用户名: 密码: 验证码:
氮和锗对直拉硅单晶机械性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路的快速发展,要求硅单晶大直径、无缺陷,这对硅单晶晶体的生长、加工工艺及后继的集成电路工艺提出了全新的挑战。随着硅单晶直径的增大,籽晶承重不断增加,硅片加工过程中的损伤、集成电路工艺中不断增加的热应力和重应力引起翘曲等新的问题对硅单晶的机械性能提出了新的要求。因此对单晶硅材料的机械性能研究,提高其机械强度成为集成电路工业中一个不可忽视的方向。
     掺杂是改善硅单品性能的一种重要方法。近年来,掺氮和掺锗的硅单晶可以抑制Void缺陷,并有很好的内吸杂能力,可以满足下一代集成电路工业的要求,逐渐受到产业界的重视。杂质原子不仅可以影响硅单晶的电学性能及微缺陷的形成,同时对硅单晶机械性能也有很大作用,但是相关的机械性能的研究很少。
     本论文偏重于杂质原子对硅单晶机械性能的影响,阐述了杂质原子与位错的相互作用,杂质对硅单晶塑性变形及断裂的影响,及常见杂质对硅单晶机械性能的影响。在压痕法研究氮和锗对硅中位错运动的影响和室温三点弯法研究锗对直拉单晶硅室温断裂强度的影响的基础上,提出了氮和锗原子影响硅单晶机械性能的机理。
     本论文首先系统的研究了压痕法研究硅单晶中位错运动的主要实验因素。研究了加载载荷、加载时间、热处理时间、热处理温度和样品晶向对位错运动的影响。结果表明位错滑移长度与加载载荷成正比,而与加载时间无关。并对热处理过程中位错的运动过程进行了理论的分析,发现位错运动过程中应力随热处理时间以指数的方式迅速衰减,相应的位错滑移距离与时间也存在指数关系;位错滑移距离与热处理温度正相关。在此实验的基础上,确定了实验的最佳条件。
     通过对比掺氮和不掺氮重掺锑直拉单晶硅中的位错运动,实验发现与普通轻掺硅单晶不同,位错在重掺锑硅单晶中滑移需要一个孕育期,这主要是由于重掺锑硅单晶中存在大量的位错钉扎源(锑原子,氧沉淀核心等),使得位错从杂质气氛下脱钉需要一定的时间。实验还发现,氮在重掺锑硅单晶中依然对位错运动有明显抑制作用:氮原子自身对位错的强烈钉扎作用和对氧沉淀产生的促进作用,使得含氮重掺硅单晶中的位错需要更长的孕育期,滑移距离也更短。
     本文还系统的研究了锗对直拉硅单晶机械性能的影响。研究表明,仅当锗浓
    
     浙江大学硕士生毕业论文
    度达到lxlo’“cm一时,锗才表现出对硅中位错运动的抑制作用。经过对位错运动
    过程的分析,认为锗的主要作用机理为在低应力阶段形成复合体和氧沉淀核心等
    位错钉扎源,降低了位错滑移速度并提高了位错的滑移临界应力。
     锗杂质对硅单晶的室温断裂强度的影响的实验研究表明:与普通直拉硅单晶
    相比,锗浓度为1又10lscm一3的掺锗硅单晶原生硅片的室温断裂强度并无明显变
    化;但含有氧沉淀的硅片断裂强度有明显提高。这说明锗原子本身对硅单晶断裂
    强度的影响较小,主要通过改变氧沉淀的密度和尺寸,来影响直拉硅单晶的断裂
    强度。当锗浓度为lx10‘“cm一3时,硅中氧沉淀的密度明显提高,尺寸变小,这些
    氧沉淀可以阻止微裂纹扩展并改变裂纹扩展路径,从而可以提高硅单晶的断裂强
    度。
     总之,实验表明,氮和锗不仅可以抑制硅单晶中的缺陷,还可以提高直拉硅
    单晶的机械性能,有望在下一代的集成电路中得到广泛的应用。这对于发展具有
    我国自主知识产权的集成电路用硅材料有重要意义。
The development of ultra large-scale integrated (ULSI) circuit requires large diameter and defect free Czochralski (CZ) silicon wafers, which challenges the traditional crystal growth process and the 1C processing of silicon crystal. Especially nowadays, it is often the critical problems in ULSI devices fabrication that defects and dislocations generated in silicon caused by the increased crystal diameter. The enlarged wafer diameter that demanded silicon wafers suffered much higher thermal stress and gravitational stress as well as the seed bearing more weight. Therefore, it is desirable to investigate the mechanical property of silicon crystal and enhance its mechanical property.
    It is well known that impurities influence not only the formation of microdefects and the electronic property, but also the mechanical property. In recent years, the nitrogen (N) doped and germanium (Ge) doped CZ silicon crystals have been received intensive attention due to their novel properties. Hence, it is worth to investigate the effect of N and Ge on the mechanical property from both the practical and theoretic purposes.
    This paper was focused on the interaction between the impurities and dislocations by indentation. It was founded that the distance traveled of dislocations was related to the load, annealing temperature, and crystal orientation, but independent with the loading time. By this method, the effect of common impurity dopants in CZ silicon were investigated and summarized. Our experiments suggest that the N enhanced the mechanical property of silicon either in lightly or in heavily doped wafers. And it was interesting that an incubation of the dislocations slide in the HSb CZ silicon was founded. The incubation was attributed that dislocations needed more time to escape from the pinning of the large amount of impurity atoms or complexes.
    On the other hand, the effect of N and Ge on the mechanical property of silicon crystal had been done systemically. For Ge doped wafers, the dislocation pinning
    
    
    
    
    could be observed only when Ge concentration was high than 1018cm"3. And the further experiment proved that the individual Ge atom hardly increased the fracture strength of silicon at room temperature. The enhancement of Ge on silicon was obtained mainly by the formation of complex or clusters with oxygen.
    In short, the better understanding on the mechanical property of silicon makes better use of the silicon material to ULSI industry. Also through the investigation on the N doped and Ge doped CZ silicon, it will greatly advance the development of our national intellectual property of the silicon material used for ULSI.
引文
[1] K. Hoshikawa, X. Huang, T. Taishi and T. Kajigaya, Dislocation-Free Czochralski Silicon Crystal Growth without the Dislocation-Elimination-Necking Process, Jpn. J. Appl. Phys., 38(1999) L1369-1371
    [2] T. Suzuki, S. Takeuci, H. Yoshinaga, Dislocation Dynamics and Plasticity, Springer, Berlin, 1991
    [3] S. M. Hu, On indentation dislocation rosettes in silicon, J. Appl. Phys. 46(1975) 1470-1472
    [4] I. Yonenaga, and K. Sumino, and K. Hoshi, Mechanical properties of Silicon contained dislocations with different oxygen concentration, J. Appl. Phys. 56(1984) 2346-2350
    [5] K. Sumino, I. Yonenaga, and M. Imai, T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals, J. Appl. Phys. 54 (1983) 5016-5020
    [6] Wei Ya-dong, and Liang Jun-wu, Chin. Phys. Lett. 13(1996) 382
    [7] T. Fukuda, and M. Koizuka, The 900℃ upper yield stress of Czochrlski silicon single crystals with carbon concentrations of 4.0×10~14cm~3and 3.5×10~15cm~3, J. Appl. Phys. 74(1993) 2420-2424
    [8] Tan T Y, Gardner E E and Tice W K, Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si, Appl.Phys.Lett 30 (1977) 175-176
    [9] A. Borghesi, B. Pivac, A. Sassella and A. Stella, "Oxygen precipitation in silicon", J. Appl. Phys., 77 (1995) 4169-4244
    [10] Yoichi Kamiura, Yoshinori Takeuchi and Yoshifumi Yamashita, "Annihilation of thermal double donors in silicon", J. Appl. Phys., 87(2000) 1681-1689
    [11] S. Cadeoa, S.Pizzini, M.Acciarria, A.Cavallini, "Oxygen precipitate precursors and low temperature gettering processes.I.Segregation of oxygen and thermal donor generation in the 600-850℃ range", Materials Science in Semiconductor Processing, 2(1999) 57-58
    [12] Sato. M., and Sumion. K. (1977) Proc. 5th Int. Conf. on High Voltage
    
    Electron Microscipy, E459
    [13] Louchet. F. Philos. Mag. A43 (1981) 1289
    [14] Seeger A. (1958) In Hangdbuck der Physik V112, S. Fl(?)gge(edt.), P.114, Spinger, Berlin
    [15] Sato M., and Sumino K., (1985) In Dislocations in solids, H. Suzuki, T. Ninomiya, K. Sumino and S. Takeuchi (eds.),E391 University of Tokyo Press, Tokyo
    [16] Sumino K. (1989) In Point and Extended Defects in Semiconductors, G. Benedek, A. Cavallini and W. Schr(?)ter (eds.). P.77, Plenum Press, New York and London
    [17] Koguchi M., Yonegaga I., and Sumino K. Oxygen donors developed around dislocations in silicon, Jpn. J. Appl. Phys. 21 (1982) L411-L413
    [18] Yonenaga. I., and Sumino. K. (1985) In Dislocations in Solids, H. Suzuke, T. Ninomiya, K. Sumino and S. Takeuchi (eds.). P. 385, University of Tokyo Press, Tokyo
    [19] Sumino. K., Harada. H., and Yonenaga. I., The Origin of the Difference in the Mechanical Strengths of Czochralski-Grown Silicon and Float-Zone-Grown Silicon, Jpn. J. Appl. Phys., 19 (1980) L49-L52
    [20] Abe T., Kikuchi. K., Shirai S., and Muraoka. S. (1981). In Semiconductor Silicon, H. R. Huff, J. Kriegler, and Y. Takeishi (eds.), E54, Electrochem. Soc., Princeton, N. J.
    [21] Sumino K, (1992), In Proc.1st Pacific RIM Internatl. Conj. on Advanced Materials and Processing, C. Shi, H. Li nd A. Scott(eds.), P.49,The Minerals, Metals &Materials Soc., Warrendale, P. A.
    [22] Masanori Akatsuks, Koji Sueoka et al.,Pinning effect on punched out dislocations in silicon wafers investigated using intendation method, Jpn. J. Appl. Phys. 36 (1997) L1422-L1425
    [23] Alexander H. and Haasen P., Rev. Solid St. Phys., 22 (1968) 28
    [24] Heggie M. and Jones R., Phil. Mag. A, 53, (1986) L65
    [25] Doerschel J., and Kirscht F. G. Phys. Star. Sol. (a) 64, (1981) K85
    [26] S. M. Hu, Stress-related problem in silicon technology, J. Appl. Phys. 70 (1991) R53-R80
    
    
    [27] J. R. Patel and A. R. Chaudhury, Macroscopic plastic properties of dislocation-free germanium and other semiconductor srystals I. yield behavior, J. Appl. Phys. 34 (1963) 2788-2799
    [28] B. Leroy and C. Plougonven, J. Electrochem. Soc. 127 (1980) 961
    [29] N. Yoshihiro, H. Otsuka, T. Osu, and S. Takasu, J. Electrochem. Soc. 126 (1979) 693
    [30] S. Takasu, H. Otsuka, N. Yoshihiro, T. Oxu, Strain Measurement in Optical Fiber Cable Using Resistance Wire, Jpn. J. Appl. Phys. 20 (1981) 25-30.
    [31] K. Yasutake, M. Umeno, H. Kawabe, Mechanical propertied of heat-treated Czochralski-rrown silicon crystals Appl. Phys. Lett. 37 (1980) 789-791
    [32] Deren Yang, Gan Wang, Jin Xu, Dongsheng Li, Duanlin Que, C. Funke, H. J. Moeller, Influence of oxygen precipitates on the warpage of annealed silicon wafers Microelectronic Engineering 66 (2003) 345-351
    [33] K. Sueoka, N. Lkeda, T. Yamamoto, S. Kobayashi, Morpholpgy and Growth Process of Thermally induced Oxide Precipitates in Czochralski Silicon, J. Appl. Phys. 74 (1993) 5437
    [34] K. Sueoka, M. Akatsuka, H. Katahama, N. Adachi, Solid State Phenomena 137 (1997) 57-58
    [35] K. Sueoka, M. Akatsuka, H. Katahama, N. Adachi, Effect of oxide precipitate sizes on the mechanical strength of Czochralski silicon wafers, Jpn. J. Appl. Phys. 36 (1997) 7095-7099
    [36] K. Sueoka, M. Akatsuka, H. Katahama, Dependence of Mechanical Strength of Czochralski Silicon Wafers on the Temperature of Oxygen Precipitation Annealing, J. Electrochmical Soc., 144 (1997) 1111-1120
    [37] I. yonenaga and K. Sumino, Dislocation dynamics in the plastic deformation of silicon crystals, Phys. Status Solidi A 50 (1978) 685-693
    [38] M. Suezawa, I. Yonenaga and K. Sumino, Phys. Status Solidi A 51 (1979)217
    [39] K. Sumino and I. Yonenaga, Phys. Status Solidi A 138 (1993) 573
    [40] I. Yonenaga, and K. Sumino, Mechanical behavior of Czochralski-silicon crystals as affected by precipitation and dissolution of oxygen atoms, Jpn. J. Appl.
    
    Phys. 21 (1982) 47-55
    [41] I. Yonenaga, K. Sumino, Role of Carbon in the Strengthening of Silicon Crystals, Jpn. J. Appl. Phys. 23 (1984) L590-L592
    [42] I. Yonenaga and K. Sumino, Influence of oxygen precipitation along dislocations on the strength of silicon crystals, J. Appl. Phys. 80 (1996) 734-738
    [43] Imai M., and Sumino K., In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals, Philos. Mag. A47, (1983) 599-621
    [44] Sumino K., and Imai M., Interaction of dislocations with impurities in silicon crystals studied by in situ X-ray topography, Philos. Mag. A47 (1983) 753-766
    [45] L. Jastrzebski, G. W. Cullen,and R. Soydan, et al., The effect of nitrogen on the mechanical properties of roast zone silicon and on CCD device performance, J. Electrochem. Soc., 132 (1987) 466-470
    [46] Tokumaru Y., Okushi H., Masui T., and Abe T., Deep Levels Associated with Nitrogen in Silicon, Jpn. J. Appl. Phys. 21(1982) L443-444
    [47] D. Yang, J. Lu, L. Li, H. Yao and D. Que, Thermal acceptor formation in nitrogen-doped silicon, Appl. Phys. Lett., 59 (1991) 1227-1229.
    [48] D. Yang, R. Fan, L. Li and D. Que, Effect of nitrogen-oxygen complex on electrical properties of Czochralski silicon, Appl. Phys. Lett., 68 (1996) 487-489.
    [49] M. Suezawa, K. Sumino, H. Harada and T. Abe, Nitrogen-oxygen complexes as shallow donors in silicon crystals, Jpn. J. Appl. Phys., 25 (1986) L859-861
    [50] M. Suezawa, K. Sumino, H. Harada and T. Abe, The nature of nitrogen-oxygen complexes in silicon, Jpn. J. Appl. Phys., 27(1988) 62-67
    [51] X. H. Shi, R L. Liu, et al, Annealing behavior of N-O complexes in Si grown under nitrogen atmosphere, Solid State Communication, 106 (1998) 669-671
    [52] Xuegong Yu, Deren Yang, Xiangyang Ma, Jiansong Yang, Liben Li, and Duanlin Que, Grown-in defects in nitrogen-doped Czochralski silicon, J. Appl. Phys., 92(2002) 188-194
    [53] Xuegong Yu, Deren Yang, Xiangyang Ma, Yejun Shen, Daxi Tian, Liben Li and Duanlin Que, Oxidation-induced stacking faults and related grown-in oxygen
    
    precipitates in nitrogen-doped Czochralski silicon, Semicond. Sci. Technol. 18 (2003) 393-397
    [54] Xuegong Yu, Deren Yang, Xiangyang Ma, Liben Li and Duanlin Que, Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon, Semicond. Sci. Technol. 18 (2003) 399-403
    [55] F. Shimura, T. Higuchi and R. S. Hockett, Out diffusion of oxygen and carbon in Czochralski silicon, Appl. Phys. Lett., 53 (1988) 69-71
    [56] Q. Shui, D. Yang, L. Li, X. Pi and D. Que, Intrinsic gettering of Czochralski silicon annealed in argon and nitrogen atmosphere, Physica B, 307 (2001) 40-45
    [57] Xiangyang Ma, Xuegong Yu, Ruixin Fan, and Deren Yang, Formation of pnp bipolar structure by thermal donors in nitrogen containing p-type Czochralski silicon wafers, Appl. Phys. Lett., 81 (2002) 496-498
    [58] Can Cui, Deren Yang, Xuegong Yu, Xiangyang Ma, Liben Li, and Duanlin Que, Effect of nitrogen on denuded zone in Czochralski silicon wafer, Semicond. Sci. Technol. 19 (2004) 548-551
    [59] Xuegong Yu, Deren Yang, Xiangyang Ma, Duanlin Que, Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers, Microelectronic Engineering 69 (2003) 97-104
    [60] D. Yang, J. Chu, J. Xu, D. Que, Behavior of oxidation-induced stacking faults in annealed Czochralski silicon doped by nitrogen, J. Appl. Phys. 93 (2003) 8926-8929.
    [61] Q. Sun, K. H. Yao, and H. C. Gatos, Effects of nitrogen on oxygen precipitation in silicon, J. Appl. Phys., 71 (1992) 3760-3765.
    [62] D. Li, D. Yang and D. Que, Effects of nitrogen on dislocations in silicon during heat treatment, Physica B 273-274, (1999) 553-556
    [63] Masanori AKASUKA and Koji SUEOKA, Pirming effect of punched-out dislocations in Caron-, Nigrogen-, or Boron-doped silicon wafers, Jpn. J. Appl. Phys., 40 (2001) 1240-1241
    [64] M. V. Mezhenny(?), M. G. Mil'vidski(?), and V. Ya. Reznik, Specific features in the generation and motion of dislocations in silicon single crystals doped with
    
    nitrogen, Physics of the Solid State, 44 (2002) 1278-1283
    [65] S. Binetti, R. Somaschini, A. Le Donne, E. Leoni, S. Pizzini, D. Li and D Yang, Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon, J. Phys.: Condens. Matter, 14 (2002) 13247-13254
    [66] G. Wang, D. Yang, D. Li, Q. Shui, J. Yang and D. Que, Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method, Physica B, 308-310 (2001)450-453
    [67] Deren Yang, Xuegong Yu, Xiangyang Ma et al..Germanium effect on void defects in Czochralski Silicon. Journal of Crystal Growth, 243 (2002) 371-374
    [68] Brinkevich D. I, Gorbacheva N.I, Petrov V.V et al.. Thermal-defect formation in silicon doped with germanium. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 25(1989) 1376-1378
    [69] 刘峰,张亿延,全国半导体集成电路硅材料学术会议论文集.1999,大连,P.110
    [70] Dashevskii M.Ya, Dokuchaeva A.A.,Sadilov S.I. On the solubility of oxygen in silicon doped with germanium. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 25 (1989) 673-674
    [71] Dashevskii M.Ya, Lymar S.G, Dokuchaeva A.A. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, Influence of germanium on the behavior of oxygen in silicon, 21(1985) 1827-1830
    [72] Babitskii Yu. M, Gorbacheva N.I, Grinshtein P.M. et al. Kinetics of generation of low-temperature oxygen donors in silicon containing isovalent impurities, Fizika i Tekhnika Poluprovodnikov 22(1988) 307-312
    [73] 冀志江,张维连,王志军,硅中锗对热施主的影响.半导体杂志,18(1993)9-17
    [74] Babitskii Yu.M,Orinshtein EM, Ilin M.A. et al.. Behavior of oxygen in silicon doped with isovalent impurities. Fizikai Tekhnika Poluprovodnikov, 15(1985) 198 2-1985
    [75] Brinkevich D.I, Gorbacheva N.I, Petrov V.V et al.. Thermal-defect formation in silicon doped with germanium. Izvestiya Akademii Nauk SSSR, Neorganicheskie
    
    Materialy, 25(1989) 1376-1378
    [76] 张维连,孙军生,谭柏梅等,锗对CZSi中新施主的影响.人工晶体学报,29(2000)51-53
    [77] 张维连,谭柏梅,孙军生等,CZSi中锗增强氧外扩散现象.半导体杂志,24(1999)15-17
    [78] 冀志江,张维连,王志军,掺锗直拉硅片三步退火本征吸除清洁区形成的研究.电子科学学刊.18(1996)217-220
    [79] Xuegong Yu, Deren Yang, Xiangyang Ma et al. Intrinsic gettering in germanium doped Czochralski crystal silicon crystals. Journal of Crystal Growth, 250 (2003): 359-363
    [80] 张维连,李嘉席,陈洪建等,掺锗CZSi原生晶体中氧的微沉淀.半导体学报,23(2002)1073-1077
    [81] 张维连,谭柏梅,张颍怀,锗对CZSi中氧沉淀成核和沉淀形态的影响.固体电子学研究进展,21(2001)92-96
    [82] 张维连,冀志江,刘彩池,掺入杂质级等价元素锗的CZSi晶体性能研究.固体电子学研究进展,14(1994)352-356
    [83] Ueki.T, Itsumi M, Takeda T., Carbon in Grown-in defects in czochralski silicon and its influence on gate-oxide defects. Jpn J.Appl Phys, 37 (1999) 56-95
    [84] Kishino S., Matsushita Y., Kanamori M., and lizuka T., Thermally Induced Microdefects in Czochralski-Grown Silicon: Nucleation and Growth Behavior, Jpn. J. Appl. Phys. 21 (1982)1-12
    [85] Leroueille J. Phys. Stat. sol. (a) 67 (1981) 177
    [86] T. Fukuda and A. Ohsawa, Mechanical strength of Czochralski silicon crystals with carbon concentrations at and below 10~15cm~3,J. Appl. Phys., 73(1993), 112-117
    [87] T. Taishi, X. Huang, T. Wang, I. Yonenaga and K. Hoshikawa, Behavior of dislocations due to thermal shock in B-doped Si seed in Czochralski Si crystal growth, J. Cryst. Growth, 241 (2002) 277-282.
    [88] T. Taishi, X. Huang, T. Fukami and K. Hoshikawa, Dislocation-free Czochralski Si crystal growth without the Dash-necking process: Growth from undoped Si melt, Jpn. J. App. Phys., 39 (2000) L191-194
    
    
    [89] X. Huang, T. Taishi, I. Yonenaga and K. Hoshikawa, Dislocation-free Czochralski silicon crystal growth wiout dash necking, Jpn. J. Appl. Phys., 40 (2001) 12-17
    [90] X. Huang, T. Taishi, I. Yonenaga and K. Hoshikawa, Dislocation-free Czochralski Si crystal growth without Dash necking using a heavily B and Ge codoped Si seed, Jpn. J. Appl. Phys.,39 (2000) L1115-1117.
    [91] Alex Antonelli, Jo(?)o F. Justo and A. Fazzio, Dopant interaction with a dislocation in silicon: local and non-local effects, Physica B 308-310(2001) 470-473
    [92] I. Yonenaga, Dislocation behavior in highly impurity-doped Si, Journal of Material Science: Material in Electronics 12(2001) 285-288
    [93] I. Yonenaga, Dislocation behavior in heavily impurity doped Si, Scripta Materialia 45(2001) 1267-1272
    [94] I. Yonenaga, T. Taishi, X. Huang, and K. Hoshikawa, Dynamic characteristics of dislocation in heavily boron-doped Silicon, J. Appl. Phys., 89(2001) 5788-5790
    [95] S. B. Kulkarni, and Wendell S. Williams, Dislocation velocities and electronic doping in silicon, J. Appl. Phys., 47 (1976) 4318-4324
    [96] J. R. Patel, L. R. Testardi, and P. E. Freeland, Electronic effects on dislocation velocities in heavily doped silicon, Phys. rev. B 13(1976) 3548-3557
    [97] Naoki Ono, Kounosuke Kitamura, Ken Nakajima and Yasushi Shimanuki, Measurement of Yung's Modulus of silicon single crystal at high temperatue and its dependency on Boron concentration using the flexural vibration method, Jpn. J. Appl. Phys., 39 (2000) 368-371
    [98] Guolin Yu, Junji Watanabe, Katsutoshi Izumi, Kenshiro Nakashima, et al., Mechanical property characterization of Boron-doped silicon by Berkovich-Type indenter, Jpn. J. Appl. Phys., 40 (2001) L183-L185
    [99] T. Fukuda and Akira Ohsawa, Mechanical strength of silicon crystals with oxygen and boron impurities, Appl. Phys. Lett., 58 (1991) 2634-2635
    [100] M. Akatsuka, K. Sueioka, Adachi, N.; Morimoto, N.; Katahama, H.,Mechanical properties of 300 mm wafers, Microelectronic Engineering 56 (2001) 99-107
    
    
    [101] K. Masuda-Jindo, V.K.Tewary, and R.Thomson, J. Mater. Res., 6 (1991) 1553
    [102] 大连理工大学无机化学教研室编,无机化学,高等教育出版社,1990
    [103] 印永嘉主编.大学化学手册.济南:山东科学技术出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700