用户名: 密码: 验证码:
材料选择对BGA焊点热可靠性影响的有限元仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着电子工业的发展,电子封装作为一门独立的新型高技术行业迅速成长起来。表面贴装技术(Surface Mount Technology,简称; SMT)作为电子封装的一项技术突破,被誉为“电子封装技术革命”,它具有诸多优越性。但也存在着致命的弱点--焊点寿命有限、可靠性较差。尤其是低周热疲劳作为其主要失效因素得到广泛的关注。然而由于焊点尺寸细小,现有的实验手段无法在热疲劳试验的同时实时监测焊点的内部应力应变。于是,利用有限元模型的方法进行分析,成为当前最可行的方法。
    不同材料的选择会对最终焊点的应力集中、应力应变分布变化以及焊点的寿命产生直接的影响,然而目前国内外对该方向还没有研究。本文针对这一空白开展课题,研究了不同材料选择下BGA(Ball Grid Array)焊点阵列的可靠性。
    研究通过ANSYS软件,采用统一粘塑性Anand本构方程,首次建立了基于BGA焊点形态的三维焊点阵列可靠性分析有限元模型,进行了焊点力学性能分析,得出了交变热循环作用下,不同基板材料搭配组别Sn60Pb40钎料焊点在各个时刻的应力应变分布特点以及其随热循环温度改变的变化规律。进一步根据最危险焊点最薄弱环节应变数据,采用修正的Coffin-Manson方程预测了不同基板材料搭配下焊点阵列的疲劳寿命。塑料封装与FR4基板组合时焊点的寿命,是陶瓷封装与FR4基板组合寿命的7倍。若Si芯片贴装于FR4基板上,则其焊点寿命相当短。Si芯片贴装于陶瓷基板可以很好的取代它,既可以提高组装密度,焊点寿命也比前者提高了6倍。陶瓷封装对陶瓷基板搭配是其中可靠性最好的,它的焊点寿命最长。综上所述,组装上下基板材料的热匹配性越好,焊点的热循环寿命越高。
    最后采用同样的方法,对陶瓷封装与FR4基板组合下无铅钎料-Sn96.5Ag3.5焊点的热循环应力应变进行了仿真研究,并与同条件下的SnPb钎料-Sn60Pb40结果进行了对比,结果显示无铅钎料大大地提高了焊点的热可靠性,热疲劳寿命是同样情况下SnPb钎料寿命的4倍以上。
    所有这些研究为今后电子封装不同适用下的材料选择提供了借鉴,具有重要的实际指导意义。
With the development of electronic industry, electronic packaging grows up rapidly as an independent new high-tech calling. Among all the technology options, surface mounted technology (SMT) is the fastest expanding one which was thought as “A Revolution of the Electronic Packaging”. However, some of the disadvantages of SM connectors, such as inadequate availability and its less reliable solder joints, are also existing instead of many advantages of SM connectors. Generally, the low-cycle fatigue induced by thermal cycle is the major concern in the reliability of SMT .Due to the fine-small solder joint dimension, existing experiment measures can’t be used to monitor the stress and strain of solder inner, when thermal fatigue experiment is processing. So, the finite element model analysis is the most feasible means.
    Different choice of material has a direct influence on final centralized stress, stress-strain distribution--change and life of solder joints. However international and domestic studies aren’t yet toward this direction at present. This text launches the subject to this blank to research in the reliability of the solder joint of BGA (Ball Grid Array ) under different material choice.
    For the first time, the geometrical model for mechanical analysis of the solder joint is built directly from three-dimensional shape model of the BGA by ANSYS software. An unified viscoplastic constitutive law, the Anand model is applied to represent the inelastic deformation behavior for Sn60Pb40 solder. The mechanical performance is analyzed using finite element method .The distribution characteristics of stress and strain in solder joint are given at every time of thermal cycle. Besides, the variety rule of stress and strain with thermal cycle is acquired. Moreover, based on the strain data of the weakest site of the most dangerous solder ball in the array, fatigue life of thermally loaded BGA solder joints is predicted using the modificative coffin-Masson equation and reliability of the solder joints with different top-bottom material assembly is compared. Results indicate: The material heat matching of top-bottom base plate is more better, the life of assembly is more longer. The life-span of the solder joints assembled with ceramic encapsulation and FR4 base plate is 7 times than the one while adopting plastic encapsulation and FR4 base plate to make up; when sticking the Si chip to the FR4 base plate, the life-span is quite shortened; sticking the Si chip to the ceramic base plate can replace the former, because it not only raise the density of assembling, but also life-span of solder joints is prolonged to 6 times than the former; It is the compounding of ceramic to ceramic that match bestly.
    Finally, by the same way, adopting the existing mechanical capability data of lead-free solder analyses its thermal reliability in contrast with the one of Sn60Pb40 solder under the ceramic-FR4 material compounding. Results show lead-free solder increases the reliability greatly. Its thermal fatigue life is 4 times than the one of SnPb solder.
    The conclusion will provide a direction on material choice of electronic packaging in order to suit to different reliable requirement in future.
引文
[1] J Editorial. The future of microelectronics and photonics and the role of mechanics and materials[J].ASME Journal of Electronic Packaging, 1998,120(1):1-11.
    [2] 周德俭,吴兆华. 表面组装工艺技术[M]. 北京:国防工业出版社,2002.
    [3] 《电子天府》表面安装技术编写组. 实用表面安装技术与元器件[M]. 北京:电子工艺出版社,1993:36-39.
    [4] 王毅. 高密度高性能电子封装技术的现状和发展[M]. 北京:电子工艺出版社,1998,26(4):1-14.
    [5] Lau J H. Handbook of Fine Pitch Surface Mount Technology[M]. New York: Van Nostrand Reinhold,1993.
    [6] 田民波,林金堵,祝大同. 高密度封装基板[M]. 北京:清华大学出版社,2003.
    [7] 杨邦朝,张经国. 多芯片组件(MCM)技术及其应用[M]. 成都:电子科技大学出版社,2001.
    [8] 周德俭,吴兆华. 芯片尺寸封装(CSP)技术[J]. 电子工艺技术,1997,18(3):104-107.
    [9] 胡志勇. 集成电路的发展和组装工艺的考虑[J]. 电子工艺技术,1998,19(6):234-236.
    [10] Moore K, S Machugn, S Bosserman, J Stafford. Solder joint reliability of fine pitch solder bumped pad array carriers[J].Proceedings of NEPCON West,1990(12):264-274.
    [11] 王国忠. 电子封装 SnPb 钎料焊点可靠性研究[D]. 上海:中国科学院上海冶金研究所,1999.
    [12] Steinberg Dave S. Vibration Analysis for Electronic Equipment[M]. Second Edition, America:John wiley & Sons Inc.,1988.
    [13] W W Lee, L T Nguyen, G S Selvaduray. Solder joint fatigue models: review and applicability to chip scale packages[J].Microelectronics Reliability, 2000,40:231-244.
    [14] 黄大巍,方洪渊,钱乙余. 热循环载荷下 SMT 焊点应力应变过程的有限元分析[J]. 电子工艺技术,1997,18(1):6-14.
    [15] 刘常康,周德俭. PBGA 焊点热疲劳寿命的正交试验及回归分析[J]. 电子工艺技术,1999,20(3):90-93.
    [16] S M Heinrich, N J Nigro, A F Elkouh. Solder joint formation in surface mount technology, Part I: Analysis[J]. ASME Journal of Electronic Packaging, 1990,112(3):210-218.
    [17] J Sauber. Prediction thermal fatigue lifetimes for SMT solder joints[J].ASME Journal of Electronic Packaging,1992,114(2):470-472.
    [18] Robert Darveaux. Constitutive relations for tin-based solder joints[J]. IEEE-CHMT, 1992, 15(6):1013-1023.
    [19] 周德俭,陈子辰, 潘开林, 吴兆华. PBGA 器件焊点成形建模与三维形态预测[J]. 浙江大学学报, 34(6):637-641.
    [20] 耿照新,杨玉萍. CBGA 组件热变形的 2D-plane 42 模型有限元分析[J]. 首都师范大学学报(自然科学版),2003,24(2):29-32.
    [21] 黄红艳,周德俭,吴兆华. 焊盘尺寸对SMT焊点可靠性的影响[J]. 桂林电子工业学院学报,2003,23(1):34-37.
    [22] 刘常康,周德俭,潘开林,覃匡宇. PBGA焊点形态参数对热疲劳寿命的影响[J]. 桂林电子工业学院学报,1998,18(3):44-48.
    [23] David Followell, Salvatore L Liguore, Rigo Perze, etc. Computer-aided reliability finite element methods[J]. the IES,1991,(9-10):46-52.
    [24] M Mukai, T Kawakami, Y Hiruta, etc. Fatigue life estimation of solder joints in SMT-PGA packages[J]. Elec.Pack,1998,120(6):207-212.
    [25] N Paydar, Y Tong, H U Akay. A finite element study of factors affecting fatigue life of solder joints[J]. Elec.Pack.,1994,116(12):265-273.
    [26] 王国强. 实用工程数值模拟技术及其在 ANSYS 上的实践[M]. 西安:西北大学出版社,1999.
    [27] 龚曙光主编. ANSYS 基础应用及范例解析[M]. 北京:机械工业出版社,2003.
    [28] 龚曙光主编. ANSYS 工程应用实例解析[M]. 北京:机械工业出版社,2003.
    [29] 刘涛,杨凤鹏. 精通 ANSYS[M]. 北京:清华大学出版社,2002.
    [30] 陈精一,蔡国忠. 电脑辅助工程分析 ANSYS 使用指南[M]. 北京:中国铁道出版社,2001.
    [31] V Sarihan. Temperature dependent viscoplastic simulation of controlled collapse solder joint under thermal cycling[J]. ASME J. Electronic Packaging, 1993,115(1):16-21.
    [32] Y H Pao, etc. Constitutive behavior and low cycle thermal fatigue of 97Sn-3Cu solder joints[J].ASME J. Electronic Packaging,1993,115(6):147-152.
    [33] E P Busso, M Kitano. A visco-plastic constitutive model for 60/40 tin-lead solder used in IC package joints[J].ASME J. Electronic Packaging, 1992, 114(3):1-15.
    [34] R Darveaux, K Banerji. Constitutive relation for tin-based solder joints[J].IEEE Trans.CHMT,1992,15(6):1013-1024.
    [35] L Anand. Constitutive equation for hot working of metals[J]. International J.Plasticity,1985,1:213-231.
    [36] F Garofalo. An empirical realtion defining the stress dependence of minimum creep rate in metals[J].Trans. Journal of Applied Mechanics, 1963:227-351.
    [37] K W Moon, M E Willams, D Josell. Dynamic aspects of wetting balance tests[J].ASME Journal of Electronic Packaging,1996,118(3):174-183.
    [38] H D Solomon. Energy approach to the fatigue of 60/40 solder: PartП: infuence of hold time and asymmetric loading[J].ASME Journal of Electronic Packaging, 1996,118(2):67-71.
    [39] W Engelmaier. Fatigue life of leadless chip carrier solder joints during power cycling[J]. IEEE Trans.CHMT,1993,6(3) 1993:232-237.
    [40] J H Lau, K L Chen. Thermal and mechanical evaluations of a cost effective plastic ball grid array package[J].ASME Journal of Electronic Packaging, 1997,119(3):208-212.
    [41] J H Lau, etc. Solder joint reliability[J].Van Nostrand Reinhold, New York,1991:508-544.
    [42] B P Kashyap, etc. Experimental constitutive relations for the high temperature deformation of a Sn-Pb eutectic alloy[J].Materials Science and Engineering, 1981, 50:205-213.
    [43] 黄春跃,周德俭,李春泉. CCGA 焊点热循环加载条件下应力应变有限元分析[J]. 桂林电子工业学院学报,2001,21(3):22-28.
    [44] 赵秀娟. 微电子封装与组装互联软钎焊焊点形态优化设计[D]. 哈尔滨:哈尔滨工业大学,2000.
    [45] Geun Woo Kim, Kang Yong Lee. Improving the reliability of plastic IC package in reflow soldering process by optimization[J]. IEEE Transactions on components and packaging technologies,2004,27(2):352-358.
    [46] N H Paydar, Y Tong, H U Akay. A finite element study of factors affecting fatigue life of solder joints[J]. ASME Journal of Electronic Packaging, 1994, 116(2): 265-273.
    [47] Sungbo Jin. Developing lead-free solders: a challenge and opportunity[J]. J. Mater,1993,45(7):12-14.
    [48] Greg Jones. Are you ready for lead-free assembly[J].Surface Mount Technology,2000,(6):58-60.
    [49] Zaccaria B. Filler materials: the current situation and future trends with particular reference to lead-free soldering alloys[J].Welding International, 2001, 15(7): 542-545.
    [50] Bastecki C. Lead-free assembly of mixed-technology PBCs[J].Surface Mount Technology,1997,(5):52-56.
    [51] Seelig K, Suraski D. The status of lead-free alloys[J].Circuits Assembly, 2000, (9):56-58.
    [52] Hwang S. Soldering materials[J].Surface Mount Technology,2002,(3):56.
    [53] McCormack M, Jin S. Improved mechanical properties in new Pb-free alloy[J]. J. Electron Mater,1994,23(8):715-719.
    [54] 曹昱,易丹青,王颖. Sn—Ag 基无铅钎科的研究与发展[J]. 四川有色金属,2001(3):5-12.
    [55] Xia Zhidong, Chen Zhiguang, Shi Yaowu. Effect of rare element addition on the microstructure and mechanical properties of Tin-Silver-Bismuth Solder[J]. J. Mater, 2002,31(6):564-567.
    [56] 赵跃,杜昆,胡珍. 无铅软钎科的研究[J]. 广东有色金属学报,1998,8(2):99-105.
    [57] 郑玉军,张启运. Sn-In-Zn 三原系相图和无铅钎科成分的探讨[J]. 物理化学学报,1998,14(12):1098-1103.
    [58] 史耀武,夏志东,陈志刚. 电子组装钎科研究的进展[J]. 电子工艺技术,2001,22(4):140-142.
    [59] 庄鸿寿. 无铅软钎料的新进展[J]. 电子工艺技术,2001,22(5):192—196.
    [60] Glazer J. Metallurgy of low temperature Pb-free solders for electronic assembly[J].Inter Mater Rev,1995,40(2):65-93.
    [61] Kang S K. Lead(Pb)-free solders for electronic packaging[J]. J. Electron Mater,1994,23(8):701-707.
    [62] Bath J, Handwerker C, Bradley E. Research update: lead-free solder alternative[J]. Circuits assembly, 2000,May:31-38.
    [63] Melton C. The effect of reflow process variables on the wettability of lead-free solders[J]. J.Mater,1993,45(7):33-35.
    [64] McCormack M, Jin S. Progress in the design of new lead-free solder alloys[J]. J.Mater,1993,45(7):36-40.
    [65] Werner Johler. Impact of lead-free soldering processes on the performance of signal relay contacts[J]. IEEE Transactions on components and packaging technologies,2004,27(1):30-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700