用户名: 密码: 验证码:
QFP焊点可靠性及其翼形引线尺寸的优化模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SMT焊点的可靠性问题是关系到电子产品能否广泛应用的关键问题。本文针对某型号产品对QFP元器件的特殊要求,利用有限元分析方法,通过改变引线几何尺寸、模拟焊点应力应变变化趋势等影响QFP元器件焊点可靠性的主要因素进行了系统的研究,并通过热循环试验对采用有限元计算得到的结果进行了验证。
     研究建立了J形引线的二维有限元分析模型,计算结果表明:J形引线元器件焊后整体变形明显,焊点应力应变最大部位位于焊点根部,焊趾处次之,中心部位最小;J形引线焊点的根部应力集中区域比较广,为整个焊点最薄弱的部位,易发生疲劳破坏,计算结果与实际情况相吻合。
     重点探讨了QFP翼形引线的可靠性问题,二维模拟结果显示:引线焊点最内侧底面部位应力集中明显,是整个焊点最脆弱的部分;工艺尺寸选择引线厚度0.15mm,引线高度0.65mm,与焊盘接触长度0.5mm,与陶瓷接触长度0.15mm时,二维结构最稳定。三维模拟结果显示:引线间距相同时,随着引线宽度的增加,焊点最大应力值逐渐增加,引线宽度相同时,随着引线间距的增加,焊点最大应力值并不完全呈下降趋势,存在一个焊点最大应力的最小值。优化模拟结果发现,引线宽度为0.15mm,中心间距0.2mm(实际存在间距0.05mm),可能是QFP元器件微型化发展的极限值。
     在数值模拟的基础上,通过对QFP元器件的焊点抗拉试验与加速老化试验的研究发现:固定QFP元器件的引线间距时,随着引线宽度的增加,焊点的抗拉强度逐渐减小。固定引线宽度为0.22mm时,QFP-100元器件的抗拉强度最大,QFP-48元器件的抗拉强度次之,QFP-32元器件的抗拉强度最小,均与模拟计算结果相吻合。加速老化试验的结果表明:QFP元器件焊点失效的实际热循环次数(186次)与理论模拟结果(213次)基本吻合,随着热循环次数的增加,焊点抗拉强度逐渐降低,断裂方式由韧性断裂向脆性断裂转变。
     研究结果为某型号产品组件优化提供了数据支持,对于电子行业QFP元器件的焊点寿命评价具有较好的理论指导意义。
The reliability of the SMT soldered joints is a crucial problem for the application of electronical product used in many fields. To meet the needs of the special requestments of QFP devices for the certain product, the FEM method was used to study the effects of lead geometry sizes, stress-strain distribution of the soldered joints and other factors on the reliability of QFP soldered joints, and the thermal cycling experiment was used to validate the FEM results.
     With the help of 2-D FEM model of J-lead, the simulated results indicate that the distortion of the whole J-lead device was obvious; the stress and strain of the J-lead soldered heel was bigger than the other place of the soldered joints and the stress distributed a wide area, where was the weakest place of the whole soldered joints, so it was easy to lose efficacy. The stress and strain in the J-lead soldered toe was less than that in the heel of the soldered joint, the stress and strain in the center place of J-lead soldered joints was smallest and the simulated results were concordant with the experimental results.
     The reliability was mainly researched for the gull wing lead of QFP devices. The 2-D analysis results indicate that the inboard of the soldered joints was the weakest position, where the stress was hardly concentrated, so it was easily to be destroyed. When the lead thickness is 0.15mm, the lead height is 0.65 mm, the touch length between ceramic and lead is 0.15mm and the touch length between solder pad and lead is 0.5mm, the 2-D structure will be the most stable. The 3-D analysis results indicate that when the lead pitches are the same, the maximum equivalent stress of the soldered joints increases with the increasing of lead widths. When the lead widths are the same, the maximum equivalent stress of the soldered joints doesn’t decrease straightly with the increasing of lead pitches, and but a minimum value exists in the curves of the maximum equivalent stress values. The simulated results also indicate that lead width of 0.15mm and lead pitch of 0.2mm maybe the limit value of lead pitches of QFP.
     On the bases of the numerical simulation, the tensile tests and the accelerated aging tests of the soldered joints were made in this paper. The results indicate that when the lead pitch of QFP devices was fixed, with the increasing of the lead width, the tensile strength of the soldered joint was decreasing. When the lead width was 0.22mm, the tensile strength of the QFP-100 devices was the highest, the tensile strength of QFP-48 was lower and the tensile strength of QFP-32 is lowest, which were concordant with the experiment results. The accelerated aging tests show that the real life of 186 times was close to the theory result of 213 times and with the increasing of the thermal cycling times, the tensile strength of the soldered joints decreased gradually, and the fracture mechanism changed from tough fracture to brittle fracture.
     The research results provided data support for some type military products and possess favorable guidance meaning for predicting the working life of soldered joints in electronic industry.
引文
[1] 王国忠, 王春青, 钱乙余. 国外微电子表面组装焊点形态问题研究现状[J]. 电子工艺技术, 1995, 3: 3~7.
    [2] 施哲文, 吴建生. 混装电路板焊接工艺技术探讨[J]. 电子工艺技术, 2002, 23(2): 59~63.
    [3] 张晟, 赵俊伟. 细间距 SMD 焊接强度试验研究[J]. 电子工艺技术, 2000, 21(4): 144~147.
    [4] Lau J. Solder joint reliability of surface mount technology connectors[J]. Transaction of the ASEM, Journal of Electronic Packaging, 1993, 115(2): 180~188.
    [5] 张文典.21世纪 SMT 发展趋势及对策[J]. 电子工艺学报, 2001, 22(1): 1~4.
    [6] 况延香, 朱颂春. 微电子封装技术与 SMT 将携手走向未来[J]. 电子工艺技术, 2004, 25(6): 273~274.
    [7] Editorial. The future of microelectronics and photonics and the role of mechanics and materials[J]. ASEM Journal of Electronic Packaging, 1998, 120(1): 1~11.
    [8] 杨建生. 超细间距方形扁平封装与球栅阵列封装的比较及其发展趋势[J]. 微电子技术, 2003, 31(2): 61~65.
    [9] Trinite, George. Printed circuits in the 21st century[J]. Printed Circuit Fabrication, 1997, 20(11): 52, 54, 56, 58~59.
    [10] Aihara T, Sasajima H, Oota K. Development of reliability and moldability on fine pitch ball grid array by optimizing materials[J]. Journal of Electronic Packaging, Transactions of the ASME, 2001, 123(1): 88~94.
    [11] 李志民. 世界传真[J]. 电子产品世界, 2001, (6): 17~19.
    [12] 张艳, 罗茂盛. PCB 自动设计中表面安装器件预布线方法研究[J]. 高性能计算技术, 2005, (173): 34~38.
    [13] Pan J, Ronald M, David J. Critical variables of solder paste stencil printing for micro-BGA and fine-pitch QFP[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(2): 125~132.
    [14] Nakatsuka, Yasuo, Morita, et al. High performance ceramic QFP with fine pitch and high lead count[J]. Sumitomo Metals, 1993, 45(2): 165~172.
    [15] 刘智勇. 细间距焊接技术应用研究[J]. 电子工艺技术, 2001, 22(5): 207~210.
    [16] 鲜飞. 微电子封装技术的发展趋势[J]. 国外电子元器件, 2001, (3): 13~15.
    [17] 王国忠. 电子封装 SnPb 钎料焊点可靠性研究[D]. 上海: 中国科学院上海冶金研究所,1999.
    [18] Sharif A, Chan Y. Interfacial Reaction on Electrolytic Ni and Electroless Ni(P) Metallization with Sn-In-Ag-Cu Solder[J]. Journal of Alloy and Compounds, 2005, 393(1): 135~140.
    [19] Kanchanomai C, Miyashita Y, Mannan S. Influence of Frequency on Low Cycle Faigue Behavior of Pb-free Solder 96.5Sn-3.5Ag[J]. Materials Science and Engineering, 2003, 345(2): 90~98.
    [20] Syed A, Doty M. Are We over Designing for Solder Joint Reliability[A]. In: IEEE Components ed. 49nd Electronic Components and Technology Conference[C]. USA: IEEE Components, 1999: 111~117.
    [21] Chekhlov O, Collier J, Ross I, et al. Recent Progress towards A Petawatt Power Using Optical Parametric Chirped Pulse Amplification[A]. In: IEEE Components ed. Quantum Electronics and Laser Science Conference (QELS)[C]. USA: IEEE Components, 2005: 2029~2031.
    [22] Clatterbaugh G V. Thermal mechanical behavior of soldered interconnects for surface mounting[C]. A comparison of Theory and Experiment, Proceedings of IEEE 35th Electronic Components Conference, 1985, 35(4): 60~72.
    [23] Huan J. An empirical crack propagation model and its alication for solder joints[J]. ASME Journal of Electronic Packaging, 1996, 118(2): 1001~1005.
    [24] Paris P. Fracture mechanics and fatigue: a historical perspective[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(5): 535~540.
    [25] Chekalkin A, Sokolkin Y, Yakushina E. Fatigue crack propagation in powder heterogeneous metallic materials[J]. Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 1998, 615~620.
    [26] Lau J H. Thermal fatigue life prediction of flip chip solder joint by fracture mechanics method[J]. Engineering Fracture Mechanics, 1993, 45(5): 643~654.
    [27] Pao Y H. A fracture mechanics approach to thermal fatigue life prediction of solder joints[C]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(4): 559~570.
    [28] Guo Z, Conrad H. Fatigue crack growth rate in 63Sn37Pb solder joints[C]. Transactions of the ASME.Journal of Electronic Packaging, 1993, 115(2): 159~164.
    [29] Krishnamoorthy H, Tippur H V. Evaluation of elasto-plastic interfacial fracture parametersin solder-copper bimaterial using moire interferometry[C]. Transactions of the ASME. Journal of Electronic Packaging, 1998, 120(3): 267~274.
    [30] Dasgupta A, Oyan C, Barker D, et al. Solder Creep-Fatigue Analysis by an Energy-Partitioning Aroach[C]. Transactions of the ASME. Journal of Electronic Packaging, 1992, 114(2): 152~160.
    [31] Solomon H D, Tolksdorf E D. Energy Approach to the Fatigue of 60/40 Solder: Part Ⅱ-Influence of Hold Time and Asymmetric Loading[C]. Transactions of the ASME. Journal of Electronic Packaging, 1996, 118(2): 67~71.
    [32] Pan T Y. Critical Accumulated Strain Energy Failure Criterion for Thermal Cycling Fatigue of Solder Joints[C]. Transactions of the ASME. Journal of Electronic Packaging, 1994, 116(3): 163~170.
    [33] Barasan C, Yan C Y. A Thermodynamic Framework for Damage Mechanics of Solder Joints[C].Transactions of the ASME. Journal of Electronic Packaging, 1998, 120(4): 379~384.
    [34] Knecht S, Fox L R. Constitutive relation and creep-fatigue life model for eutectic Tin-lead solder. IEEE Trans. Compon, Hybrids, Manuf. Technol, 1990, 13(2): 424~433.
    [35] Syed A. Solder joint life prediction model and application to ball grid array design optimization. Proc of the Ⅷ International Congress on Experimental/Numerical Mechanics in Electronic Packaging, 1996, 13(1): 136~144.
    [36] 李晓延, 严永长. 电子封装焊点可靠性及寿命预测方法[J]. 机械强度, 2005, 27(4): 470~479.
    [37] 梅志, 顾明元. 金属复合材料残余应力测量的新方法[J]. 宇航材料工艺, 1996, (60): 39~43.
    [38] 林丽华. 球面压痕测残余应力试验方法研究[J]. 机械强度, 1998, 4(20): 303~306.
    [39] 黄大巍, 方洪渊, 钱乙余. 热循环加载条件下 SMT 焊点应力应变过程的有限元分析[J].电子工艺技术, 1997, 36(10): 6~14.
    [40] 肖克, 杜黎光, 孙志国, 等. SnAg3.5Cu0.5 表面贴装焊点在时效和热循环过程中的组织及抗剪强度变化[J]. 金属学报, 2001, 37(4): 399~444.
    [41] 朱颖, 方洪渊, 王春青, 等. SMT 焊点抗蠕变—疲劳技术国外研究状况[J]. 电子工艺技术,1993,13(1):45~48.
    [42] 赵秀娟. 微电子封装与组装互连软钎焊焊点形态优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2000.
    [43] 李云卿, 唐祥云, 马莒生. 62Sn–36Pb–2Ag 焊点的可靠性及热疲劳位错亚结构的演化分析[J]. 电子学报, 22(11): 32~36
    [44] 王考, 陈循, 褚卫华.温度循环应力剖面对 QFP 焊点热疲劳寿命的影响[J]. 计算力学学报, 2005, 22(2): 170~175.
    [45] Mukai, Kawakami T, Takanshi K, et al. Thermali fatigue life of solder bumps in BGA[J]. JSME international journal series A, 1998, 41(2): 260~266.
    [46] Wei Shi, lee R, Zhang Xiaowu. Sensitivity Study on Material Properties for the Fatigue Life Predication of Solder joints under Cyclic Thermal Loading[J]. ASEM Advances in Electronic Packaging, 1997, 2: 1559~1566.
    [47] Lee J H, Lee Y H, Kim Y S. Fluxless Laser Reflow Bumping of Sn- Pb Eutectic Solder[J]. Scripta Materialia, 2000, 42(8): 789~793.
    [48] Lau J H, Harkins C G. Thermal-stress analysis of SOIC packages and inter-connections[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1988, 11(4): 380~389.
    [49] 王谦. 电子封装中的焊点及其可靠性[J]. 电子元件与材料, 2000, 19(2): 24~26.
    [50] Zhang Z, Yao D P, Shang J K. Fatigue Crack Iinitiation in Solder Joints[J]. Transactions of the ASME. Journal of Electronic Packaging, 1996, 118(2): 45~48.
    [51] Boon W, Helling D E. A Mechanistic Method for Solder Joints Failure Prediction under Thermal Cycling[J]. Transactions of the ASME. Journal of Electronic Packaging, 1990, 112(1): 104~109.
    [52] Tien J K, Attawala A I, Mannda G Y, et al. Confinmation of Fatigure Damage in Sn60/Pb40 Solder Joints[J]. Transactions of the ASME. Journal of Electronic Packaging, 1991, 101(5): 159~164.
    [53] Ross R G. A system approach to solder joint fatigue in spacecraft electronic packaging[J]. Journal of Electronic Packaging, 1991, 113(2): 121~128.
    [54] Ross R G. Solder joint creep–fatigue interactions with flexible leaded parts[J]. Journal of Electronic Packaging, 1992, 114(2): 185~192.
    [55] Dasgupta A. Solder joint creep–fatigue analysis by an energy–partitioning approach[J]. Journal of Electronic Packaging, 1992, 114(2): 152~160.
    [56] John H L. Creep of solder interconnects under combined loads[J]. IEEE Trans. On CHMT. 1993, 16(8): 794~798.
    [57] Attarwala A I, Tien J K, Masada G Y, et al. Confirmation of creep and fatigue damage inPb/Sn solder joints[J]. Journal of Electronic Packaging, 1992, 114(2): 109~111.
    [58] 王国忠. SMT 焊点三维形态预测及其对焊点可靠性的影响[D]. 哈尔滨工业大学博士学位论文.1996.
    [59] Heinrich S M. Solder joint formation in surface mount technology[J]. ASEM Journal of Electronic Packaging. 1990, 112(3): 210~218.
    [60] 黄红艳, 周德俭, 吴兆华. 焊盘尺寸对 SMT 焊点可靠性的影响[J]. 桂林电子工业学院学报, 2003, 23(1): 34~37.
    [61] Engelmaier W. Fatigue life of leadless chip carrier solder joints during power cycling[J]. IEEE Trans. CPMT, 1983, 6(3): 232~237.
    [62] Logsdon W A, Liaw P K, Burke M A. Fracture behavior of 63 Sn–37Pb solder[J]. Engng Fracture mech, 1990, 36: 183~218.
    [63] 邵蕴秋. ANSYS 8.0 有限元分析[M]. 北京: 中国铁道出版社, 2004, 4: 290~291
    [64] 雷晓燕. 有限元法[M]. 北京: 中国铁道出版社, 2000, 1~29
    [65] 王秋望. 传热学[M]. 西安: 西安交通大学出版社, 2001: 17~30.
    [66] 扬世铭. 传热学[M]. 北京: 高等教育出版社, 1987: 15~32.
    [67] 贝斯 K J. ADINA/ADINAT/ADINAPLOT 使用手册—自动增量非线性分析有限元程序[M]. 北京: 机械工业出版社, 1986, 55~110.
    [68] 王勖成. 有限单元法基本原理与数值方法[M]. 北京: 清华大学出版社, 1988, 37~40.
    [69] 龚曙光. ANSYS 工程应用实例解析[M]. 北京: 机械工业出版社, 2004: 4~8.
    [70] Akay H U. Fatigue Life Prediction for Thermally Loaded Solder Joints using a volume-weighted averaging technique[J]. ASEM journal of electronic packing, 1997, 119(4): 228~235
    [71] Hong B Z, Burrell L G. Modeling thermally induced viscoplastic deformation and low cycle fatigue of CBGA solder joint in a surface mount package[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1997, 20(3): 280~285.
    [72] Kashyap B P, Murty G S. Evaluation of microstructure insatiability during the differential strain rate test of a superplastic alloy[J]. Journal of materials science, 1983, 18(20): 2063~2070.
    [73] 朱颖. 锡铅稀土钎料 SMT 焊点热循环失效机制的研究[D]. 哈尔滨: 哈尔滨工业大学, 1996.
    [74] 周德俭, 潘开林, 覃匡宇, 等. 基于焊点形态理论的 SMT 焊点虚拟成形技术及其应用[J]. 桂林电子工业学院学报, 2000, 10(4): 78~82.
    [75] 杨敏, 邹增大, 王春青, 等. 气孔缺陷位置对 SMT 焊点热疲劳寿命影响的数值分析[J].中国机械工程, 2003, 14(8): 708~711
    [76] Pei-Lin Wu , Meng-Kuang Huang, Chiapyng Lee, et al. Failure behavior of small outline J Lead/Sn–X (X = AgCu or Pb) solder joints under thermal mechanical fatigue test[J]. Materials Chemistry and Physics, 2004, 87: 285~291
    [77] 耿照新, 杨玉萍. CBGA 组件热变形的 2D-Plane 42 模型有限元分析[J]. 首都师范大学学报(自然科学版), 2003, 4(2): 29~32.
    [78] 程明生, 胡骏, 彭家英. SMT 细间距工艺技术研究[J]. 电子工艺技术, 1998, 19(2):51~53
    [79] 张磊. 微电子互连钎料桥连现象研究[D]. 哈尔滨:哈尔滨工业大学,2001.
    [80] 和平, 彭瑶玮. vf-BGA 封装焊球热疲劳可靠性的研究[J]. 半导体学报, 2004, 25(7): 875~876.
    [81] Pao Y H. An Experimental and Finite Element Study of Thermal Fatigue Fracture of Pb-Sn Solder Joints[J]. Transactions of the ASME. Journal of Electronic Packaging, 1993, 115(1): 1~8.
    [82] 王卫宁, 梁镜明. 表面安装技术(SMT)可靠性问题研究的实验测试方法及其研究现状与进展[J], 首都师范大学学报, 1997, 18: 101~103.
    [83] 王考, 陈循, 褚卫华. QFP 焊点形态预测及可靠性分析[J]. 环境与工程, 2004, 31(1): 41~43.
    [84] 李志民. 焊点的质量与可靠性[J]. 信息技术与标准化, 2004, 8: 29~30.
    [85] Nigro N J. Computer-aided design of solder joint[J]. Surface mount technology, 1991, 4: 59~61.
    [86] 王旭艳, 薛松柏, 王海松, 等. Sn-Ag-Cu 表面贴装元件的水清洗技术[J]. 焊接学报, 2005, 26(10): 109~112.
    [87] 胡永芳, 薛松柏, 禹胜林. QFP 结构微焊点强度试验[J]. 焊接学报, 2005, 26(10): 78~80.
    [88] 薛河, 吕涛, 史耀武. 焊接接头强度不等组配试样的三点弯曲试验[J]. 西安交通大学学报, 1998, 32(11): 108~111.
    [89] 胡永芳, 薛松柏, 史益平, 等. 无铅钎料对不同引脚数 QFP 微焊点抗拉强度的影响[J]. 焊接学报, 2005, 26(10): 72~75.
    [90] 顾永莲, 杨邦朝. 无铅焊点的可靠性[J]. 电子与封装, 2005, 5(5): 13~14.
    [91] Manson S S, Halford G R. Re-examination of cumulative fatigue damage analysis—anengineering perspective[J]. Engineering Fracture Mechanics, 1986, 25(5): 539~571.
    [92] Murakami Y, Miller K J. What is fatigue damage? A view point from the observation of low cycle fatigue process[J]. International Journal of Fatigue, 2005, 27(8): 991~1005.
    [93] Yan Q, Rex L, Hamid R., et al. Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints[J]. Microelectronics and Reliability, 2006, 469(2): 574~588.
    [94] 赵越. 钎焊技术及应用[M]. 北京: 化学工业出版社, 2004, 4: 132~136.
    [95] Harri P G, Chagga K S. The Role of Intermetallic Compounds in Lead-free Soldering[J]. Soldering Surface Mount Technology, 1998, 10(3): 38~52.
    [96] 王谦, 曹育文, 唐祥云. 引线框架用铜合金与 Sn-Pb 共晶焊料界面组织研究[J]. 功能材料, 2000, 31(5): 493~495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700