,K.W.Mitchell,"Characterization of diffusion length degradation in Czochralski silicon solar cells",Appl.Phys.Lett.68(1996)3302.
    75.J.Schmidt,A.G.Aberle,R.Hezel,"Investigation of carrier lifetime instabilities in Cz-grown silicon",Proceedings of the 26th IEEE Photovoltaic Specialists Conference,Anaheim,CA(IEEE,New York,1997),p.13.
    76.T.Saitoh,X.Wang,H.Hashigami,T.Abe,T.Igarashi,S.Glunz,W.Wettling,A.Ebong,B.M.Damiani,A.Rohatgi,I.Yamasaki,T.Nunoi,H.Sawai,H.Ohtuka,Y.Yazawa,T.Warabisako,J.Zhao,M.Green,"Research and Development of Stabilized High-Efficiency CA Si Solar Cells",Technical Digest of the 11th International Photovoltaic Science and Engineering Conference,Sapporo,Japan,1999,p.553.
    77.S.W.Glunz,S.Rein,W.Warta,J.Knobloch,W.Wettling,"Degradation of carrier lifetime in Cz silicon solar cells",Solar Energy Materials & Solar Cells 65(2001)219-229.
    78.Y.Ohshita,T.Khanh Vu,M.Yamaguchi,"Interstitial boron and oxygen related defects as the origin of the deep energy level in Czochralski-grown silicon",J.Appl.Phys.91,3741(2002).
    79.J.Adey,R.Jones,D.W Palmer,P.R.Briddon,S.Oberg,"Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells",Phys.Rev.Lett.,93(2004)055504.
    80.M.Sanati,S.K.Estreicher,"Boron-oxygen complexes in Si",Physica B 376-377(2006)133-136.
    81.A.Carvalho,R.Jones,M.Sanati,S.K.Estreicher,J.Coutinho,P R.Briddon,"First-principles investigation of a bistable boron-oxygen interstitial pair in Si",Phys.Rev.B 73(2006)245210.
    82.M.Du,H.M.Branz,R.S.Crandall,S.B.Zhang,"Bistability-Mediated Carrier Recombination at Light-Induced Boron-Oxygen Complexes in Silicon",Phys.Rev.L 97(2006)256602
    83.D.W.Palmer,K.Bothe,J.Schmidt,"Kinetics of the electronically stimulated formation of a boron-oxygen complex in crystalline silicon",Phys.Rev B 76(2007)035210.
    84.J.Brody,A.Rohatgi,V.Yelundur,"Bulk resistivity optimization for low-bulk-lifetime silicon solar cells",Prog.Photovolt:Res.Appl.9(2001)273-285.
    85.S.W.Glunz,S.Rein,J.Knobloch,W.Wettling et al.,"Comparison of boron and gallium doped p-type Czochralski silicon for photovoltaic application",Progr.Photovolt.7(1999)463-9.
    86.H.Nagel,A.Merkle,A.Metz,R.Hezel,"Permanent reduction of excess-carrierinduced recombination centers in solar garde Czochralski silicon by a short yet effective anneal",Proceedings of the 16th European Photovoltaic Solar Energy Conference,(2000)1197-1200.
    87.J.Y.Lee,S.Peters,S.Rein,S.W.Glunz,"Improvement of charge minority carrier lifetime in p(boron)-type Czochralski silicon by rapid thermal annealing",Progr.Photovolt.9,417-24(2001).
    88.G.Coletti,C.L.Mulder,G.Galbiati,L.J.Geerligs,"Reduced Effect of B-O Degradation on Multicrystalline Silicon Wafers Compared to Czochralski Silicon Wafers",21st European Photovoltaic Solar Energy Conference and Exhibition,Dresden,Germany(WIP,Dresden,2006),p.1515.
    89.J.R.Davis,A.Rohatgi,R.H.Hopkins,P D.Blais,P.Rai-Choudhury,J.R.McCormick,H.C.Mollenkopf,"Impurities in Silicon Solar Cells",IEEE Trans.Elec.Dev.ED-27(1980)677.
    90.W.Bergholz,D.Gilles,"Impact of Research on Defects in Silicon on the Microelectronic Industry",Phys.Stat.Sol.(b),2000,222:5-23.
    91.S.M.Myers,M.Seibt W.Schroeter,"Mechanisms of transition-metal gettering in silicon",J.Appl.Phys,88(2000)3795-3819.
    92.Y.Kamon,H.Harima,A.Yanase,H.Katayama-Yoshida,"Ultra-fast diffusion mechanism of the late 3d transition metal impurities in silicon",Physica B,308-310(2001)391-395.
    93.A.A.Istratov,H.Hieslmair,E.R.Weber,"Iron and its complexes in silicon",Appl.Phys.A 69(1999)13-44.
    94.A.A.Istratov,H.Hieslmair,E.R.Weber,"Iron and its complexes in silicon ",Appl.Phys.A:Mater.Sci.Process.,69(1999)13.
    95.A.A.Istratov,H.Hieslmair,E.R.Weber,"Iron contamination in silicon technology ",Appl.Phys.A:Mater.Sci.Process.,70(2000)489.
    96.T.Mchedlidze,M.Kittler,"Involvement of iron-phosphorus complexes in iron gettering for n-type silicon",phys.stat.sol.(a)203(2006)786-791.
    97.H.Reiss,C.S.Fuller,F.J.Morin,"Chemical.Interactions Among Defects in Germanium and Silicon",Bell Syst.Technol.J.35(1956)535-636.
    98.W.Wijaranakula,"The reaction kinetics of iron - boron pair formation and dissociation in P - Type silicon",J.Electrochem.Soc.140(1993)275.
    99.L.C.Kimerling,J.L.Benton,"Electronically controlled reactions of.interstitial iron in silicon",Physica B & C 116,297(1983).
    100.S.Reina,S.W.Glunz,"Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy",J.Appl.Phys.98(2005)113711.
    101.Song Zhao,L.V.C.Assali,J.F.Justo,G.H.Gilmer,L.C.Kimerling,"Iron-acceptor pairs in silicon:Structure and formation processes",J.Appl.Phys.,90(2001)2744-2754.
    102.D.D.Nolte,E.E.Hailer,"Thermal emmission of holes from defects in uniaxially stressed p-type silicon",Phys.Rev.B,38(1988)9857-9869.
    103.V.l.Kolkovsky,A.Mesli,L.Dobaczewski,N.V.Abrosimov,Z.R.Zytkiewicz,A.R.Peaker,"Stable and metastable configurations of iron atoms in SiGe alloys",J.Phys.:Condens.Matter 17(2005)S2267-S2272.
    104.V.l.Kolkovsky,A.Mesli,L.Dobaczewski,N.V.Abrosimov,Z.R.Zytkiewicz,A.R.Peaker,"Interaction of iron with the local environment in SiGe alloys investigated with Laplace transform deep level spectroscopy,Interaction of iron with the local environment in SiGe alloys investigated with Laplace transform deep level spectroscopy",Phys.Rev.B 74(2006)195204.
    105.W.Wijaranakula,"Iron precipitation at oxygen related bulk defects in Czochralski silicon",J.Appl.Phys.79(1996)4450-4452.
    106.S.Sadamitsu,A.Sasaki,M.Hourai,S.Sumita,N.Fujino,"Transmission Electron Microscopy Observation of Defects Induced by Fe Contamination on Si(100)Surface ",Jpn.J.Appl.Phys.30(1991)1591.
    107.K.Honda,T.Nakanishi,A.W.Ohsawa,N.Toyokura,"Catastrophic breakdown in silicon oxides:The effect of Fe impurities at the SiO2-Si interface",J.Appl.Phys.62(1987)1960-1963.
    108.K.Honda,A.Ohsawa,T.Nakanishi,"Behavior of Fe impurity during HCI oxidation",J.Electrochem.Soc.142(1995)3486- 3492.
    109.J.Wong-Leung,D.J.Eaglesham,J.Sapjeta,D.C.Jacobson,J.M.Poate,J.S.Williams,"The precipitation of Fe at the Si-SiO2 interface",J.Appl.Phys.83(1998)580.
    110.T.Buonassisi,A.A.Istratow,M.A.Marcus,B.Lai,Z.Cai,S.M.Heald,E.R.Weber,"Engineeringmetal-impurity nanodefects for low-cost solar cells",nature materials 4(2005)676-679.
    111.T.Buonassisi,M.A.Marcus,A.A.Istratov,"Analysis of copper-rich precipitates in silicon:Chemical state,gettering,and impact on multicrystalline silicon solar cell material",J.Appl.Phys.,97(2005)063503-9.
    112.G.Zoth and W.Bergholz,"A fast,preparation-free method to detect iron in silicon",J.Appl.Phys.67(1990)6764-6771.
    113.J.Lagowski,P.Edelman,A.M.Kontkiewich,O.Milic,W.Henley,M.Dexter,L.Jastrzebski,and A.M.Hoff,"Iron detection in the part per quadrillion range in silicon using surface photovoltage and photodissociation of iron-boron pairs",Appl.Phys.Lett.63,3043(1993).
    114.J.Lagowski,P.Edelman,M.Dexter,W.Henley,"Non-contact mapping of heavy metal contamination for silicon IC fabrication",Semicond Sci.Technol.7(1992)A185-!192.
    115.G.Obermeier,D.Huber,"Iron detection in polished and epitaxial silicon wafers using generation lifetime measurements",J.Appl.Phys.81(1997)7345.
    116.SEMILAB WT-85 Application Note.
    117.R.L.Meek,T.E.Seidel,"Enhanced solubility and ion pairing of Cu and Au in heavily doped silicon at high temperatures ",J.Phys.Chem.Solids,36(1975)731-740.
    118.R.N.Hall and J.H.Racette,"Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium,Silicon,and Gallium Arsenide",J.Appl.Phys.,35(1964)379-397.
    119.C.J.Gallagher,"Electrolysis of copper in solid silicon",J.Phys.Chem.Solids,3(1957)82-86.
    120.T.Heiser,A.Mesli,"Determination of the copper diffusion coefficient in silicon from transient ion-drift",Appl.Phys.A:Solids Surf,57(1993)325-328.
    121.H.Prigge,P.Gerlach,P.O.Hahn,A.Schnegg,and H.Jacob,"Acceptor compensation in silicon induced by chemomechanical polishing",J.Electrochem.Soc.,138(1991)1385-1389.
    122.R.Keller,M.Deicher,W.Pfeiffer,H.Skudlik,D.Steiner,and T.Wichert,"Copper in silicon",Phys.Rev.Lett.,65(1990)2023-2026.
    123.A.Mesli and T.Heiser,"Defect reactions in copper-diffused and quenched p-type silicon",Phys.Rev.B,45(1992)11632-11641.
    124.A.Mesli,T.Heiser,E.Mulheim,"Copper diffusivity in silicon:A re-examination ",Mater.Sci.Eng.,B,25(1994)141-6.
    125.S.K.Estreicher,"Copper,lithium,and hydrogen passivation of boron in c-Si",Phys.Rev.B,41(1990)5447-5450.
    126.S.K.Estreicher,"Rich chemistry of copper in crystalline silicon",Phys.Rev.B,60(1999)5375-5382.
    127.A.A.Istratov,C.Flink,H.Hieslmair,E.R.Weber,and T.Heiser,"Intrinsic diffusion coefficient of interstitial copper in silicon ",Phys.Rev.Lett.,81(1998)1243.
    128.D.E.Woon,D.S.Marynick,and S.K.Estreicher,"Titanium and copper in Si:Barriers for diffusion and interactions with hydrogen",Phys.Rev.B,45(1992)13383-13389.
    129.E.R.Weber,"Transition metals in silicon ",Appl.Phys.A:Solids Surf,30(1983)1-22.
    130.K.Graff,"Metal Impurities in Silicon-Device Fabrication",Springer,Berlin(1995).
    131.A.A.lstratova,E.R.Weber,"Physics of Copper in Silicon",J.Electrochem.Soc.,149(2002)G21-G30.
    132.M.O.Aboelfotoh,B.G.Svensson,"Copper passivation of boron in silicon and boron reactivation kinetics",Phys.Rev.B,44(1991)12742-12747.
    133.S.K.Estreicher,"Copper-related defects in silicon ",Physica B,273-274(1999)424-428.
    134.S.K.Estreicher,J.L.Hastings,"Cu-related complexes in silicon ",Mater.Sci Eng.,B,58(1999)155-158.
    135.T.Heiser,A.A.Istratov,C.Flink C,E.R.Weber,"Electrical characterisation of copper related defect reactions in silicon",Mater.Sci.Eng.B 58(1999)149.
    136.N.S.Minaev,A.V.Midryi,V.D.Tkachev,"Radiative recombination at thermal defects in silicon",Sov.Phys.Semicond,13,233(1979).
    137.J.Weber,H.Bauch,and R.Sauer,"Optical properties of copper in silicon:Excitons bound to isoelectronic copper pairs",Phys.Rev.B,25(1982)7688-7699.
    138.H.B.Erzgraber and K.Schmalz,"Correlation between the Cu-related luminescent center and a deep level in silicon",J.Appl.Phys.,78(1995)4066-4068.
    139.A.A.Istratov,T.Heiser,H.Hieslmair,C.Flink,J.Krueger,E.R.Weber,"A study of the copper-pair related centers in silicon ",Mater.Sci.Forum,258-263(1997)467
    140.M.Nakamura,"Dissociation of the 1.014 eV photoluminescence copper center in silicon crystal",Appl.Phys.Lett.,73(1998)3896.
    141.M.Nakamura,S.Ishiwari,and A.Tanaka,"Number of Cu atom(s)in the 1.014 eV photoluminescence copper center and the center's model in silicon crystal",Appl.Phys.Lett.,73(1998)2325-2327.
    142.M.Nakamura,H.Iwasaki,"Copper complexes in silicon",J.Appl.Phys.,86(1999)5372.
    143.M.Nakamura,"Influences of oxygen and carbon on the formation of the 1.014 eV photoluminescence copper center in silicon crystal",J.Electrochem.Soc.,147(2000)796-798.
    144.M.Nakamura,"Thermal equilibrium and stability of copper complexes in silicon crystal",Appl.Phys.Lett.,76(2000)2089-2091.
    145.A.A.Istratov,H.Hedemann,M.Seibt,O.F.Vyvenko,W.Schroter,T.Heiser,C.Flink,H.Hieslmair,E.R.Weber,"Electrical and recombination properties of copper-silicide precipitates in silicon ",J.Electrochem.Soc.,145(1998)3889
    146.O.F.Vyvenko,Solid State Phenom.,63-64,301(1998).
    147.G.W.Ludwig and H.H.Woodbury,"Electronic Structure of Transition Metal Ions in a Tetrahedral Lattice",Phys.Rev.Lett.,5(1960)98-100.
    148.B.Shen,T.Sekiguchi,K.Sumino,"Precipitation of Cu,Ni and Fe on Frank-type partial dislocations in Czochralski-grown silicon",Mater.Sci.Forum,196-201(1995)1207.
    149.B.Shen,T.Sekiguchi,R.Zhang,Y Shi,Y D.Zheng,K.Sumino, "Precipitation of Cu,Ni,and Fe on Frank-Type Partial Dislocations in Czochralski-Grown Silicon',Phys.Status Solidi A,155(1996)321-332.
    150.M.D.de Coteau,P.R.Wilshaw,R.Falster,"Gettering of Copper to Oxidation Induced Stacking Faults in Silicon",Phys.Status Solidi A,117(1990)403-408.
    151.S.A.McHugo,C.Flink,"Thermal stability of copper precipitates in silicon",Appl.Phys.Lett.,77,3598(2000).
    152.J.F.Hamet,R.Abdelaoui,G Nouet,"Effects of copper precipitation in =25 silicon bicrystals by deep-level transient spectroscopy",J.Appl.Phys.,68(1990)638-645.
    153.R.Rizk,X.Portier,G.Allais,G.Nouet,'Electrical and structural studies of copper and nickel precipitates in a =25 silicon bicrystal",J.Appl.Phys.,76(1994)952-958.
    154.Z Xi,D.Yang,J.Chen,J.Xu,Y Ji,D.Que,H.J.Moeller,"Influence of copper precipitation on oxygen precipitation in Czochralski silicon",Semicond.Sci.Technol.19(2004)299-305.
    155.A.A.Istratov,E.R.Weber,Electrical properties and recombination activity of copper,nickel and cobalt in silicon,Appl.Phys.A 66(1998)123-136.
    156.R.Sachdeva,A.A.Istratov,E.R.Weber,"Recombination activity of copper in silicon",Appl.Phys.Lett.,79(2001)2937-2939.
    157.T.Heiser,E.R.Weber,"Transient ion-drift-induced capacitance signals in semiconductors ",Phys.Rev.B,58(1998)3893.
    158.M.Shabani,T.Yoshimi,H.Abe,"Low-temperature out-diffusion of Cu from silicon wafers",J.Electrochem.Soc.143(1996)2025-2029.
    159.H.Vainola,E.Saarnilehto,M.Yli-Koski,A.Haarahiltunen,J.Sinkkonen,G.Berenyi,T.Pavelka,Quantitative copper measurement in oxidized p-type silicon wafers using microwave photoconductivity decay,APPLIED PHYSICS LETTERS 87(2005)032109.
    160.D.L.King,M.E.Buck,"Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells",Proceedings of 22nd IEEE Photovoltaic Specialist Conference,IEEE,New York,1991,p.303.
    161.P J.Holmes,"The Electrochemistry of Semiconductors",P.J.Holmes,Editor,Academic Press,Ltd,London(1962),p.329.
    162.R.M.Finne,D.L.Klein,"A Water-Amine-Complexing Agent System for Etching Silicon",J.Electrochem.Soc.,114(1967)965-970.
    163.D.B.Lee,"Anisotropic Etching of Silicon",J.Appl.Phys.,40(1969)4569.
    164.H.Seidel,L.Csepregi,A.Heuberger,H.BaumgSrtel,"Anisotropic Etching of Crystalline Silicon in Alkaline Solutions",J.Electrochem.Soc.,137(1990)3612-3626.
    165.E.Vazsonyi,K.De Clercq,R.Einhaus,E.Van Kerschaver,K.Said,J.Poortmans,J.Szlufcik,J.Nijs,"Improved anisotropic etching process for industrial texturing of silicon solar cells",Solar Energy Materials & Solar Cells 57(1999)179-188.
    166.A.J.Nijdam,E.van Veenendaal,H.M.Cuppen,J.van Suchtelen,M.L.Reed,J.G.E.Gardeniers,W.J.P.van Enckevort,E.Vlieg,M.Elwenspoek,"Formation and stabilization of pyramidal etch hillocks on silicon {100} in anisotropic etchants:Experiments and Monte Carlo simulation",J.Appl.Phys.,89(2001)4113-4123.
    167.E.D.Palik,O.J Glem1bocki,I.Heard,Jr.,P.S.Burno,and L.Tenerz,"Etching roughness for(100)silicon surfaces in aqueous KOH",J.Appl.Phys.70(1991)3291-3300.
    168.T.Baum,D.J.Schiffrin,"AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si 1 0 0 in KOH for micromachining applications",J.Micromech.Microeng.7(1997)338-342.
    169.S.A.Campbell,K.Cooper,L.Dixon,R.Earwaker,S.N.Port,D.J.Schiffrin,J.Micromech.Microeng.5(1995)209.
    170.Q B.Vu,D.A.Stricker,P.M.Zavracky,"Surface characteristics of(100)silicon anisotropically etched in aqueous KOH",J.Electrochem.Soc.143(1996)1372-1375.
    171.G.Z.Yan,P.C.H Chan,I.-M.Hsing,R.K.Sharma,J.K.O.Sin,"An improved TMAH Si-etching solution without attacking exposed aluminum",Proceedings of IEEE Conference on Micro Electro Mechanical Systems 2000,Miyazaki,Japan,23-27 January 2000,p.562.
    172.M.Matsuoka,Y Yoshida,M.Moronuki,"Preparation of silicon thin diaphragms free from micropyramids using anisotropic etching in KOH solutions",J.Chem.Eng.Jpn.25(1992)735-740.
    173.Y K.Bhatnagar,A.Nathan,Y.Lu,"New observations on pyramidal hillocks in the anisotropic etching of 1 0 0 silicon",Sens.Mater.8(1996)423-429.
    174.H.Seidel,L.Csepregi,A.Heuberger,H.Baumgartel,"Anisotropic etching of silicon in alkaline solutions Ⅰ:Influence of dopants ",J.Electrochem.Soc.137(1990)3612-26.
    175.E.Bassous,E.F.Baran,'The fabrication of high precision nozzles by the anisotropic etching of(100)silicon",J.Eiectrochem.Soc.125(1978)1321-1327.
    176.U.Schnakenberg,W.Bebecke,P.Lange,Transducers 91,Proceedings 6th International Conference on Solid-State S&A,San Francisco,CA,June 24-27,1991,p.815.
    177.L.M.Landsberger,S.Naseh,M.Kahrizi,and M.Paranjape,J.Microelectromech.Syst.5(1996)106.
    178.S.A.Campbell,K.Cooper,L.Dixon,R.Earwaker,S.N.Port,D.J.Schiffrin,"Inhibition of pyramid formation in the etching of Si p(100)in aqueous potassium hydroxide-isopropanol",J.Micromech.Microeng.5(1995)209-318.
    179.L.M.Landsberger,S.Naseh,M.Kahrizi,M.Paranjape,"On hillocks generated during anisotropic etching of Si in TMAH",J.Microelectromech.Syst.5(1996)106-116.
    180.H.Tanaka,Y.Abe,T.Yoneyama,J.Ishikawa,O.Takenaka,K.Inoue,"Effects of small amount of impurities on etching of silicon in aqueous potassium hydroxide solutions",Sensors and Actuators,4 82(2000)270-3.
    181.H.Tanaka,Y.Abe,K.Inoue,Proc.3rd Workshop on Physical Chemistry of Wet Etching of Silicon(Nara,Japan,June 2002)pp 58-61.
    182.H.Tanaka,D.Cheng,M.Shikida,K.Sato,"Characterization of anisotropic wet etching properties of single crystal silicon:Effects of ppb-level of Cu and Pb in KOH solution",Sensors and Actuators A 128(2006)125-131.
    183.P.Campbell,M.Green,"Light trapping properties of pyramidally textured surfaces",Journal of Applied Physics 62(1987)243-249.
    184.H.Nussbaumer,G.Willeke,E.Bucher,"Optical behavior of textured silicon",J Appl.Phys.75(1994)2202-2209.
    185.J.C.Pla,J.C.Duran,D.C.Skigin,R.A.Depine,"Ray tracing vs.electromagnetic methods in the analysis of antireflective textured surfaces",Proceedings of the 26th Photovoltaic Specialist Conference 1997;187-190.
    186.W.Shockley,W.T.Read,"Statistics of the recombinations of holes and electrons",Phys.Rev.,87(1952)835-842.
    187.B.Y.Lee,D.H.Hwang,O.J.Kwon,"Determination of Flow Pattern Defect Area by μ-Photoconductivity Decay Lifetime Measurement ",Jpn.J.Appl.Phys.37(I998)L902-L904.
    188.冀志江,张维连,王志军,“硅中锗对热施主的影响”,半导体杂志,18(1993)pp 17-9.
    189.V.V.Voronkov,G.I.Voronkova,A.V.Batunina,V.N.Golovina,M.G.Mil'vidskiI,,A.S.Gulyaeva,N.B.Tyurina,L.V.Arapkina,"Generation of Thermal Donors in Silicon:Effect of Self-lnterstitials",Physics of the Solid State,42(2000)2022-2029.
    190.A.Misiuk,W.Jung,"The Effect of Pressure on the Concentration of Thermal Donors in Czochralski Grown Silicon",198(1996)565-568.
    191.X.Jin,D.Yang,D.Que,A.Misiuk,"Investigation of thermal donors in Czochralski silicon annealed at 450 C under high pressure of 1 GPa",Physica B 339(2003)204-207.
    192.E.Hild,P.Gaworzewski,M.Franz,K.Pressel,"Thermal donors in silicon-rich SiGe",Appl.Phys.Lett.72(1998)1362-1364.
    193.D.Aberg,B.G Svensson,T.Hallberg,J.L.Lindstrom,"Kinetic study of oxygen dimer and thermal donor formation in silicon",Phys.Rev.B 58(1998)12944.
    194.H.Hashigami,Y.Itakura,and T.Saitoh,"Effect of illumination conditions on Czochralski-grown silicon solar cell degradation",J.Appl.Phys.93(2003)4240-4245.
    195.M.Sanati.S.K.Estreicher,"Temperature and sample dependence of the binding free energies of complexes in crystals:The case of acceptor-oxygen complexes in Si",Phys.Rev.B 72(2005)165206-8.
    196.J.Hattendorf,W.D.Zeitz,W.Schroder,N.V.Abrosimov,"On the formation of boron-germanium pairs in silicon-germanium mixed crystal",Physica B 340-342(2003)858-862
    197.T.Kawasaki,H.Katayama-Yoshida,"Valence control method of co-doping for the fabrication of metallic silicon from the first-principles calculations",Physica B 302(2001)163-164.
    198.A.A.Istratov,C.Flink,H.Hieslmair,"Solubility and gettering of copper in silicon",Mater.Sci.Eng.B,72(2000)99.
    199.C.Flink,H.Feick,S.A.McHugo,W.Seifert,H.Hieslmair,T.Heiser,A.A.Istratov,E.R.Weber,"Out-Diffusion and Precipitation of Copper in Silicon:An Electrostatic Model",Phys.Rev.Lett.,85(2000)4900-4903.
    200.C.Flink,H.Feick,S.A.McHugo,"Formation of copper precipitates in silicon",Physica B,273/274(1999)437.
    201.A.A.lstratov,O.F.Vyvenko,C.Flink,"Charge state of copper-silicide precipitates in silicon and its application to the understanding of copper precipitation kinetics",Mater.Res.Soc.Symposium on Defect and Impurity Engineered Semiconductors Ⅱ,Warrendal,USA,1998 p.313.
    202.D.West and S.K.Estreicher,S.Knack,J.Weber,"Copper interactions with H,O,and the self-interstitial in silicon",Phys.Rev.B 68(2003)035210-7.
    203.J.L.Hastings,S.K.Estreicher,P.A.Fedders,"Vacancy aggregates in silicon",Phys.Rev.B 56(1997)10215-10220.
    204.E.D.Palik,"Handbook of Optical Constants of Solids"(Academic,New York,1985).
    205.F.Llopis,I.Tobias,"Influence of Texture Feature Size on the Optical Performance of Silicon Solar Cells",Prog.Photovolt:Res.Appl.,13(2005)27-36.
    206.P.A.Basore,D.A.Clugston,"PCID version 4 for windows:from analysis to design",Proceeding of the 25th IEEE PVSC,1996,pp.377-381.
    207.查裙,程晓舫,丁金磊.翟载腾,茹美琴,“基于一条Ⅰ-Ⅴ曲线提取硅太阳电池参数的一种新方法”,太阳能学报,28(2007)992-995.
    208.Y.Murakami,Y.Satoh,H.Furuya,T.Shingyouji,"Effects of oxygen-related defects on the leakage current of silicon p/ n junctions",J.Appl.Phys.,84(1998)3175-3186.
    209.H.El Ghitani,M.Pasquinelli,"Influence of dislocations on dark current of multicrystalline silicon N+ P junction",J Phjs.Ⅲ France 3(1993)1931-1939.
    210.S.J.Robinson,A.G.Aberle,M.A.Green,Recombination Saturation Effects in Silicon Solar Cells,IEEE Trans.Electr.Dev.41(1994)1556-1569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700