用户名: 密码: 验证码:
热成形板料加热装置温度场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热成形技术是近年来兴起的一项专门利用高强钢板生产高强度热冲压件的制造技术,在实现汽车轻量化的同时可保证强度和刚度,显著提高汽车的安全性。其工作原理是利用加热装置对高强度硼合金钢进行加热使之奥氏体化,再将红热的钢板送入有冷却系统的模具中,在冲压成形的同时对其进行淬火处理,使奥氏体完全转变为马氏体,钢板强度由常温状态下的500~600MPa提高到1500MPa。
     加热装置内的加热温度和温度场的均匀化都会影响板料的加热质量,从而影响热成形件的产品质量和性能。加热温度过低,板料得不到奥氏体。加热温度过高或高温下的保温时间过长,会造成板料的过热或过烧。钢板过热会造成晶粒粗大,影响钢板性能。钢板过烧后性能严重恶化,淬火时易龟裂,组织无法恢复。可见,热成形的加热装置在整个热成形生产线中占有十分重要的地位。
     本课题介绍了高强钢的热成形技术、加热系统数值模拟中的关键技术和数值模拟流程。根据热冲压的工艺要求对加热装置的基本结构、传动系统等进行设计,重点对加热系统进行设计开发,采用数值模拟技术对温度场进行模拟分析,验证加热系统设计的正确性,并对加热装置进行优化。
Applications of high-strength stamping parts by hot-forming technology in the automotive vehicle bodies can achieve improve vehicles safety and lighter the weight at the same time to meet the increasingly stringent automotive crash-safety and emission standards requirements.In recent years,the hot-forming technology is more and more popular with vehicle manufacturers.
     The hot-forming technology is just for high-strength steels which have good hardenability,such as 22MnB5 and 30MnB.At room temperature,the strength of high-strength steel is about 500~600MPa,after the hot-forming,the strength can reach 1500MPa.The stamping parts which used hot-forming technology are light weight,high strength,high precision,good forming quality,no rebound,and are used in the higher strength parts,such as A pillar,B pillar,door crash beams,front and rear bumper and so on.
     In foreign countries,the hot-forming technology has been widely used.In china,hot-forming technology has just begun,make major research on heat-forming process and hot-forming mold,less research on hot-forming heating device and its numerical simulation.
     In the hot-forming process,heating the sheet is a very important aspect,the heating device is a core equipment in hot-forming production line.Heating temperature and temperature distribution affect the heated products' performance and determines the quality of hot-forming stamping parts.If the heating temperature is too high,sheet will burn-off and easily be cracked when quenching,waste the steel.If the heating temperature is too low,sheet will can't obtain austenite,which affect the quality of hot-forming stamping parts.If the temperature field is not uniform will affect the uniform of sheet' temperature.The heating quality can be guaranteed when the heating temperature is appropriate and the temperature field is uniform.At present.we don't have heating device for high-strength steel'hot-forming.In order to meet the domestic automotive industry' need of high strength steel' hot stamping parts,the hot-forming heating device has been designed and simulated in this article.
     At present,the hot-forming heating devices have two types,including roller heating devices and step-by-step heating device.In order to save production costs,improve energy efficiency,heating device to ensure productivity and product quality,this hot-forming heating device is roller heating device,which designed to burn natural gas and be controlled at nitrogen-based atmosphere,this heating device has low labor intensity,high degree of mechanization and automation,low environmental pollution and so on.
     According to the technical requirements and production needs,designed the overall structure of hot-forming technology' heating device,reasonable layout the transmission components,heating elements and gas pipelines,ect.Designed heating device' critical systems,such as roller bearing structure with the furnace,combustion, heating elements and so on.Calculated heat-related parameters,such as heat transfer and thickness of lining,fuel combustion and heating device'power.
     Combine of numerical simulation respectively simulate the temperature field of the furnace and lining' temperature field.Established the finite element model of furnace in ANSYS' CFD analysis module,applied loads and constraints,then solve it.According the simulation results of furnace temperature,to optimize the structure of heating device,determine this heating device is 27 radiant tube(hot zone radiant tube' interval is 1m).Simulated the heating device' heating process,with this structure,optimize the heating time,the heating time is 6840s.Simulated the temperature field of the lining in THERMAL module.According the lining' simulation temperature field to verify the design is correct.This lining' heat elimination is very less,the heating device has less heat loss,can rapid warming,meet the technological' requirements.By simulating the hot-forming heating device' temperature field,to optimize the heating device' structure and heating parameters,to verify the correctness of design.
     By designing and simulating the hot-forming technology' heating device to make a preparation for establishing a complete production line of hot-forming,to fill the domestic hot-forming heating device' blank,to make possible for obtaining good performance of high-strength steel' hot stamping parts and to promote the commercial of hot-forming' high-strength stamping parts,in order to accumulate valuable experience for further study and numerical simulation techniques.
引文
[1]Turetta A,Bruschi S,Ghiotti A.Investigation of 22MnB5 formability in hot stamping operations[J].Journal of MaterialsProcessing Technology,2006(7).
    [2]Lucia Garcia Aranda,Yvan Chastel.Hot stamping experiment and numerical simulation of pre-coated USIBOR1500 quenchable steels[J].Pascal Ravie,2003(1):261-266.
    [3]许路萍,邵光杰,李麟,张恒华.汽车轻量化用金属材料及其发展动态[J].上海金属,2002(24).
    [4]陆匠心,王利,应白桦,马朝晖.高强度汽车钢板的特性及应用[J].汽车工艺与材料,2004(6):3.
    [5]J Cai,J Lin and T A Dean.A novel process:hot stamping and cold die quenching[J].Mechanical and Manufacturing Engineering,2007:702-710.
    [6]Kopp R,Karnhausen K,Souza M M.Numerical simulation method for designing thermomechanical treatment[J].Illustrated by Bar Rolling,1991(20):351-355.
    [7]Sellars C M.Modelling microstructure development during hot rolling [J].Material Science and Technology,1990(11):1072-1081.
    [8]Kumar A,J ha S.Modelling the microstructure evolution during hot compression of low carbon steel[J].Steel Research,1993(64):210-217.
    [9]Eriksson M,Oldenburg M.Testing and evaluation of material data for analysis of forming and hardening of boron steel components[J].Modelling Simulation of Material Science Engineering,2002(10):277-294.
    [10]L.G.Aranda,P.Ravier,Y.Chastel.Hot stamping of quenchable steels.Material data and process simulations[C].Proceeding of the IDDRG 2003Conference,2003:164 - 166.
    [11]Garcia Aranda L,Chastel Y,Fernandez Pascual J.Modelling hot stamping of quenchable steel[C].5th International ESAFORM Conference on Material Forming,2002.
    [12]Kopp R,Becker M.A concept for dynamic remeshing at FEM simulation showed by the example of the forging process[J].Advantage Technology of Plast,1990:179.
    [13]陆匠心,王利,应白桦,马朝晖.高强度汽车钢板的特性及应用[J].汽车工艺与材料,2004(6):21-23.
    [14]仲文兴,于迎扬.研究淬火硼钢的热成形实验[C].第五届国际材料与热加工物理模拟及数值模拟学术会议,2007(10):7.
    [15]Chen H Q,Zhang Q L.Simulation and prediction of microstructure in hot forming of metals.Transactions of Nonferrous Metals Society,2000(8).
    [16]M Merklein,J Lecher.Investigation of the thermo-mechanical properties of hot stamping steels[J].Journal of Materials Processing Technology,2006(177):452-455.
    [17]戎宗义.国内外加热炉和热处理炉的现状和节能技术[JJ.特种钢,1999(5):12.
    [18]周敏文,成琦玲.热处理炉的燃烧及控制系统的设计与选择[J].鞍钢技术,1998:3.
    [19]李文辉.辊底式加热炉综合性节能降耗[J].能源技术,2002(4):8.
    [20]M Geiger,M Merklein,C Hoff.Basic investigation on the hot stamping steel 20MnB5[C].Proceedings of the Sheet Metal 2005 Conference,2005:795-802.
    [21]Pan jiansheng.Computer Aided Desgin of Complicated Quenching Process by Means of Numerical Simulation Method[C].Proceeding of the 3rd International Conference on Quenching and Control of Distortion,1999:251-259.
    [22]王洪俊,范海雁.轿车车身零件制造中的热成形技术[J].模具制造,2005(4).
    [23]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981:5-7.
    [24]Perry J.An engineers experience in numerical modeling of thermo-flows[C].Proceedings of 1st Biennal Engineering Mathematical Conference,1994:11-13.
    [25]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [26]Menguc M P,Viskanta R.Radiative transfer in three-dimensional rectangular enclosures containing inhomogeneous,anisotropically scattering media.Journal of Quantitative Spectroscopy and Radiative Transfer,1985(33):533-49.
    [27]Fitzgerald F,Sheriden A J.Prediction of temperature and heat transfer distribution in gas-fired pusher-repeating furnace.Journal of the Institute of Fuel,1974,47(390):21-27.
    [28]Hottel H C,Cohen E S.Radiant heat exchange in gas filled enclosure:Allowance for non-uniformity of gas temperature.JAIChE,1958(3):41-47.
    [29]Spalding D B,Palankar S W.A Calculation Procedure for Heat Mass and Momentum Transfer in 3-De Flows.International Journal of Heat and Mass Transfer,1972(15):1086-1787.
    [30]匡奇.三维非线性有限元在热处理炉中的应用研究[D].上海交大硕士论文.2001.
    [31]刘永胜.多热源合成碳化硅炉温度场数值模拟及实验研究[D].西安科技学院学位论文,2002.
    [32]陶文栓.数值传热学[M].西安:西安交通大学出版社,2004.
    [33]李义科,李保卫,任雁秋等.加热炉热过程数学模型与燃烧过程计算机控制的研究[J].包头钢铁学院学报,2002,21(2):138-143.
    [34]Satler F M,Costik J A.Mathematical model of the heat transfer within a repeating furnace.Joumal of the institute of fuel,1974,47(390):3-19.
    [35]Wang Juan,Mao Yu,Li Lihong.Numerical Simulation of the Effect of Air Distribution on Turbulent Flow and Combustion in a Tubular Heating Furnace[J].Petroleum Science,2005,2(1):43-47.
    [36]杨世铭,陶文栓.传热学(第三版)[M].北京:高等教育出版社,1998
    [37]史光梅,刘朝.工业炉内辐射换热模型研究进展[J].工业加热,2004(5):9-12.
    [38]李保卫,贺友多,丁立刚等.辐射换热的输运模拟研究[J].工程热物理学报,1996,17(2):239-243.
    [39]刘林华,余其铮,阮立明等.求解辐射传递方程的离散坐标法[J].计算物理.1998.15(3):337-343.
    [40]Spalding D B,Palankar S V.A Calculation Procedure for Heat Mass and Momentum Transfer in Three-dimensional Parabolic Flows[J].International Journal of Heat and Mass Transfer,1972(15):1787-1086.
    [41]Baowei Li,Zengwu Zhao,Yike Li,Wenfei Wu and Daqiang Can g.Numerical simulation of fluid flow in a reheating furnace with multi-swirling-burners[J].Journal of University of Science and Technology.2003,5(10):20-23.
    [42]单丽平,王京,李静.辊底式热处理炉钢板温度预报模型的研究及应用[J].钢铁研究学报,第20卷第4期。2008,4.
    [43]Yang D Y,Yoon Y h,Lee N K.Modular remeshing:a practical method of 3-Dremeshing in forging of complicated parts[J].Advantage Technology of Plast.1990:171.
    [44]Blacker T D,Stephenson M B.Paving:A new approach to automated quadrilateral mesh generation[J].International Journal For Numerical Methods in Engineering,1991:811-847.
    [45]蔡乔方.加热炉[M].冶金工业出版社,2005(1):168-177.
    [46]张华,杨继淳.氮基保护气氛辊底式炉热处理生产线[J].轴承,2004(12).
    [47]西北工业大学《可控气氛原理与热处理炉设计》编写组.可控气氛原理及热处理炉设计[M].人民教育出版社,1978.
    [48]B.M.蒂姆恰可,B.J.古索夫斯基.加热炉与热处理炉计算手册[M].北京:机械工业出版社,1989.
    [49]E.E.卡里尔著,陈熙,周晓青译.燃烧室与工业炉的模拟[M].北京:科学出版社.1987.
    [50]龚曙光.ANSYS基础应用及范例分析[M].北京:机械工业出版社,2003.
    [51]章钧耕,邵智才,范云良.底部局部辐射加热窑炉内温度场数值模拟[J].中国陶瓷,1997(2).
    [52]Niu J,Wen Z,Wang J S.Mathematical model optimization control simulation system for roller hearth heat treating furnace[J].Energy for metallurgical Industry.2007
    [53]徐兆康.工业炉设计基础[M].上海交通大学出版社,2004(1):7-9.
    [54]Harald Lehmann,Rolf Schwartz.Roller hearth furnaces for hot-form hardening[C[.CHS2021.
    [55]Neugebauer R,Altan T,Gedgenr M.Sheel metal forming at elevated temperatures[J].Annals of the CIRP,2006(55):793-816.
    [56]樊东黎.邢世高.可控气氛热处理的进展[J].国外金属热处理,1997(04).
    [57]管恩荃.高温氮基可控气氛热处理炉[J].金属热处理,2003(9).
    [58]周全.汽车超高强度硼钢板热成形工艺研究[D].同济大学硕士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700