用户名: 密码: 验证码:
核桃—菘蓝/决明子复合系统种间水分关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合农林业是华北低丘山区退耕还林工程建设的重要内容之一,林药复合系统作为农林复合系统的类型之一,在当地农业产业调整发展的过程中得到了广泛的应用。由于该地区气候干旱、土层瘠薄、灌溉条件较差,水资源短缺制约了林业及农业的可持续发展。因此,基于种间水分关系理论,研究林药复合系统水分生态问题,对当地林业生态建设、提高农民收入,促进生态与经济可持续发展具有重要的指导意义。本文以水和碳稳定同位素信息、树干液流及群体蒸腾等为指标,2011年-2013年在位于华北低丘山区的河南济源,试验研究株行距3m×8m核桃-菘蓝/决明子复合系统种间水分关系,旨在为该区发展高效、稳定的农林复合系统提供理论依据。结果表明:
     (1)核桃-菘蓝/决明子系统土壤水分呈现明显的时空变化规律。在垂直方向上,土壤水分随着土层深度的增加整体上呈现增加的趋势,0-10cm的表层土壤水分差异较大;在水平方向上,核桃-菘蓝/-决明子复合系统表现出位于核桃树干距离0.5m处土壤水分最大,距离南北两侧核桃树木中间处最小。由于核桃树的遮蔽作用,降低了土壤水分的蒸发量,间作系统土壤含水量较单作系统均有所增加,核桃-菘蓝间作系统土壤水分在2012年、2013年比单作菘蓝分别增加了36.5%和8.78%;核桃-决明子间作系统土壤水分在2012年、2013年比单作决明子分别增加了21.05%和16.10%。
     (2)揭示了核桃-菘蓝/决明子间作系统根系的空间分布特征。在垂直方向上,核桃根系主要分布在10-50cm土层中,占总量的60%以上,而菘蓝和决明子根系主要分布在0-30cm的土层中,根长密度分别占其总量的70%以上;水平方向上,间作系统中菘蓝和决明子根系距离树干距离越远,其分布越多,最大值均在距离南北两侧树木中间处。核桃根系在距离南北两侧树行越近,其分布越多。间作对林带根系有一定程度的影响,0-40cm土层中,单作核桃的根长密度和根表面积大于间作核桃,40cm以下土层,间作核桃根系的根长密度和根表面积较单作核桃的大,说明间作系统中核桃根系由于间作物的竞争发生了下移的现象。复合系统中150~250cm带距范围内的10~30cm土层为种间根系主要交错区,就根系分布而言,该范围土体是种间水肥主要竞争区域。
     (3)菘蓝生长时期,由于降雨较少,属于干旱季节,核桃-菘蓝间作系统中核桃树木主要利用土壤深层(30-80cm)中的水分,比例为约59.7%;决明子生长时期主要集中在7-9月份,降雨量较多,属于雨季,核桃-决明子间作系统中核桃树木主要利用土壤浅层(0-30cm)中的水分,比例约为69.9%。菘蓝和决明子均主要利用来自0-30cm浅层土壤中的水分。菘蓝生长苗期,尽管这个时期菘蓝的根系没有生长到深层土壤中,但在核桃-菘蓝间作系统中菘蓝有5.7%、9.7%的水分来源于土壤深层中,说明复合系统核桃具有“水力提升”作用。
     (4)通过称重法和稳定碳同位素方法对盆栽决明子/菘蓝的水分利用效率进行比较研究,结果显示,两种方法测定的决明子/菘蓝水分利用效率呈极显著正相关关系(P<0.01),说明利用稳定碳同位素方法测定决明子/菘蓝水分利用效率具有可行性。
     (5)核桃-菘蓝复合系统中,2012年核桃与菘蓝的耗水比例是0.70:1,二者分别占41.25%、58.75%。2013核桃与菘蓝的耗水比例是2.06:1,二者分别占67.40%、32.60%,核桃在生长时期两年的耗水量差异较小,说明2013年严重春旱对主要吸收浅层土壤水的菘蓝的生长产生了较大影响,对于依靠深层土壤水的核桃影响不大。核桃-决明子复合系统中,2012年核桃与决明子的耗水比例是1.79:1,二者分别占64.20%、35.8%。2013年核桃与决明子的耗水比例是1.42:1,二者分别占58.73%、41.27%。对比单作菘蓝,2012、2013年核桃-菘蓝复合系统可使菘蓝的耗水量分别降低45.29%、49.63%;对比单作决明子,2012、2013年核桃-决明子复合系统可使决明子耗水量分别降低55.84%、61.83%;对比清耕核桃园,2012、2013年核桃-菘蓝/-决明子复合系统在生长期可使核桃耗水量分别降低9.83%、6.86%。核桃用水高峰期在6-8月,该时期耗水量占主要生长季总耗水量的52%左右。菘蓝、决明子的用水高峰期分别在4-5月、8-9月,二者与核桃可以错开主要用水期。
     (6)核桃-菘蓝/-决明子复合系统中核桃、菘蓝和决明子的产量低于单作系统或清耕核桃园,但复合系统的总收入高于单作系统,2012年和2013年间作系统的总收入分别是单作核桃的1.47倍和1.24倍,分别是单作菘蓝和单作决明子的1.24倍和1.49倍。
     综上所述,核桃-菘蓝/决明子复合系统表现为深根木本植物和浅根药用植物以互补的方式利用不同层次土壤水分,复合系统中核桃遮阴明显改善了菘蓝和决明子的土壤水分状况、降低耗水量、提高水分利用效率及产值,在生长时期上也错开主要用水时期。故在地处半干旱季风气候的华北低丘山区,发展核桃-菘蓝/决明子复合系统具有可行性。以上研究对退耕还林地林药复合系统的结构配置及经营管理具有重要的理论指导作用。
Agroforestry is one of the important approaches in turning the farmland into forestryprogramme. Tree and medical plant intercropping, as one of the agroforestry sytles, has beenwidely applied in the development of industry restructuring in this area. Seasonal drought,barren soil, and bad irrigation condition result in shortage of water resources in this area, andresultantly water deficit restrict sustainable development of foresty and agriculture. Thus, studyon water ecology of walnut-woad/cassia agroforestry system based on interspecific waterrelation can instruct forestry construction, improve farmer’s income, and promote thesustainable development of ecology and economy. In this paper, indices including stable waterand carbon isotope information, sap flow, and group tranpiration has been used to studyinterspecific water relation in walnut-woad/cassia agroforestry system of planting spacing3m×8m at low hilly area of north China in Jiyuan, Henan province during the year2011to2013.The above research aimed to provide thearetical basis for developing efficient and stableagroforestry system in this area, the results are as follows:
     (1)Soil water of each plantation pattern all showed obvious spatial and temporal variation.Vertically, soil water content increased with the increase of soil depth; The soil water content atsurface layer of0-10cm varied greatly; horizontally, soil water content in both walnut-woadand walnut-cassia intercropping systems were highest at the distance of0.5m to tree trunck,and lowest in the middle of two tree row. Shade effect of walnut trees decreased soil waterevaporation, which may explain why soil water content in the walnut-woad intercroppingsystem was36.5%and8.78%higher than, and in the walnut-cassia intercropping21.05%and16.1%higher than that in the sole woad or cassia crop system, respectively in the year2012and2013.
     (2)The spatial distribution of root in different systems was also studied. Vertically, walnutroot was mainly distributed at the10-50cm soil profile, accounting for more than60%. Whilemore than70%of woad and cassia roots (root lenth density) distributed at0-30cm soil profile; horizontally, woad and cassia roots increased with the increase of their distance to tree rows inthe intercropping system. Crop had more roots in the middle of two tree row. Intercroppingalso influence the distribution of tree roots. The root lenth density and root specific area ofintercropping walnut was less than that in the sole walnut system at0-40cm soil profile, butmore than that in the sole system below40cm soil layer. The above results indicated thatwalnut root in the intercropping system shift to a deeper soil layer as a result of the competitionof intercroped crops. In the intercropping system, both tree and crop roots distributed roots atthe range of150~250cm to tree row in10~30cm soil layer, thus, this area may be the mainsoil water and fertilizer competition area.
     (3)Rainfall was rare during the growth of woad, and it was dry season of a year. Walnutin the walnut/woad intercropping mainly use water from deep soil layer (30-80cm), accoutingfor59.7%of its total water use; cassia mainly grown during July to September, and it rained alot in this peroid, and walnut in the walnut/cassia intercropping mainly use water from shallowsoil layer (0-30cm), accouting for69.9%of its total water use. Both woad and cassia weremainly use shallow layer soil water. During seedling peroid of woad,5.7%and9.7%of theirwater were from the deep soil layer of the intercropping system, but no woad roots were foundin the deep soil profile, which indicated that walnut root had hydraulic lift effect.
     (4)Water use efficiency (WUE) of potted cassia/woad were researched through theweighing method and stable carbon isotope method simutaneously. The results showed thatWUE calculated by the two methods were positively related (P<0.01), which indicated thatmeasurement of cassia/woad WUE with stable carbon isotope technique is feasible.
     (5)In the walnut-woad intercropping, the ratio of water used by walnut and woad was0.7:1, accounting for41.25%and58.75%in the year2012; the growth of woad mainly absorbshallow soil water was affected because of spring drought, but a litter influence to walnut relyon deep soil water, while the ratio was2.06:1in the following year in2013, and walnut andwoad accounted for67.4%and32.6%, respectively. In the walnut-cassia intercropping, theratio of water used by walnut and cassia was1.79:1, accounting for64.2%and35.8%in the year2012; and the ratio was1.42in the following year in2013, and walnut and woadaccounted for58.73%and41.27%, respectively. Woad intercropping with walnut reduced45.29%and49.63%of water use respectively in2012and2013, comparing to sole indigowoad.Cassla intercropping with walnut reduced55.84%and61.83%of water use respectively in2012and2013, comparing to sole cassia. And water use of walnut trees form walnut-Woad/cassia intercropping reduced9.83%and6.86%respectively in2012and2013, comparing tosole walnut. Peak water use period of walnut appeared during Jun-Aug, accounted for52%ofthe total water consumption of the growing season. While, woad and cassia consumed watermainly during April to May, and August to September, respectively, they avoid main water useperiod.
     (6)Although yield of each compoment in the intercropping system was less than the solesystem, the total income of the agroforestry was higher than that of the sole systems, for walnut,the yield in the intercropping system were1.47and1.24times of that in the sole walnut systemin2012and2013, respectively, and for woad and cassia in the intercropping system were1.24and1.49times of that in the sole crop system in2012and2013.
     According to the above research, deep-rooted trees and shallow-rooted medicine plant inthe walnut-woad/cassia intercropping used water in a complementary manner to use differentlevels of soil moisture. Shade of walnut trees improved water status of crops underneath,reduced their water use and increased their water use efficiency and income. Trees and cropsavoid main water use period. Therefore, it’s feasible to develop walnut-woad/cassiaintercropping in the low hilly area of north China. The above research can instruct structureconfigration and management of agroforestry system in the turning crop to forest program.
引文
Abbate P E,Dardanelli J L,Cantarero M G,et al..Climatic and water availability effects on water-useefficiency in Wheat.Crop Science,2004,44(2):474~484
    Alarcón J J,Domingo R,Green S R,et al..Sap flow as an indicator of transpiration and the water status ofyoung apricot trees.Plant and Soil,2000,227(1):77~85
    Allen S C,Jose S,Nair PKR,et al..Safetynet role oftree roots:Evidence from a pecan(Carya illinoensisK.Koch)-cotton(Gossypium hirsutum L.) alley cropping system in the southern United States.Forest Ecology and Management,2004,192:395~407
    Anyia A O,Slaski J J,Nyachiro J M,et al..Relationship of carbon isotope discrimination to water useefficiency and productivity of barley under field and greenhouse conditions.Journal of Agronomy&Crop Science,2007,193(5):313~323
    Bohn B A,Kershner J L.Establishing aquatic restoration priorities using a watershed approach.Journal ofEnvironmental Management,2002,64(4):355~363
    Brandes E,Wenninger J,Koeniger P,et al..Assessing environmental and physiological controls over waterrelations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition ofwater and organic matter.Plant,Cell and Environment,2007,30:113~127
    Caldwell M M,Richards J R.Hydraulic lift:Water efflux from upper roots improves effectiveness of wateruptake by deep roots.Oecologia,1989,79:1~5
    Cannell M G R.The central agroforestry hypothesis:the tree must acquire resources that the would nototherwise acquire.Agroforestry systems,1996,34(1):27~31
    Cermak J,Nadezhdina N.Sapwood as the scaling parameter-defining according to xylem water content orradial pattern of sap flow?.Annales of Forest Science,1998,55(5):509~521
    Chang X,Zhao W,Zhang Z,et al..Sap flow and tree conductance of shelter-belt in arid region of China.Agricultural and Forest Meteorology,2006,138(1-4):132~141
    Chen J,Chang S X&Anyia A O.The physiology and stability of leaf carbon isotope discrimination as ameasure of water-use efficiency in barley on the Canadian prairies. Journal of Agronomy&CropScience,2011,197(1):1~11
    Chen S P,Bai Y F,Han X G.Variations in Composition and Water Use Efficiency of Plant FunctionalGroups Based on Their Water Ecological Groups in the Xilin River Basin.Acta Botanica Sinica,2003,45(10):1251~1260
    Dawson T E,Pate J S.Seasonal water uptake and movement in root systems of Australian phreatophyticplants of dimorphic root morphology:a stable isotope investigation.Oecologia,1996,107:13~20
    Donovan L A, Ehleringer J R. Water stress and use of summer precipitation in a Great Basin shrubcommunity.Functional Ecology,1994,8:289~297
    Durand J L,Bariac T,Ghesquière M,et al..Ranking of the depth of water extraction by individual grassplants,using natural18O isotope abundance.Environmental and Experimental Botany,2007,60:137~144
    Ehleringer J R,Bowling D R,Flanagan L B,et al..Stable isotope and carbon cycle processes in forests andgrasslands.Plant biology,2002,4:181~189
    Ehleringer J R, Phillips S L,Schuster W S E,et al..Differential utilization of summer rains by desert plants.Oecologia,1991,88:430~434
    Ellsworth P Z,Williams D G.Hydrogen isotope fractionation during water uptake by woody xerophytes.Plant and Soil,2007,291:93~107
    Evans J R.Nitrogen and photosynthesis in the flag leaf of wheat(Triticum aestivum L.).Plant Physiology,1983,72(2):297~302
    Farquhar G D and Richards R A.Isotopic Composition of Plant Carbon Correlates with Water-use Efficiencyof Wheat Genotypes.Australian Journal of Plant Physiology,1984,11(6):539~552
    Farquhar G D,O'Leary M H,Berry J A.On the relationship between carbon isotope discrimination and theintercellular carbon dioxide concentration in leaves.Australian Journal of Plant Physiology,1982,9(2):121~137
    Farrish K W. Spatial and temporal fine root distribution in three Louisiana forest soils, Soil Society ofAmerica Journal,1991,55(6):1752~1757
    February E,Higgins S,Bond W J.Using stable water isotopes to determine the depth of water used bydifferent sizes of savanna trees.South African Journal of Botany,2007,73(2):287~292
    Fernández M E,Gyenge J,Licata J,et al..Belowground interactions for water between trees and grassesin a temperate semiarid agroforestry system.Agroforest Syst,2008,74:185~197
    Fransen B,Kroon H D,Berendse F.Root morphological plasticity and nutrient acquisition of perennial grassspecies from habitats of different nutrient availability.Oecologia,1998,115(3):351~358
    Friday J B,Fownes J H.Competition for light between hedgerows and maize in an alley cropping system inHawaii.USA:Agroforestry Systems,2002,55:125~137
    Golluscio R A,Sala O E.Plant functional types and ecological strategies in Patagonian forbs.Journal ofVegetation Science,1993,4:839~846
    Granier A,Huc R,Barigash S T.Transpiration of natural rain forest and its dependence on climatic factors.Agricultural and Forest Meteorology,1996,78:19~29
    Grime J P.Stress,competition,resource dynamics and vegetation processes//Fowden L,Mansfield T,Stoddart J,eds.Plant Adaptation To Environmental Stress.London:James and James Ltd:1993,351~377
    Holmgren M.Combined effects of shade and drought on tulip poplar seedlings:trade-off in tolerance orfacilitation? Oikos,2000,90(1):67~78
    Hu J,Moore D J P,Riveros-Iregui D A,et al..Modeling whole-tree carbon assimilation rate using observedtranspiration rates and needle sugar carbon isotope ratios.New Phytologist,2010,185(4):1000~1015
    Imo M.,Timmer V. R.Vector competition analysis of a Leucaena-maize alley cropping system in westernKenya.Forest Ecology and Management,2000,126:255~268
    Jaleel C A,Gopi R,Sankar B,et al..Differential responses in water use efficiency in two varieties ofCatharanthus roseus under drought stress.C R Biologies,2008,331(1):42~47
    Jose S,Williams R,Zamora D.Belowground ecological interactions in mixed-species forest plantions.Forest Ecology and Management,2006,233:231~239
    Joshua L A,Ann S E.Physiological variation among Populus fremotii populations:short and longtermrelationships between δ13C and water availability.Tree Physiology,2001,21:1149~1155
    Lauteri M,Scartazza A,Guido M C,et al..Genetic variation in photosynthetic capacit y,carbon isotopediscriminat ion and mesophyll conductance in provenances of Castanea sativa adapted to differentenvironments.Functional Ecolog,1997,11:675~683
    Leakey R.R.B.Definition of agroforestry revisited.Agroforestry Today,1996,8(1):5~7
    Li S G,Romero-Saltos H,Tsujimura M,et al..Plant water sources in the cold semiarid ecosystem of theupper Kherlen River catchment in Mongolia:A stable isotope approach.Journal of Hydrology,2007,333(1):109~117
    Lin G H,Sternberg L da S L.Hydrogen isotopic fractionation during water uptake in coastal wetland plants.1993.497~510
    Liu H-J,Cohen S,Tanny J,et al.Transpiration estimation of banana (Musa sp.) plants with the thermaldissipation method.Plant and Soil,2008,308(1):227~238
    Lu P,Urban L,Zhao P.Granier’s thermal dissipation probe (TDP) method for measuring sap flow intrees:theory and practice.Acta Botanica Sinica,2004,46(6):631~646
    Ludwig F,Dawson T E,et al.Hydraulic lift in Acacia tortilis trees on an East African savanna.Oecologia,2003,134(3):293~300
    Meinzer F C,Andrade J L,Goldstein G.Partitioning of soil water among canopy trees in a seasonally drytropical forest.Oecologia,1999,121:293~301
    Meinzer F C,Clearwater M J,Goldstein G.Water transport in trees: current perspectives,new insightsand some controversies.Environmental and Experimental Botany,2001,45:239~262
    Merah O,Deleens E,P Monneveux.Grain yield,carbon isotope discrimination,mineral and silicon contentin durum wheat under different precipitation regimes.Physiol.Plant,1999,107:387~394
    Munns R.Genes and salt tolerance:Bringing them together.New Phytologist,2005,167(3):645~663
    Nicolás N E,Torrecillas M A,Ortuńo Gallud M F,et al..Evaluation of transpiration in adult apricot treesfrom sap flow measurements.Agricultural Water Management,2005,72(2):131~145
    Nissen T.M.,Midmore D.J.,Cabrera M.L.Aboveground and belowground competition betweenintercropped cabbage and young Eucalyptus torelliana.Agroforestry Systems,1999,46:83~93
    Ohte N,Koba K,Yoshikawa K,et al..Water utilization of natural and planted trees in the semiarid desertof Inner Mongolia,China.Ecological Applications,2003,13(2):337~351
    Olicer B,Linda H,Howard G.The δ13C of Scots pine (Pinus sylvestris L.) needles:spatialand temporalvariations.Annals of Forest Science,2003,60:97~104
    Onillon B,Durand J L,Gastel F,et al..Drought effects on growth and carbon partitioning in a tall fescuesward grown at different rates of nitrogen fertilization.European Journal ofAgronomy,1995,4:91~99
    Penuelas J,Filella I.Deuterium labelling of roots provides evidence of deep water access and hydraulic liftby Pinus nigra in a Mediterranean forest of NE Spain.Environmental and Experimental Botany,2003,49:201~208
    Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources.Oecologia,2003,136(2),261~269
    Phillips S L, Ehleringer J R. Limited up take of summer precipitation by big tooth maple (Acergrandidentatum Nutt) and Gambel’s oak (Quercus gam belii Nutt).Trees,1995,9:214~219
    Pieters A J, Nú ez M. Photosynthesis, water use efficiency, and δ13C in two rice genotypes withcontrasting response to water deficit.Photosynthetica,2008,46(4):574~580
    Quero J L,Villar R,Mara ón T,et al..Interactions of drought and shade effects on seedlings of four Quercusspecies:physiological and structural leaf responses.New Phytologist.2006,170(4):819~834
    Rao MR.Boiphysical interactions in tropical agroforestry systems.Agroforestry Systems,1996,38(1/3):3~50
    Richards J R,Caldwell M M.Hydraulic lift:Substantial nocturnal water transport beteen soil layers by Artem isia tridentata roots.Oecologia,1987,73:486~489
    Robinson D,Hodge A,Fitter A.Constraints on the form and function of root systems In:Kroon H D,eds.Root Ecology.Heidel-berg:SpringerVerlag.2003,1~26
    Rose K L,Graham R C,Parker D R.Water source utilization by Pinus jeffreyi and Arctostaphylos patula onthin soils over bedrock.Oecologia,2003,134(1):46~54
    Rowe E.C.,Hairiah K.,Giller K.E.et al..Testing the safety net role of hedgerow tree roots by15Nplacement at different soil depths.Agroforestry Systems,1999,43:81~93
    Schwinning S,Davis K,Richardson L,et al..Deuterium enriched irrigation indicates different forms of rainuse in shrub/grass species of Colorado Plateau.Oecologia,2002,130(3):345~355
    Sekiya N,Yano K.Do pigeon pea and sesbania supply groundwater to intercropped maize through hydrauliclift?-Hydrogen stable isotope investigation of xylem waters.Field Crops Research,2004,86:167~173
    Sher AA,Wiegand K,Ward D.et al..Do Acacia and Tamarix trees compete for water in the Negev desert?Journal of Arid Environments.2010,(74)3:338~343
    Silva R M,Paco T A,Ferreira M I,et al..Transpiration of a kiwifruit orchard estimated using the graniersap flow method calibrated under field conditions.ISHS Acta Horticulturae,2008,792:593~600
    Smith D M. Physiological and environmental control of transpiration by trees in windbreaks. ForestryEcology and Management,1998,105(l/3):159~173
    Smith S D,Wellington A B, Nachlinger J L,et al..Functional responses of riparian vegetation to streamflow diversion in the eas-tern Sierra Nevada. Ecological Appl ications,1991(1):89~97
    Snyder K A,Williams D G.Water sources used by riparian trees varies among stream types on the San PedroRiver,Arizona.Agricultural and Forest Meteorology,2000,105(2):227~240
    Sobrado M A.Relation of water transport to leaf gas exchange properties in three mangrove species.Trees,2000,14:258~262
    Stephen S B,Mark A A,Neil C T,et al..Characterization of hydrogen isotope profiles in an agroforestrysystem:implications for tracing water sources of trees.Agricultural Water Management,2000,45:229~241
    Sudmeyer R.A.,Speijers J.Influence of windbreak orientation,shade and rainfall interception on wheat andlupin growth in the absence of below-ground competition.Agroforestry Systems,2007,71:201~214
    Thevathasan N. V.,Gordon A. M.Ecology of tree intercropping systems in the north temperate region:Experiences from southern Ontario,Canada.Agroforestry Systems,2004,61:257~268
    Todd E D,Stefania M,Agneta H P,et al..Stable isotopes in plant ecology.Annual Review of Ecology andSystematics,2002,33:507~559
    Tomas M,Medrano H,Pou A,et al..Water-use efficiency in grapevine cultivars grown under controlledconditions:effects of water stress at the leaf and whole-plant level.Australian Journal of Grape andWine Research,2012,18(2):164~172
    West A. G, Hultine K.R,Sperry J. S,et al..Transpiration and hydraulic strategies in a pińon-juniperwoodland.Ecological Applications,2008,18(4):911~927
    Williams D G, Ehleringer J R. Intra-and inter-specific variation for summer precipitation use inpinyon–juniper woodlands.Ecological Monographs,2000,70:517~537
    Wullschleger S D,Norby R J.Sap velocity and canopy transpiration in a sweetgum stand exposed to free-airCO2enrichment (FACE).New Phytologist,2001,150(2):489~498
    Wullschleger S D,Meinzer F C,Vertessy R A.A review of whole-plant water use studies in trees.TreePhysiology,1998,18:499~512
    Xia G,Kang S,Li F,et al..Diurnal and seasonal variations of sap flow of Caragana korshinskii in the ariddesert region of north-west China.Hydrological Processes2008,22(8):1197~1205
    Zencich S J,Froend R H,Turner J V,et al..Influence of groundwater depth on the seasonal sources of wateraccessed by Banksia tree species on a shallow,sandy coastal aquifer.Oecologia,2002,131:8~19
    Zhao W, Chang X, Zhang Z. Transpiration of a Linze jujube orchard in an arid region of China.Hydrological Processes,2009,23(10):1461~1470
    蔡崇法,王峰,丁树文等.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,2000,7(3):219~252
    曹燕丽,卢琦,林光辉.氢稳定性同位素确定植物水源的应用与前景.生态学报,2002,22(1):111~117
    陈世苹,白永飞,韩兴国等.沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化.植物生态学报,2004,28(4):515~522
    陈拓,冯虎元,徐世建等.荒漠植物叶片碳同位素组成及其水分利用效率.中国沙漠,2002,22:288~291
    邓文平,余新晓,贾国栋等.利用稳定氢氧同位素定量区分栓皮栎旱季水分来源的方法比较.应用基础与工程科学学报,2013,21(3):412~422
    邓雄,李小明,张希明等.多枝柽柳气体交换特性研究.生态学报,2003,23(1):180~187
    丁悌平.稳定同位素地球化学研究新况.地学前沿,1994,1(3-4):191~198
    段德玉,欧阳华.氢氧稳定同位素在定量区分植物水分利用来源中的应用.生态环境,2007,16(2):655~660
    方晓娟,李吉跃,聂立水等.毛白杨杂种无性系稳定碳同位素值的特征及其水分利用效率.态环境学报,2009,18(6):2267~2271
    冯虎元,陈拓,徐世健等.UV-B辐射对大豆生长、产量和稳定碳同位素组成的影响.植物学报,2001,7(43):52~56
    高峻,张劲松,孟平.黄土丘陵沟壑区杏树-黄芪复合系统土壤水分效应研究.农业工程学报,2007,23(11):84~88
    高峻.太行山低山丘陵区两种农林复合模式中水肥光分布特征研究.北京林业大学博士学位论文,2009,19~23
    巩国丽,陈辉,段德玉.利用稳定氢氧同位素定量区分白刺水分来源的方法比较.生态学报,2011,31(24):7533~7541
    郭巧生.药用植物栽培学.北京:高等教育出版社,2004,283~287
    郝兴明,陈亚宁,李卫红等.胡杨根系水力提升作用的证据及其生态学意义.植物生态学报,2009,33(6):1125~1131
    何春霞,孟平,张劲松等.基于稳定碳同位素技术的华北石质山区2种果农复合模式水分利用研究.林业科学,2012,48(5):1~7
    何春霞,孟平,张劲松等.华北低丘山区核桃-决明子复合模式的根系分布.林业科学研究,2013,26(6):715~721
    何其华,何永华,包维楷.干旱半干旱区山地土壤水分动态变化.山地学报,2003,21(2):149~156
    黄伟,张俊花,李文红等.冀西北坝上半干旱区南瓜油葵间作的水分效应.生态学报,2011,31(14):4072~4081
    惠竹梅,李华,张振文等.西北半干早地区葡萄园行间生草对土壤水分的影响.干旱地区农业研究,2004,22(4):39~42
    贾国栋,余新晓,邓文平等.北京山区典型树种土壤水分利用特征.应用基础与工程科学学报,2013,21(3):403~410
    李大通,张之淦.核技术在水文地质中的应用指南.北京:地质出版社,1990,270~271
    李文明.益民灌区板蓝根畦灌灌溉制度试验研究.甘肃农业大学硕士学位文,2007,20~23
    林光辉.稳定同位素生态学.高等教育出版社,北京,2013,141~145
    刘朝斌.核桃周年管理技术.西安:西北农林科技大学出版社.2003,14~16
    刘海燕,李吉跃.稳定碳同位素在植物水分利用效率研究中的应用.西北林学院学报,2008,23(1):54~58
    刘海燕.油松稳定碳同位素遗传稳定性及环境影响的研究.北京林业大学博士学位论文,2008,30~35
    刘丽颖,贾志清,朱雅娟.青海共和盆地不同林龄乌柳林的水分利用策略.林业科学研究2012,25(5):597~603
    刘兴宇,曾德慧.农林复合系统种间关系研究进展.生态学杂志,2007,26(9):1464~470
    吕晓峰.不同栽培条件对决明产量、农艺性状和抗氧化酶活性的影响.西南大学硕士论文,2009,17~18
    马秀玲,陆光明,徐祝龄等.农林复合系统中林带和作物的根系分布特征.中国农业大学学报,1997,2(1):109~116
    马长明,刘广营,张艳华等.核桃树干液流特征研究.西北林学院学报,2010,25(2):25~29
    马长明,翟明普,刘春鹏.单作与间作条件下核桃根系分布特征研究.北京林业大学学报,2009,31(6):181~186
    孟平,张劲松,樊巍.中国复合农林业研究.北京:中国林业出版社,2003:2~9/29~32
    孟平,张劲松,樊魏等.农林复合生态系统研究.北京:科学出版社,2004,16~18/25
    孟平,张劲松.梨麦间作系统水分效应与土地利用效应的研究.林业科学研究,2004,17(2):167~171
    聂云鹏,陈洪松,王克林.石灰岩地区连片出露石丛生境植物水分来源的季节性差异.植物生态学报,2011,35(10):1029~1037
    秦树高.柠条林草带状复合系统地下竞争关系研究.北京林业大学博士学位论文,2011,23~26
    邱扬,傅伯杰,王军等.土壤水分时空变异及其与环境因子的关系阴.生态学杂志,2007,26(l):100~107
    渠春梅,韩兴国,苏波等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示.植物学报,2001,43(2):186~192
    师进霖,李军萍,杜秀虹等.不同基质对菘蓝幼苗生长的影响.北方园艺,2010,(6):209~210
    石辉,刘世荣,赵晓广.稳定性氢氧同位素在水分循环中的应用.水土保持学报,2003,17(2):163~166
    苏波,韩兴国,李凌浩等.中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的影响.植物生态学报,2000,24(6):648~655
    苏培玺,陈怀顺,李启森.河西走廊中部沙漠植物δ13C值的特点及其对水分利用效率的指示.冰川冻土,2003,25(5):597~602
    孙惠玲,王绍明,马剑英等.准噶尔盆地早春短命植物碳同位素组成研究.干旱区研究,2007,24(5):652~656
    孙守家,孟平,张劲松等.华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用.生态学报,2010,30(14):3717~3726
    孙双峰,黄建辉,林光辉等.三峡库区岸边共存松栎树中水分利用策略比较.植物生态学报,2006,30(1):57~63
    孙学凯,范志平,王红等.科尔沁沙地复叶槭等3个阔叶树种的光合特性及其水分利用效率.干旱区资源与环境,2008,22(10):188~194
    谭勇,梁宗锁,董娟娥等.水分胁迫对菘蓝生长发育和有效成分积累的影响.中国中药杂志,2008,38(1):19~22
    唐立松,张建龙,李彦等.植物对土壤水分变化的响应与控制性分根交替灌溉.干旱区研究,2005,20(l):90~93
    王建林,杨新民,房全孝.不同尺度农田水分利用效率测定方法评述.中国农学通报,2010,26(6):77~80
    王来,仲崇高,蔡靖等.核桃-小麦复合系统中细根的分布及形态变异研究.西北农林科技大学学报,2011,39(7):64~70
    王晓宇,赵晓明.不同倍性菘蓝根叶干物质积累特性研究初报.中国农学通报,2008,34(3):258~261
    王竹承.黄土高原三种药用植物的耗水和抗旱特性研究.西北农林科技大学硕士学位论文,2010,14~16
    尉秋实,赵明,李昌龙等.不同土壤水分胁迫下沙漠威的生长及生物量的分配特征IJ].生态学杂志,2006,25(l):7~12
    吴锦奎,丁永建,王根绪等.同位素技术在寒旱区水科学中的应用进展.冰川冻土,2004,26(4):509~516
    谢必武,张凤龙,陈光蓉.决明子优化栽培措施研究及模型建立.浙江大学学报(农业与生命科学版),2007,33(4):425~428
    徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应.水土保持学报,2001,15(1):77~80
    徐庆,冀春雷,王海英等.氢氧碳稳定同位素在植物水分利用策略研究中的应用.世界林业研究,2009,22(4):41~46
    许华森,云雷,毕华兴等.核桃-大豆间作系统细根分布及地下竞争.生态学杂志.2012,31(7):1612~1616
    严昌荣,白涛,蔡绍平等.稳定性同位素技术在植物水分研究中的应用.湖北林业科技,1998,4:29~33
    严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境关系研究.生态学报,2001,21(11):1952~1956
    叶青.菘蓝生物学特性的研究.西北农林科技大学硕士学位论文,2006,12~14
    尹伟伦,万雪琴,夏新莉.杨树稳定碳同位素分辨率与水分利用效率和生长的关系.林业科学,2007,43(8):15~22
    云雷,毕华兴,马雯静等.晋西黄土区核桃花生复合系统核桃根系空间分布特征.东北林业大学学报,2010,38(7):67~70
    云雷,毕华兴,任怡等.黄土区果农复合系统种间水分关系研究.水土保持通报,2008,28(6):110~114
    翟进升,周静,王明珠等.低丘红壤南酸枣与花生复合系统种间水肥光竞争的研究—Ⅲ.南酸枣与花生利用水分状况分析.中国生态农业学报,2005,13(4):91~94
    张春平,何平,杜丹丹等.决明种子硬实及萌发特性研究.中草药,2010,41(10):1700~1704
    张建锋,周金星.林木根系衰老研究方法与机制.生态环境,2006,15(2):405~410
    张劲松,孟平,尹昌君.农林复合系统的水分生态特征研究述评.世界林业研究,2003,16(1):10~14
    张劲松,孟平.农林复合系统水分生态特征的模拟研究.生态学报,2004,24(6):1172~1178
    张劲松.农林复合系统水分运移模型与水分生态特征研究.中国农业大学博士学位论文.2000,18-19.
    赵斯,赵雨森,王林等.东北黑土区农林复合土壤效应.东北林业大学学报,2010,38(5):68~70
    赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价.生态学报.2006,26(6):1792~1801
    仲崇高.渭北几种农林复合模式土壤肥力研究.西北农林科技大学硕士学位论文,2009,1~3
    周海,郑新军,唐立松等.准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同.植物生态学报,2013,37(7):665~673
    周鸿升,郭保香,李玉杰.中美核桃发展历程及产业政策对比研究.林业经济,2010,(3):43~46
    朱霞,胡勇,王晓丽等.几种植物生长调节剂对决明种子萌发及幼苗生长的影响.作物杂志,2010,(1):46~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700