用户名: 密码: 验证码:
银杏热适应机理及耐热优良核用无性系选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以邳州市银杏种质资源圃20个银杏无性系和其中6个无性系的F1代(6个半同胞家系)幼苗为材料,在比较6个半同胞家系耐热性的基础上,以耐热性有明显差异的2个半同胞家系进行热适应机理研究;以耐热性、种核产量、单核重以及光合生产力等指标对20个无性系进行综合评价。研究结果表明:
     33#半同胞家系耐热性较差,37#半同胞家系耐热性较强,两者可以作为热适应机理研究的理想对比分析材料。
     热胁迫下,2个耐热性不同的半同胞家系相比,感热半同胞家系超微结构损伤较严重,相对含水量降幅较大,且O2-产生速率和H2O2、MDA含量及相对电导率增幅较大;耐热半同胞家系SOD活性和ASA含量增幅较大,可溶性糖和脯氨酸积累较多,正常蛋白质合成受阻温度和热激蛋白合成温度较高,光化学效率降幅较小,以及光合速率受热胁迫的影响较小;耐热半同胞家系可以通过加强蒸腾适应高温环境。
     耐热半同胞家系具有较强的耐热性,可能与热胁迫下特异表达及表达量上升的蛋白质种类多于感热半同胞家系有关,以及与2个半同胞家系Ca2+分布系统对热胁迫的响应不同有关。
     6个半同胞家系的耐热性与其半致死温度相关性分析可知,半致死温度能够有效评价银杏耐热性的相对差异;半同胞家系间的耐热性排序与无性系间的耐热性排序基本一致;27#、31#、57#无性系作为核用银杏在南移引种过程中具有较大潜力,尤其27#无性系是南移引种材料的最佳选择。
In this paper, 20 clones of Ginkgo biloba growing in Ginkgo germplasm nursery in Pizhou city and 6 half-sib families 2a seedlings (the F1 of the above-mentioned 20 clones) were materials for study. First, the heat-tolerance of 6 half-sib families was assessed. Based on the result, the mechanism of heat adaptation was explored by comparing heat-sensitive half-sib family and heat-tolerant half-sib family. Further, 20 clones were assessed comprehensively basing on heat tolerance, nut yield, single nut weight, and photosynthetic productivity. The results were as follows:
     (1) The heat-tolerance of 33# half-sib familiy was poor, while that of 37# half-sib familie was strong, the two half-sib families were ideal contrast materials for exploring the mechanism of heat adaptation of G. biloba.
     (2) Under heat stress, the ultrastructuress of leaf mesophyll cells of G. biloba injured significantly, which happened more seriously in heat-sensitive half-sib family than heat-tolerant half-sib family. To a certain extent, there was a correlation between the change of ultrastructure and heat-tolerance.
     (3) Under heat stress, the physiological and biochemical activities of G. biloba changed dramatically. The leaf relative water content decreased with the increase of heat stress, the decrease range of relative water content of heat-sensitive half-sib family was larger than that of heat-tolerant half-sib family. Compared with heat-tolerant half-sib family, the increase amplitude of the production rate of O2-, the content of H2O2 and MDA, and relative electric conductivity were more. There was an obvious difference in SOD activity and ASA content between different heat-tolerance of materials and stress degree, and the increase amplitude of both SOD activity and ASA content of heat-tolerant half-sib family was more than that of heat-sensivity half-sib family. Heat stress caused soluble sugar and proline accumulate in both half-sib families, but more in heat-tolerant half-sib family compared to heat-sensitive half-sib family. The temperature at which normal proteins synthesis was blocked and the temperature at which heat shock proteins synthesis occurred was higher on heat-tolerant half-sib family than on heat-sensitive half-sib family. With the increasing of heat stress, photochemical efficiency deacreased and the reduction range of heat-sensitive family was larger than that of heat-tolerant family. The photosynthetic rate of heat-tolerant half-sib family was less affected by heat stress than heat-sensitive half-sib family, heat-tolerant half-sib family could strengthen transpiration to reduce leaf temperature in order to adapt to high-temperature environments.
     (4) Electrophoresis patterns of total proteins in the leaves of G. biloba were significantly affected by heat stress; down-regulated proteins and their ratio to the total proteins were higher in the heat-sensitive half-sib family, on the contrary, Up-regulated proteins and their ratio to the total proteins were higher in the heat-tolerant half-sib family. It suggested that the higher heat-tolerance in the heat-tolerant half-sib family may be related with its ability to produce more up-regulated proteins and special expressing proteins under heat stress.
     (5) Under heat stress, Ca2+ in leaf mesophyll of G. biloba tended to transport from vacuole to cytoplasm. Compared to control, the calcium antimonite deposits of Ca2+ in cytoplasm of heat-sensitive half-sib family were larger and aggregated abnormally as block shape, but the shape of the calcium antimonite deposits of Ca2+ of heat-tolerant half-sib family hardly changed. Under heat stress, different responses of Ca2+ distribution in two half-sib families on heat stress might be closely related to the heat-tolerance of G. biloba.
     (6) Based on the correlation between the heat-tolerance and semi-lethal temperature of above-mentioned 6 half-sib families of G. biloba, semi-lethal temperature was regarded as an effective parameter to assess heat tolerance of G. biloba. Hence, further assessment on the heat-tolerance of above-mentioned 20 clones was conducted by measuring the semi-lethal temperatures. The results showed that the heat-tolerance order among half-sib families was in agreement with that among clones. Moreover, to select tolerant superior clones, the nut yield clones, single nut weight, and photosynthetic of 20 strain were measured. The results showed that the clones of 27#, 31#, and 57# for nut-production clones had a great potential to grow in south China. Among them, 27# was the best choice for introduction towards south China.
引文
Abass M, Rajasheker C B. Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes [J]. Hort Science, 1993, 28(1): 50~52.
    Alia P, Saradhi P, Mohanty P. Involvement of proline in protecting thylakoid membranes against free radical induced photo damage [J]. Photochem Photobiol, 1997, 38: 253~257.
    Angelika G, Walter W, Michael I et al. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics, 2004, 4(12): 3665~3885.
    Anon S, Fernandez J Z, Franco, J L, et al. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants [J]. Sci. Hortic, 2004, 101: 333~342.
    Arora R, Pitchay D S, Bearce B C. Water-stress-induced heat tolerance in geranium leaf tissues: a possible linkage through stress proteins [J]. Plant Physiology, 1998, 103: 24~34.
    Asada K. Production and action of active oxygen species in photosynthetic issue [M], ln: Foyer C H, Mullineaux P M (Eds.). Causes of photooxidative stress and Amelioration of defense system in plant [J]. Boca Rooton, FI: CRC Press, 1994: 77~104.
    Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance [J]. Environ. Exp. Bot., 2007, 59: 206~216.
    Ashraf M, Hafeez M. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations [J]. Biol. Plant, 2004, 48, 81~86.
    Aspinall D, Plleg L G. Proline Acuumulation: Physiological Aspects, the Phology and Biochemistry of Drought Resistance in Plant [M]. New York: Academic Press, 1981.
    Averyanov A A, Lapikova V P, Djawakhia V G. Active oxygen mediates heat-induced resistance of rice plant to blast disease [J]. Plant Sci., 1993, 92: 2734.
    Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plant [J]. Plant Physiology, 1980, 31: 491~543.
    Biyaseheva A E, Molotkovskii Y G, Mamonov L K. Increase of free Ca2+ in the cytosol of plant protoplasts in response to heat shock as related to Ca2+ homeostasis [J]. Russian Plant Physiol., 1993, 40: 540~544.
    Bush D S. Regulation of cytosolic calcium in plants [J]. Plant Physiol., 1993, 103: 7~13.
    Candiano G, Bruschi M, Musante L, et al. Blue silver a very sensitive colloidal Coomassie G-250 staining for proteome analysis [J]. Electrophoresis, 2004, 25: 1327~1333.
    Castor, Trevor P, Thodore A. Determination of taxol in Taxus media needles in the presence of interfering components [J]. J Liq Chromatogr, 1993, 16(3): 723~731.
    Ciamporova M, Mistrik I. The ultrastructural response of root cells to stressful conditions [J]. Environmental and Experimental Botany, 1993, 33: 11~26.
    Collins G G, Nie X L, Saltveit M E. Heat shock Proteins and chilling sensitivity of Mung bean hypocotyls [J]. Journal of Experimental Botany, 1995, 46: 795~802.
    Crafts-Brandner S J, Salvucci M E. Rubisco activas constrains the photosynthetic potential of leaves at high temperature and CO2 [J]. Proceeding of National Academic Science of USA, 2000, 97: 13430~13435.
    Cragg G M, Saul A S, Matthew S, et al. The taxol supply crisis: New NCI polices for handing the larger-scale production of novel natural product anticancer and anti-HIV [J]. Jat Prod, 1993, 56(10): 1657~1668.
    Demmig-Adams B, Adams W W. The xanthophylls cycle [M]. In: Young A, et al. Carotenoids in photosynthesis. Berlin/Heidelberg: Springer, 1992.
    Du X M. The production and scavenging of reactive oxygen species in plants [J]. Chin J Biotec, 2001, 17(2): 121~125.
    Ebbrahim M K, Zingsheim O, El-shourbagy M N, et al. Growth and sugar storage in Sugarcane grown at temperature below and above optimum [J]. J. Plant Physiol, 1998, 153: 593~602.
    Elizabeth R W, Elizabeth Vierling. Evolution and function of the small heat shock proteins in plats [J]. J Exp Bot, 1996, 47: 325~332.
    Foolad M R. Breeding for abiotic stress tolerance in tomato [M]. In: Ashraf M, Harris P J C (Eds.). Abiotic stresses: plant resistance through breeding and molecular approaches. USA. New York: The Haworth Press Inc. , 2005.
    Francisco J P, Daniel V, Nilo M. Ascorbic acid and flavonoid peroxidase reaction as a detoxifying system of H2O2 in grape vine leaves [J]. Phytochemistry, 2002, 60: 573~580.
    Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthctic electron transport and quenching of chlorophyll fluorescencc [J]. Biochem Biophys Acta, 1989, 990: 87~92.
    Gille G, Singler K. Oxidative stress in living cells [J]. Folia Microbiol., 1995, 2: 131~152.
    Gong M, Chen S N, SongY Q, et al. Effect of Calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings [J]. Aust J Plant Physiol, 1997, 24(3): 371~379.
    Gong M, van der Luit A H, Knight M R, et al. Heat shock–induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance [J]. Plant Physiol, 1998, 116: 429~437.
    Gulen H, Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants [J]. Plant Science, 2004, 166: 739~744.
    Gurleya W B. HSP101: A Key Component for the Acquisition of Thermotolerance in Plants[J]. Plant Cell, 2000, 12: 457~456.
    Hall A E. Breeding for heat tolerance [J]. Plant Breed. Rev., 1992, 10: 129~168.
    Hare P D, Cress W A, Staden J V, et al. Dissecting the roles of osmolyte accumulation during stress [J]. Plant Cell Environ., 1998, 21: 535~553.
    Havaux M, Tardy F. Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley land races to high-light and heat stress [J]. Australian Journal ofPlant Physiology, 1999, 26: 569~578.
    Heckathorn S A, Downs C A, Sharkey T D et al. The small, methionine-rich chloroplast heat-shock protein protects PSⅡelectron transport during heat stress [J]. Plant Physiol, 1998, 116(1): 439~444.
    Herrero M P, Johson R R. High temperature stress and pollen viability of maize [J]. Cropsci, 1980, 20: 796~800.
    Howarth C J. Genetic improvements of tolerance to high temperature [M]. In: Ashraf M, Harris P J (Eds.). Abiotic Stress: Plant Resistance Through Breeding and Molecular Approaches. New York: Howarth Press Inc., 2005.
    Huang B, Liu X, Fry J D. Shoot physiological responses of two bentgrass cultivars to high temperature and poor soil aeration [J]. Crop Science, 1998, 38: 1219~1224.
    Huang B, Liu X, Xu Q. Supmoplimal soil temperature induced oxidative stress bentgrass cultivars differing leaves of Creeping heat tolerance [J]. Corp Sci, 2001, 41: 430~435.
    Iba K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance [J]. Annu. Rev. plant Biol., 2002, 53: 225~245.
    Ingram D L, Buchanan D W. Lethal high temperatures for roots of three citrus root-stocks [J]. American society for Horticultural science, 1984, 109,189~193.
    Iwahashi Y, Hosoda H. Effect of heat stress on tomato fruit protein expression [J]. Electrophoresis, 2000, 21: 1766~1771.
    Jinn T L, Chang P E L, Chen Y M. Tissue type-specific heat shock response and immunolocalization of the class I low molecular weight heat shock proteins complex in soybean [J]. Plant Physiol, 1997, 114: 429~438.
    Joshi C P, Klueva N Y, Morrow K J et al. Expression of a unique plastid-localized heat-shock protein is genetically linked to acquired thermotolerance in wheat [J]. Theor Appl. Genet. 1997, 95: 834~841.
    Karim M A, Fracheboud Y, Stamp P. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes [J]. Journal of Agronomy&Crop Science, 2000, 184: 17~223.
    Kauss H. Some aspects of calcium-dependent regulation in plant metabolism [J]. Ann Rev Plant physiol, 1987, 38: 47~72.
    Kavi Kishore P B, Sangam S. Amrutha R N, et al. Regulation of proline biosynthesis, degradation, update and transport in higher plants: its implications in plant growth and abiotic stress tolerance [J]. Curr. Sci., 2005, 88: 424~438.
    Kim K Y, Chung M S, Jo J. Acquisition of thermotolerance in the transgenic plants with cHSP17.6 cDNA [J]. J. Korean Soc. Grassl. Sci., 1997, 17: 379~386.
    Kimpel J A, Key J L. Heat shock in plants [J]. Trends Biochem Sci., 1985, 9: 353~357.
    Kinet J M, Peet M M. Tomato [M]. In: Wien, H C (Ed). The Physiology of Vegetable Crops. UK, Wallingford, CAB International, 1997.
    Kocsy G, Gabriella S, Jozsef S, et al. Heat tolerance together with heat stress-induced changes in glutathione and hydroxymethy glutathione levels is affected by chromosome 5A of wheat [J]. Plant Sci., 2004, 166: 451~458.
    Krishnan M, Nuyen H T, Burke J J. Heat shock protein synthesis and thermal in wheat [J]. Plant Physio1.,1989, 90: 140~145
    Larkindale J, Knight M R. Protection against heat stress-induced oxidation damage in Arobidopsis involves calcium, abscisic acid, ethylene, and salicylic acid [J]. Plant Physiology, 2002, 128: 682~695.
    Larquse S A, Wain R L. Studies on plant growth-regulating substance: Abscisic acid as a genetic character related to drought tolerance [J]. Annu. Appl boil, 1976, 83: 291~297
    Law R D, Crafts-Brandner S J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose–1, 5–bisphosphate arboxylase/oxygenase [J]. Plant Physiology, 1999, 120: 173~181.
    Levitt A D. Response of Plant of Environmental Stresses [M]. New York: Acadimic Press,1990.
    Levitt J. Reponses of plant to environmental stress [M]. New York: Academic press, 1980.
    Lin C Y, Chen Y M, Key J L. Solute leakage in soybean seedlings under various heat shock regimes [J]. Plant Cell Physiology, 1985, 26: 1493~1498.
    Lin C Y, Roberts J K, Key J L. Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization [J]. Plant Physiol, 1984, 74: 152~160.
    Liu J, Shono M. Characterization of mitrochondria-located small heat shock protein tomato (Lycopersicon esculentrun) [J]. Plant Cell Physiol., 1999, 40: 1297~1234.
    Liu X, Huang B. Heat stress injury in relation to membrane liquid peroxidation in creeping bentgrass [J]. Crop Sci., 2000, 40: 503~510.
    Malik M K, Slovin J P, Hwang C H. Modifed expression of a carrot small heat shock protein gene, hsp17.7, results in increased or decreased thermotolerance[J]. Plant J., 1999, 20: 89~99.
    Mallick N. Reactive oxygen species and antioxidants: response of algal cells [J]. J. Plant Physiol, 2000, 157: 183~193.
    Matos M C, Campos P S, Ramalho J C, et al. Photosynthetic activity and cellular integrity of the Andean legume Pachyrhizus ahipa (Wedd.) Parodi under heat and water stress [J]. Photosyntheica, 2002, 40: 493~501.
    McAlister L, Finkelstein D B. Heat shock proteins and their resistance in yeast [J]. Biochem. Biophys. Res. commun, 1980, 93: 819~824.
    Michel H, Florence T. Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barely landraces to high-light and heat stress [J]. Australian Journal of Plant Physiology, 1999, 26: 569~578.
    Mikami K, Murata N. Membrane fluidity and the perception of environmental signals incyanobacteria and plants [J]. Prog. Lipid Res.,2003, 42: 527~543.
    Mitsutoshi K, Thomas T L, Takayoshi K, et al. Temperature response and photoinhibition investigated by chlorophyll fluorescence measurements for four distinct species of dipterocarp trees [J]. Physiologic Plantarum, 2000, 109: 284~290.
    Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci., 2002, 9: 405~410.
    Mullarkey M, Jones P. Isolation and analysis of thermotolerant mutants of wheat [J]. J. Exp. Bot., 2000, 51: 139~146.
    Nakamoto H, Hiyama T. Heat-shock proteins and temperature stress [M]. In: Pessarakli, M (Ed.), Handbook of plant and Crop Stress. New York: Marcel Dekker, 1999.
    Neumann D M, Emmermann M , Thierfelder J M, et al. HSP68-a DNAK-like heat-stress protein of plant mitochondria [J]. Planta, 1993, 190: 32~43.
    Oda M, Thilakaratne D M, Li Z J, et al. Effects of abscisic acid on high temperature stress injury in cucumber [J]. J Japan Soc hort Sci, 1994, 63(2): 393~399.
    Park S Y, Shivaji K, Krans JV, Luthe D S. Heat-shock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds [J]. Plant Physiol. 1996, 111: 515~524.
    Parsell D A, Lindquist S. The function of heat shock proteins in stress tolerance [J].Annu. Rev Genet.,1993, 27: 437~496.
    Perdom P, Murphy J A, Berkowitz G A. Physiological changes associated with performance of Kentucky bluegrass cultivars during summer stress [J]. Hort. Sci., 1996, 31(7): 1182~1186.
    Preczewski P J, Heckathorn S A, Downs C A, et al. Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins among nine genotypes of Lycopersicon (tomato) [J]. Photosynthetica, 2000, 38: 127~134.
    Qiu N, Lu C. Enhanced to tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants [J]. Plant Cell Environ., 2003, 26: 1137~1145.
    Ranney T G, Blazich F A, Warren. Heat tolerance of selected species and Populations of Rhododendron [J]. Amer Hort sci., 1995, 51 (12): 423~128.
    Rasmussed H, Barrett P Q. Calcium messenger system: an integrated view [J]. Physl Rev, 1984, 64: 938~984.
    Ristic Z D, Gifford J, Cass D D. Dehydration, damage to the plasma membrance thylakoids and heat-shock proteins in lines of maize differing in endogenous levels of abscisic acid and drought resistance [J]. J. plant Physiol, 1991a, 139: 467~473.
    Ristic Z D, Gifford J, Cass D D. Heat-shock proteins in two lines of Zea mays L. that differ in drought and heat resistance [J]. Plant physiol, 1991b: 1430~1434.
    Ristic Z, David D C. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscisic acid [J]. Int J plant sci, 1992, 153: 186~196.
    Sabehat A, Weiss D, Lurie S. Heat-shock proteins and cross-tolerance in plants [J]. 1998, 103: 437~441.
    Sadalla M M, Quick J F, Shanahan J F. Heat tolerance in winter wheat. 1.Hardening and genetic effects on membranes thermostability. 2.Membranes thermostability and field performance [J]. Crop Sci., 1990, 30: 1243~1251.
    Saelim S, Zwiazek J. Preservation of thermal stability of cell membranes and gas exchange in high temperature acclimated Xylia xylocapa seedlings [J]. Jounral Plant Physiol, 2000, 156: 380~385.
    Sairam P K, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants [J]. Curr. Sci. , 2004, 86: 407~421.
    Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants [J]. Plants. Plant Cell Environ., 2002, 25: 163~171.
    Sanchez Y, Lindquist S. HSP104 required for induced thermotolaerance [J]. Science, 1990, 248: 1112~1115.
    Santarius K A, Exner M, Thebudl L R. Effects of high temperature on the photosynthetic apparatus in isolated mesophyll protoplasts of Yalerianella locust [J]. Betacke Photosythetica, 1991, 25 (1): 17~26.
    Schoffl F, Prandl R, Reindl A. Molecular responses to heat stress [M]. In: Shinozaki K, Yamaguchi-Shinozaki K (Eds). Molecular Responses to Cold, Drought, Heat and Salt Stress in Hinger Plants. Austin, Texas: R. G. Landes Co., 1999.
    Shainnfer T, Ban-Dar H. Chlorophyll degradation in heat-treated Chlorella pyrenoidosa [J]. A flow cytometric study [J]. Australian Journal of Plant Physiology, 2001, 28: 79~83.
    Shanahan J F, Edwards I B, Quick J S, et al. Membrane thermostability and heat tolerance of spring wheat [J].Crop Sci.,1990, 30: 247~251.
    Sharma N K, Bhutani R D, Singh A, et al. Breeding tomato for heat tolerance [J]. Crop Research, 1993, 1(6): 51~58.
    Sinsawat V, Leipner J, Stamp P, et al. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature [J]. Environmental and Experimental Botany, 2004, 52(10): 123~129.
    Somly A P. Cellular site of Ca2+ regulation [J]. Nature, 1984, 309: 516~517.
    Steven J, Crafts-Brandner, Michael E S. Sensitivity of photosynthesis in a C4 Plant, Maize, to heat Stress [J]. Plant Physiology, 2002, 129: 1773~1780.
    Sun W, Montagu M W, Verbruggen N. Small heat shock proteins and stress tolerance in plants [J]. Biochem. Biophys. Acta, 2002, 1577: 1~9.
    Sunita S, Michel R, Duane E F. Relationship between gibberellins, height and stress tolerance in barley (Hordeun vulgare L.) seedlings [J]. PIant Growth Regulation, 2004, 42: 125~135.
    Talanova V V, Titov A F, Boeva N P. Changes in the level of endogenous abscisic acid in plantleaves under the influence of cold and heat hardening [J]. Soviet Plant Physiol, 1992, 38: 720~725.
    Tan D X. Singnificance of melatonin in antioxidative defense system: reactions and products [J]. Biol Signals Recept, 2000, 9: 137~159.
    Thebud R, Santarius K A. Effects of high-temperature stress on various biomembranes of leaf cell in sita and in vitro [J]. Plant Physiol, 1982, 70: 200~205.
    Tzeng S, Ban-Dar H. Chlorophyll degradation in heat treated Chlorella pyrenoidosa. A flow cytometric study [J]. Australian Journal of Plant Physiology, 2001, 28: 79~83.
    Venkatachalayya S, Ganeshkumar, Krishnaprasad B T, et al. Identification of pea genotypes with enhanced thermotolerance using temperature induction response technique (TIR) [J]. J. Plant Physiol, 2002, 159: 535~545.
    Vierling E. The role of heat shock proteins in plants [J]. Annu Rev Plant Physiol, 1991, 42: 579~620.
    Wahid A, Close T J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves [J]. Biol. Plant, 2007, 51,104~109.
    Wahid A. Phsiological implications of metabolies biosynthesis in net assimilation and heat stress tolerance of sugarcane sprouts [J]. J. Plant Res. 2007, 120: 219~228.
    Wang L J, Huang W D, Li J Y, et al. Peroxidation of membrane lipid and Ca2+ homeostasis in grape mesophyll cells during the process of cross-adaptation to temperature stresses [J]. Plant Sci., 2004, 167: 71~77.
    Wang X J. Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathogottis plicata orchidaceae protocorms [J]. J Exp Bot, 2002, 53(368): 551~558.
    Webb A A R, Mcainsh M R, Taylor J E. Calcium ions as Intracellular second messengers in higher plants [J]. Adv. Bot. Res., 1996, 22: 45~96.
    Xu D Q, Shen Y K. Photosynthetic efficiency and crop yield [M]. Pessarakli M, ed. Handbook of Plant and Crop Physiology. New York: Marcel Dekker Press, 2002.
    Yan C L, Wang J B, Li R Q. Effect of heat stress on calcium ultrastructural distribution in pepper anther [J]. Environ. Exp. Bot.,2002, 48: 161~168.
    Yan S, Zhang Q, Tang Z, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice [J]. Mol. Cell Proteomics, 2006, 5:484~496.
    Yeh D M, Lin H F. Thermostability of cell membranes as a measure of heat tolerance and Relationship to flowering delay in chrysanthemum [J]. American society for Horticultural science, 2003, 128: 656~660.
    Yong I K, Ji S S, Nilda R B, et al. Antioxidative enzymes offer protection from chilling damage in rice plants [J]. Crop Sci., 2003, 43: 2109~2117.
    白汝瑾,庄天明,刘杨,等.利用双向电泳技术分离盐胁迫下番茄叶片蛋白[J].上海交通大学学报(农业科学版) , 2007, 25(4): 363~366.
    曹福亮.中国银杏[M].南京:江苏科学出版社, 2002.
    曹珂,王力荣,朱更瑞,等.不同需冷量桃品种营养生长和光合特性研究[J].果树学报, 2007, 24(3): 282~286.
    陈坚,章宁,金桂英,等.高温及盐胁迫对萍体电解质与脯氨酸的影响及其与抗逆性的关系[J].福建省农科院学报, 1994, 9(2): 28 ~33.
    陈立松,刘星辉.高温胁迫对桃和柚细胞膜透性和光合色素的影响[J].武汉植物学研究, 1997A, 15(3): 233~237.
    陈立松,刘星辉.植物抗热性鉴定指标的种类[J].干旱地区农业研究, 1997B, 15(4): 72~76.
    陈立松,刘星辉编著.果树逆境生理[M].中国农业出版社, 2003.
    陈明皋,陈建华,徐清乾,等. 4个桤木品系净光合速率动态特征及其差异性研究[J].林业科学研究2008, 21(4): 534~541.
    陈培琴,郁松林,詹妍妮,等.植物在高温胁迫下的生理研究进展[J].中国农学通报, 2006, 22(5): 223~227.
    陈希勇,孙其信,孙长征.春小麦耐热性表现及其评价[J].中国农业大学学报, 2000, 5(1): 43~49.
    陈燕,郑小林,曾富华,等.高温干旱下两种冷季型草坪草叶片细胞超微结构的变化[J].西北植物学报, 2003, 23(2): 304 ~ 308.
    陈颖,谢寅峰,沈惠娟.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报(自然科学版), 2002, 26 (2): 55~58.
    陈由强,叶冰莹,高一平,等.低温胁迫下枇杷幼叶细胞内Ca2+水平及细胞超微结构变化的研究[J].武汉植物学研究2000, 18(2): 138~142.
    陈志刚,谢宗强,郑海水.不同地理种源西南桦苗木的耐热性研究[J].生态学报, 2003, 23(11): 2327~2332.
    陈忠,苏维埃,汤章城,等.植物热激蛋白[J].植物生理学通迅, 2000, 36(4): 289~296.
    程金新,王勇,李云,等.银杏遗传改良研究进展[J].莱阳农学院学报, 2005, 22(4): 292~297.
    程勤贤,陈鹏,何爱华.银杏种质资源分类研究综述[J].江苏林业科技, 2007, 34(4): 44~47.
    丁印龙,廖启炓,谢潮添,等.低温胁迫下夏威夷椰子幼苗叶肉细胞Ca2+水平及细胞超微结构变化的研究[J].厦门大学学报(自然科学版), 2002, 41(5): 679~682.
    丁之恩主编.银杏M[M].北京:中国林业出版社, 1999.
    杜建雄.干热胁迫对草地早熟禾5个品种生理生化特性影晌的研究[D].兰州:甘肃农业大学, 2007.
    杜艳.七叶树种子耐脱水性和苗木抗寒性研究[D].南京:南京林业大学, 2004.
    杜永臣,桔昌司.高温对黄瓜根系中ABA水平的影响[J].园艺学会杂志, 1993, 62(3): 332~333.
    樊卫国,李迎春.梨属4个重要种的光合特性及水分利用率[J].西南农业学报, 2006, 19(6): 1144~1146.
    范杰英. 9个树种抗旱性的分析与评价[D].杨凌:西北农林科技大学, 2005.
    范双喜,谷建田,韩莹琰.园艺植物高温逆境生理研究进展[J].北京农学院报, 2003, 18(2): 147~151.
    高丽红.白菜、生菜高温伤害机理及其越夏栽培技术的研究[J].南京:南京农业大学, 1994.
    高天,马锋旺,梁东.高温胁迫对两个仙客来品种抗氧化系统的影响[J].西北农林科技大学学报, 2006, 34(6): 82~84, 90.
    耿丽英,温宝阳,刘继英,等.几个杨树优良品种光合净生产力的测定[J].防护林科技, 2004, (2):11~12.
    龚明,李英,曹宗巽.植物体内的钙信使系统[J].植物学通报, 1990, 7(3): 19~29.
    谷文众,王义强,启烨.人工气候箱条件下银杏的耐寒抗热生理机制[J].经济林研究, 2005, 23 (2): 24~26.
    郭春芳,孙云.叶绿素荧光动力学在植物抗性生理研究中的应用[J].福建教育学院学报, 2006, (7): 120~123.
    郭红彦.银杏营养贮藏蛋白质的分离鉴定及特性研究[ D].南京:南京林业大学, 2007.
    郭丽红,陈善娜,龚明.玉米幼苗热激诱导抗冷性过程中钙的效应[J].云南大学学报(自然科学版), 2003, 25(5): 449~452
    郭丽红,陈善娜,王德斌,等.热激和热胁迫过程中玉米幼苗谷胱甘肽还原酶活性和同工酶的变化[J].云南大学学报(自然科学版) , 2006, 28(3): 262~266.
    海南大学高等职业技术学院组编.热带亚热带果树栽培学[M].北京:中国农业出版社, 2004.
    韩笑冰,利容千,王建波,等.热胁迫对辣椒花粉发育及其生活力的影响[J].园艺学报, 1996, 23(4): 359~364.
    韩笑冰,利容千,王建波.热胁迫下萝卜不同耐热品种细胞组织结构比较[J].武汉植物学研究, 1997, 15(2): 173~178.
    何丙辉,钟章成.不同光强与干旱胁迫对银杏枝叶构件生长的影响[J].广西师范大学学报(自然科学版), 2005, 23(3): 66~69.
    何篙涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应(I)-水涝、肋迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报, 2000, 19(4): 272~275.
    何嵩涛,刘国琴,樊卫国.水涝胁迫对银杏内源激素和细胞溶质含量的影响[J].安徽农业科学, 2006, 34(7): 1292~1294, 1318.
    何文华,董丽,孙震.几种野生地被植物高温半致死温度的确定[J].西南园艺, 2006, 34(3): 10~11.
    何晓明,林毓娥,陈清华,等.高温对黄瓜幼苗生长、脯氨酸含量及SOD酶活性的影响[J].上海交通大学学报(农业科学版), 2002, 20(1): 30~33.
    何亚丽,沈剑,王惠林,等.冷季型草坪草耐热机理研究I.草地早熟禾(Poa pratensis L. )在热环境胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报, 1997, 15 (2): 128~132.
    何亚丽.冷季型草坪草耐热基因型的选育和水杨酸调控耐热性的机理[J].南京:南京农业大学, 2002.
    贺立红,贺立静,梁红.银杏不同品种叶绿素荧光参数的比较[J].华南农业大学学报, 2006, 27(4): 43 ~ 46.
    侯九寰.银杏良种的选育与推广[J].林业科技开发, 2002, 16(1): 13~14.
    胡延吉.植物育种学[M].北京:高等教育出版社, 2003.
    黄佳聪,岳元彦,刘建成,等.银杏品种比较试验[J].西南林学院学报, 2003, 23(2): 65~67, 80.
    黄鹏,凌晓明,杨恒延,等.核用银杏品种选育的标准\程序及主要优良品种[J].河南林业科技, 2000, 20(3): 28~31.
    黄英金,罗永锋,黄兴作等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系[J].中国水稻科学, 1999, 13 (4): 205~210.
    黄智耀,韩维亚,王孝锋,等.黑银杏优良无性系选育研究[J].河南林业科技, 1997, 17(1): 5~8.
    贾春峰.银杏优良无性系初选[D].南京:南京林业大学, 2007.
    贾开志,陈贵林.高温胁迫下不同茄子品种幼苗耐热性研究[J].生态学杂志, 2005, 24(4): 398~401.
    姜蕊,胡永红,蒋昌华,等.热胁迫下月季叶片蛋白双向电泳分析[J].中国生物工程杂志, 2006, 26 (4): 91~94.
    姜小文.主要柚品种光合特性研究[D].长沙:湖南农业大学, 2003.
    金兰,丁莉.盐胁迫下星星草种子萌发过程中淀粉酶活性及可溶性糖含量变化[J].青海师范大学学报(自然科学版), 2003, (1): 86~87, 90.
    金新文,沈征言.高温胁迫对三种蔬菜抗热性不同的品种萌动种子活力和ATP含量的影响[J].石河子大学学报(自然科学版), 1997A, 1(2): 112~116.
    金新文,沈征言.高温胁迫下三种蔬菜抗热性不同的品种间叶片蒸腾强度作用的比较[J].石河子大学学报(自然科学版). 1997B, 1(3): 194~198.
    景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏光合特性的影响[J].南京林业大学学报(自然科学版), 2005A, 29(4): 83~86.
    景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报(自然科学版), 2005B, 29(3): 5~8.
    康建宏,周续莲,郭瑞英,等.春大豆三个品种光合速率的初步研究[J].宁夏农学院学报, 2000, 21(3): 24~27, 84.
    康俊根,翟依仁,张京社,等.甘蓝耐热性鉴定方法[J].中国蔬菜, 2002, (1): 4~7.
    柯世省,金则新.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报, 2008, 19(1): 43~ 49.
    乐义成.三种木兰科树种光合速率的比较研究[ D].武汉:华中农业大学, 2007.
    雷江丽,杜永臣,朱德蔚,等.低温胁迫下不同耐冷性番茄品种幼叶细胞Ca2+分布变化的差异[J].园艺学报, 2000, 27 (4): 269~275.
    冷平生,苏淑钗,李月华,等.施肥与干旱胁迫对银杏生长及黄酮苷和萜类内酯含量的影响[J].北京农学院学报, 2001, 16(1): 32~37.
    李冰,刘洪涛等.植物热激反应的信号传导机理[J].植物生理与分子生物学学报, 2002, 28(1): 1~10.
    李冰,周人纲.钙-钙调素信号系统参与热激信号转导的研究[J].西北植物学报, 2004, 24(7) : 1322~1328.
    李成琼,宋洪元,雷建军,等.甘蓝耐热性鉴定研究[J].西南农业大学学报, 1998, 20(4): 298~301.
    李建贵,黄俊华,王强,等.梭梭叶内激素与渗透调节物质对高温胁迫的响应[J].南京林业大学学报(自然科学版), 2005, 29(6): 45~48.
    李健,刘克长.银杏品种的确立和选育[J]. 1999, 30(2): 121~125.
    李玲.温度胁迫下杂交水稻幼苗内源ABA含量和电解质渗漏率变化[J].植物生理学通讯, 1994, 30(2): 103~105.
    李禄军,车克钧,蒋志荣,等.沙冬青光合速率日变化及其影响因子研究[J].干旱区资源与环境, 2007, 21(5): 14 1~145.
    李美如,刘鸿先,王以柔.钙对水稻幼苗抗冷性影响[J].植物生理学报, 1996, 22(4): 379~384.
    李绍鹏.芒果叶片抗旱性鉴定的初步研究[J].热带作物研究, 1993, (4): 56~59.
    李守勇.不同产地冬枣品质特性及其遗传变异研究[D] .北京:北京林业大学, 2004.
    李淑娟.观赏山植的适应性比较研究[D].兰州:甘肃农业大学, 2007.
    李万九,张秀如,孙湘宁,等.棉花热激蛋白(HSP)的研究及其应用前景展望[J].棉花学报, 1997, 9(1): 1~4.
    李小梅,邓秀新,邓伯勋.柑桔体细胞杂种光合特性的初步研究.华中农业大学学报[J]. 2000, 19(6): 585~588.
    李晓铁,邓荫伟,文桂喜.广西核用银杏良种选育和应用[J].林业科技开发, 2008, 22(3): 83~85.
    李晓芝,周人纲,樊志和,等.小麦高温锻炼过程中钙调素含量的变化[J].华北农学报, 2000, 15(3): 20~23.
    李新国,孟庆伟,赵世杰.强光胁迫下银杏叶片的光抑制及其防御机制[J].林业科学, 2004, 40(1): 56~59.
    李亚江,董雁.杨树新无性系叶绿素含量和光合速率的测定[J].辽宁林业科技, 2002, (6):14~35.
    李慥哲,于卓,孙祥,等.苜蓿品种间苗期抗热性差异的研究[J].内蒙古农牧学院学报, 1994, 15(4): 54~58.
    李振武.天山北坡低山带春秋场优势种牧草的再生性能[J].中国草地, 1993 (5): 18~24.
    李忠芳.酸、铝对银杏幼树生长的效应研究[D].南宁:广西大学, 2004.
    利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社, 2002.
    梁红,冯颖竹,王英强,等.广东银杏资源调查初报[J].农业与技术, 2002, 22(6): 75~79.
    梁树乐.我国西南地区部分野生报春的引种与杂交育种研究[D].北京:北京林业大学, 2006.
    梁新华,代红军.干旱胁迫下人工种植的甘草叶片叶绿素荧光动力学参数的日变化[J].安徽农业科学, 2006, 34(24): 6432~6433, 6435.
    林鸣.对菜豆热锻炼提高耐热性及高温胁迫过程中一些生理生化变化的研究[D].北京:北京农业大学, 1992
    刘建.两种桉树对低温胁迫的响应机制研究[D].南京:南京林业大学, 2008.
    刘箭,杨晓贺,吴显荣.菜豆热激蛋白在生物膜上定位[J].植物学报, 1995, 37(2): 87~90.
    刘清华,钟章成.紫外线–B辐射对银杏活性氧代谢及膜系统的影响[J].西华师范大学学报(自然科学版), 2007, 28(12): 143~158.
    刘素君.硬肉型草每新品种引种栽培及水分胁迫生理研究[D].重庆:西南农业大学, 2001.
    刘星辉.亚热带果树逆境生理研究进展[M].北京:中国农业科学技术出版社, 2004.
    刘燕燕,沈火林,刘以前.高温胁迫对不结球白菜幼苗生长及生理指标的影响[J].华北农学报, 2005, 20(5): 25~29.
    刘奕清,陈泽雄,杨婉晴.高温和干旱胁迫对尾巨桉幼苗生理特性的影响[J].园艺学报, 2008, 35(5): 761~764.
    刘应迪,李和平,肖冬林.高温胁迫下藓类植物游离脯氨酸含量的变化[J].吉首大学学报(自然科学版), 2001, 22(1): 1~3.
    刘元铅,王开芳,杜华兵等. 11个李品种光合速率及蒸腾强度测试研究[J].山东林业科技, 2004, (1): 15~16.
    刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社, 1994.
    卢少云,郭振飞.草坪草逆境生理研究进展[J].草业学报, 2003, 12(4): 7~13.
    卢少云,黎用朝,等.钙提高水稻幼苗抗旱性研究[J].中国水稻科学, 1999, 13(3): 161~164.
    路子显,曲建波,傅鸿仪,等.大豆热激蛋白与内源激素变化的研究[J].大豆科学, 1998, 17( 4): 318~325.
    吕天羽,王康,刘建军,等.双向电泳两种凝胶染色方法的比较[J]. 2006, 27(10): 1454~1455.
    罗少波,李智军,周微波,等.大白菜品种耐热性的鉴定方法[J].中国蔬菜, 1996, (2): 16~18.
    罗少波,周微波,罗剑宁,等.黄瓜品种耐热性强度鉴定方法比较[J].广东农业科学, 1997, (6): 23~24.
    马德华,霍振荣,李淑菊,等.耐热黄瓜新品种津优4号的选育[J].中国蔬菜, 2001, (2): 16~18.
    马德华,庞金安李淑菊.高温对辣椒幼苗叶片某些生理作用的影响[J].天津农业科学, 1999A, 5(3): 8~10.
    马德华,庞金安,霍振荣,等.黄瓜对不同温度逆境的抗性研究[J].中国农业科学, 1999B, 32(5): 28~35.
    马德华.不同品种黄瓜幼苗对温度逆境耐性的研究[D].中国农业大学, 2000.
    马晓娣,彭惠茹,汪矛,等.作物耐热性的评价[J].植物学通报, 2004, 21(4): 411~418.
    马晓娣,王丽,汪矛,等.不同耐热性小麦品种在热锻炼和热胁迫下叶片相对电导率及超微结构的差异[J].中国农业大学学报, 2003, 8(3): 4~8.
    毛胜利,杜永臣,王孝宣,等.高温胁迫下番茄体内ABA水平的变化及其对花粉萌发的影响[J].园艺学报, 2005, 32(2): 234~238, 67.
    孟凡珍,张振贤,于贤昌,等.不同季节生态型大白菜光合作用对夏季高温强光的响应[J].应用与环境生物学报, 2002, 8(6): 605~609.
    孟焕文,张彦峰,程智慧,等.黄瓜幼苗对热胁迫的生理反应及耐热鉴定指标筛选[J].西北农业学报, 2000, 9(1): 96~99.
    孟令波,李淑敏.高温胁迫对黄瓜生理生化过程的影响[J].哈尔滨学院学报, 2003A, 24(1): 121~125.
    孟令波,秦智伟李淑敏,等.高温胁迫对黄瓜产量及品质的影响[J].中国蔬菜, 2004, (5): 4~6.
    孟令波,秦智伟,李淑敏,等.高温胁迫对黄瓜幼苗根系生长的影响[J].园艺学报, 2003B, 30(6): 694.
    苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究[J].植物学报, 1994A, 36(9): 730~732.
    苗琛,利容千,王建波.热胁迫下不结球白菜和甘蓝叶片组织结构的变化[J].武汉植物学研究, 1994B, 12(3): 207~214.
    苗琛,尚富德.热胁迫下不结球白菜耐热感热品种超微结构的差异[J].河南科学, 1996, 14(增刊): 9~13.
    缪旻珉,朱月林,张玉华.外源Ca2+和ABA对高温下黄瓜花药中Ca2+、ABA及蛋白质合成的影响.园艺学报, 2005, 32(1): 111~114.
    缪旻珉.黄瓜(Cucumis sativus L.)热伤害与热适应生理机制及耐热栽培技术研究[D].南京:南京农业大学, 2000.
    欧定坤,廖立新.银杏种质资源调查及优良单株选择[J].贵州林业科技, 2003, 31(4): 1~9.
    欧祖兰.植物耐热性研究进展[J].林业科技开发, 2008, 22(1): 1~5.
    潘宝贵,王述彬,刘金兵,等.高温胁迫对不同辣椒品种苗期光合作用的影响[J].江苏农业学报, 2006, 22(2): 137~140.
    潘宝贵.高温胁迫对辣椒苗期光合作用和抗氧化系统的影响[D].扬州:扬州大学, 2005.
    潘瑞炽,董愚得主编.植物生理学(第3版)[M].北京:高等教育出版社, 1995.
    潘伟明,李华军,许凤英,等.银杏夏季生长光温条件的初步研究[J].农业与技术, 2004, 24(1): 67~70.
    庞金安,马德华,张延军.高温处理对黄瓜幼苗蛋白质含量的影响[J].天津农业科学, 2001, 7(1): 10~13.
    庞勇.高温胁迫对苹果生理效应及耐热性诱导的研究[J].杨凌:西北农林科技大学, 2004.
    彭昌操,张光华.生物膜与植物抗性关系的研究进展[J].湖北民族学院学报(自然科学版), 1998, 16(6): 5.
    彭怀远.中国银杏的边缘分布[J].植物杂志, 1996, (3): 26.
    彭永宏,章文才.猕猴桃叶片耐热性指标研究[J].武汉植物学研究, 1995, 13(1): 70~74.
    钱春梅,伍贤进,陈玲,等.高温胁迫对番茄种子萌发的影响[J].种子, 2002, (5): 20, 89.
    钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社, 2003.
    乔军.不同砧木对巨峰葡萄生长发育及果实品质的影响[J].沈阳农业大学, 2006.
    乔志霞,火林,安岩.番茄耐高温胁迫能力鉴定方法的研究[J].西北农业学报, 2006, 15(6): 114~120.
    秦慧,刘霆,柳斌,等.几种双向凝胶电泳蛋白质检测方法的比较[J].中国实验血液学杂志2006, 14(1): 168~172.
    秦俊,傅徽楠,王玉勤.芹菜的耐热生理研究[J].辽宁农业科学, 2001, (6): 24~27.
    曲复宁,王云山,张敏,等.高温胁迫对仙客来根系活力和叶片生化指标的影响[J].华北农学报, 2002, 17(1): 127~131.
    冉茂林,邹明华,范世祥,等.热胁迫下萝卜干物质形成特性研究[J].西南农业学报, 2006, 19(3): 465~469.
    冉秀芝,吴文彬,杨成军.冷季型草坪草抗旱机理研究进展[J].四川草原, 2002, (2): 51~53.
    邵锦霞,顾勇.水稻剑叶蛋白质的双向电泳分析[J].湖北师范学院学报(自然科学版) , 2006, 26( 1): 1~5.
    邵玲,陈向荣.热激蛋白与植物的抗逆性[J].北方园艺, 2005, (3): 73~74.
    沈火林,刘燕燕,余进安.不结球白菜耐高温胁迫与内源激素含量的关系[J].江苏农业科学, 2006, (6): 207~210.
    沈元月,祝军,郭家选,等.温度对桃性器官发育的影响[J].果树科学, 1999, 16(4): 301~303.
    石峰,谢惠民,张晓科.冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究[J].麦类作物学报, 2005, 25(3): 32~36.
    司家钢,孙日飞,吴飞燕,等.高温胁迫对大白菜耐热性相关生理指标的影响[[J].中国蔬菜, 1995, (4): 4~6, 15.
    宋勇,肖深根,何长征.黄瓜种子萌发的逆温耐性诱导[J].湖南农业大学学报(自然科学版), 2003, 29(2): 127~128.
    苏秀红.不同紫茎泽兰种群耐旱与耐热性的评价及耐热性生理生化特性的研究[D].南京:南京农业大学, 2005.
    孙大业.植物细胞信号转导研究进展[J].植物生理学通讯, 1996 , 32 (2): 81~91.
    孙加顺.我国银杏良种选育研究达国际先进水平/银杏核用品种良种选育课题通过省级鉴定[J].农村实用技术与信息, 2003, (4): 24.
    孙树兴.银杏优良品系晶前1号的选育及应用[J].北方园艺, 1997, (3): 35~36.
    孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报, 2006, 17(3): 399~402.
    孙艳,徐伟君.温胁迫对不同黄瓜品种幼苗中抗坏血酸代谢的影响[J].西北农业学报, 2007, 16(6): 164~169.
    孙震,董丽,高大伟.四种野生地被植物抗热性的研究[J].中国园林, 2007, (8): 24~27
    汤日圣,张大栋,童红玉.高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节[J].江苏农业学报, 2005, 21(3): 145~149.
    汤章城.逆境条件下植物脯氨酸积累及其可能的意义[J].植物生理学通讯, 1984, (1): 15~21.
    汤章城.植物抗逆性生理生化研究的某些进展[J].植物生理学通讯, 1991, 27(2): 146~148.
    汤照云,吕明,张霞,等.高温胁迫对葡萄叶片三项生理指标的影响[J].石河子大学学报(自然科学版), 2006, 24(2): 198~200.
    唐翠明,罗国庆,吴福泉,等.关于果桑品种选育的思考[J].果树学报, 2007, 24(6): 826~829.
    
    田金余,李群,陈云,等.银杏种质资源的引进、筛选与利用研究[J].林业实用技术, 2004, (7): 4~6.
    田婷婷.豇豆品种间抗热性的比较及AtHSF1a解基因转化黄瓜与烟草研究[D].西南大学, 2008.
    童方平,徐艳平,龙应忠,等.湿地松半同胞家系净光合速率的比较研究及季节变异规律[J]. 中国农学通报, 2008, 24(7): 419~424.
    涂三思,秦天才.高温胁迫对黄姜叶片脯氨酸、可溶性糖和丙二醛含量的影响[J].湖北农业科学, 2004, (4): 98~100.
    汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学, 2004, 37 (8): 1245~1250.
    汪贵斌,曹福亮,张往祥.银杏品种耐盐能力的研究[J].林业科学, 2003, 39(5): 168~172.
    汪贵斌,袁安全,曹福亮,等.土壤水分胁迫对银杏无机营养元素含量的影响[J].南京林业大学学报(自然科学版). 2005, 29(6): 15~18.
    王才林,仲维功.高温对水稻结实率的影响及其防御对策[J].江苏农业科学, 2004, (1): 15~18.
    王冬梅,许向阳,李景富,等.热胁迫对番茄叶肉细胞叶绿体超微结构的影响[J].园艺学报, 2004, (6): 112 ~ 113.
    王光耀,刘俊梅,张仪,等.菜豆四个不同抗热性品种的气孔特性[J].农业生物技术学报, 1999, 7(3): 267~270.
    王光远.论综合评判几种数学模型的实质及应用[J].模糊数学, 1984, (4): 81~88.
    王海鸥,周瑞莲.高温胁迫下差不嘎蒿和冷蒿的生理变化及其抗热性研究[J].中国沙漠, 1999, 19(增刊): 55~58.
    王红,简令成,张举人.低温胁迫下水稻幼叶细胞内Ca2+水平的变化[J].植物学报, 1994, 36 (8): 587~591.
    王红霞.核桃田间条件下光合特性的研究[J].保定:河北农业大学, 2003.
    王华田,孙明高,崔明刚,等.土壤水分状况对苗期银杏生长及生理特性影响的研究[J].山东农业大学学报(自然科学版), 2000, 31(1): 74~78.
    王建波,利容千.热胁迫下辣椒叶肉细胞中Ca2+分布的变化[J].园艺学报, 1999, 26(1): 57~58.
    王立祥.旱地苜蓿高产栽培技术研究[J].干早地区农业研究, 1989, (4): 18~24.
    王利军,黄卫东.高温胁迫及其信号转导[J].植物学通报, 2000, 17(2): 114~120.
    王少先,彭克勤,萧浪涛.逆境下ABA的积累触发机制[J].植物生理学通讯, 2003, 39(5): 413~419.
    王义强,谷文众,姚水攀,等.淹水胁迫下银杏主要生化指标的变化[J].中南林学院学报, 2005, 25(4): 78~80,85.
    王志和,于丽艳,曹德航,等.短期高温处理对大白菜几个生理指标的影响[J].西北农业学报, 2005, 14(3): 82~85.
    王忠.植物生理学(第一版)[M].北京:中国农业出版社, 2000.
    温国胜,田海涛,张明如,等.叶绿素荧光分析技术在林木培育中的应用[J].应用生态学报, 2006, 17(10): 1973~1977.
    吴国胜,曹婉红,王永健.细胞膜热稳定性及保护酶和大白菜耐热性关系[J].园艺学报, 1995, 22(4): 352~358.
    吴韩英,寿森炎,朱祝军.高温胁迫对甜椒光合作用和叶绿素荧光的影响[J].园艺学报, 2001, 28(6): 517~521.
    吴晓东,向国胜,杨世杰.被子植物胚性细胞及嫁接愈伤组织中的环状片层[J].电子显微学报, 1998, 17(2): 119 ~ 124.
    武维华.植物生理学[M].北京:科学出版社, 2003.
    向珣,宋洪元,李成琼.热胁迫下甘蓝细胞膜叶绿体线粒体超微结构研究[J].西南农业大学学报, 2001, 23(6): 542~543.
    肖顺元,赵大中.柑桔叶片耐热性生理生化指标初探[J].果树科学, 1990, 7(4): 217~220.
    谢宝东,王华田,常立华,等.土壤水分含量对银杏叶黄酮和内酯含量的影响[J].山东林业科技, 2002, (4): 15~18.
    谢孝福.植物引种学[M].北京:科学出版社, 1994.
    徐剑锋.甜椒耐热机理及热胁迫下生理、生化变化的研究[D].福州:福建农林大学, 2003.
    徐克章,史跃林,许贵民等.保护地黄瓜叶片光合作用温度特性的研究[J].园艺学报, 1993, 20(1): 51~55
    徐清乾,周小玲,许忠坤.四川桤木品系的光合和蒸腾速率差异及其生长分析[J].林业科技开发, 2008, 22(4): 42~35.
    徐如强,孙其信,张树榛.小麦光合作用与耐热性的关系初探[J].作物品种资源, 1997, (1): 28~29, 46
    徐筱昌,左莉萍,周锡成. 27种行道树离体叶片耐热性的比较[J].植物资源与环境, 1994, 3(2): 59~61.
    徐正刚.在高寒山区提高优质豆科牧草产量的研究[J].四川草原, 2000, (2): 24~25.
    许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    阎春兰,王建波.热胁迫对辣椒花柱细胞中Ca2+分布的影响[J].园艺学报, 2003, 30(1): 95~97.
    杨东,罗群,曹慕岚,等.温度胁迫对菊科杂草生理指标的影响及其适应[J].吉首大学学报(自然科学版), 2006, 27(4): 75~79.
    杨国正,张秀如,孙湘宁,等.棉花热激蛋白产生规律的初步研究[J].华中农业大学学报, 1997, 16(1): 18~25.
    杨立飞,张玉华,缪旻珉,朱月林.高温胁迫对黄瓜授粉后雌花中Ca2+分布、ABA及蛋白质合成的影响[J].西北植物学报, 2006, 26(2): 0234~0240.
    杨秋珍,李军,王金霞,等.高温胁迫下甜瓜生理生态特性研究[J].中国生态农业学报, 2003, 11(1): 20~22
    杨晓春,林瑞坤,吴振海.水稻高温热害的研究进展[J].福建农业科技, 2006, (2): 68~69.
    杨寅桂.黄瓜耐热性及热胁迫响应基因研究[D].南京:南京农业大学, 2007.
    姚士才,秦贺兰,古润泽. 5个小菊新品种耐热性综合评价与鉴定[J].中国农学通报, 2006, 22(12): 217~219.
    姚元干,石雪晖,杨建国,等.辣椒耐热性与叶片质膜透性及几种生化物质含量的关系[J]. 湖南农业大学学报, 2000, 26(2): 97~99.
    姚元干,石雪晖,杨建国等.辣椒叶片耐热性生理系列化指标探讨[J].湖南农业大学学报, 1998, 24(2): 119~122.
    耶兴元,马锋旺,王顺才,等.高温胁迫对猕猴桃幼苗叶片某些生理效应的影响[J].西北农林科技大学学报(自然科学版), 2004, 32(12): 33~37.
    叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究Ⅲ.酶性和非酶性活性氧清除能力与耐热性[J].福建农业大学学报, 1997, 26(4): 498~501.
    叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究Ⅱ.叶片水分和蛋白质代谢与耐热性[J]. 福建农业大学学报, 1996, 25(4): 490~493.
    尹利德. 3个李品种幼树光合特性的研究[D].武汉:华中农业大学, 2004
    尹贤贵,罗庆熙,王文强,等.番茄耐热性鉴定方法研究[J].西南农业学报, 2001, 14(2): 62~65.
    于晓英.瓜叶菊(Senecio×hybridus)对热胁迫的反应及耐热变异体的研究[D].湖南长沙:湖南农业大学, 2006
    余莉.几种地被植物的引种栽培及适应性研究[D].北京:北京林业大学, 20005.
    郁万文.银杏抗寒机理及种质资源抗寒性评定的初步研究[D].南京:南京林业大学, 2008.
    喻方圆,徐锡增, Robert D.Guy.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响林业科学, 2004, 40(2): 38~44.
    喻方圆,徐锡增, Robert D. Guy.水分和热胁迫对苗木针叶可溶性糖含量的影响[J].南京林业大学学报(自然科学版), 2004, 28(5): 1~5.
    喻方圆,徐锡增, Robert D.Guy.水分和热胁迫对5种苗木生长及生物量的影响[J].南京林业大学学报(自然科学版), 2003, 27(4): 10~14.
    袁嘉祖.模糊数学及在林业中的应用[M].北京:中国林业出版社, 1988.
    宰学明,钦佩,吴国荣,等.高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca2+-ATPase、Mg2+-ATPase及Ca2+分布的影响, 2007, 27( 4): 416~420.
    张成军,郭佳秋,陈国祥,等.高温和干旱对银杏光合作用、叶片中黄酮苷和萜类内酯含量的影响[J].农村生态环境, 2005, 21(3): 11~15.
    张东华.四个葡萄品种光合特性的比较研究[D].沈阳:沈阳农业大学, 2006.
    张放,张良诚,李三玉.柑桔开花、幼果期的异常高温胁迫对叶片光合作用的影响[J].园艺学报, 1995, 22(1): 11~15.
    张桂莲.两个早稻品种耐热性生理及分子遗传基础的研究[D].长沙:湖南农业大学, 2006.
    张国武.油茶优良无性系表现的比较分析与评价[D].南昌:江西农业大学, 2007.
    张黎华,张驰,姚国年,姜述鹏等.关于气温对银杏生长影响的探讨[J].防护林科技, 2007, 增刊: 111, 119.
    张宁,孟庆伟,赵世杰,等.光胁迫下银杏光合作用的光抑制[J].西北植物学报1999, 19(3): 461~465.
    张庆峰,徐胜,李建龙.高温胁迫下高羊茅生理生化特性研究[J].草业科学, 2006, 23(4): 26~28.
    张施君,周厚高,潘文华,等.麝香百合的抗热生理指标初探[J].中国农学通报, 2005, 21(3): 240~242.
    张往祥.环境因子对银杏光合作用的影响[D].南京:南京林业大学, 2002.
    张巍巍,赵天宏,王美玉,等.臭氧浓度升高对银杏光合作用的影响[J].生态学杂志, 2007, 26(5): 645~649.
    张显强,罗在柒,唐金刚,等.高温和干旱胁迫对鳞叶藓游离脯氨酸和可溶性糖含量的影响[J].广西植物, 2004, 24(6): 570~573.
    张晓燕,刘鹏,朱佳,等.高温胁迫对白银豆抗性生理的影响研究[J].广东农业科学, 2006, (7): 27~29.
    张燕,李天飞,方力,等.钙对高温胁迫下烟草幼苗抗氧化代谢影响[J].生命科学研究, 2002, 6(4): 356~361.
    张玉华,朱月林,缪旻珉.高温胁迫对黄瓜花药中Ca2+分布、ABA含量及蛋白质合成的影响[J].园艺学报, 2005, 32(2): 314~317.
    张昭其,段学武,庞学群等.冷激对采后香蕉几个与耐热性有关的生理指标的影响[J].植物生理学通讯, 2002, 38(4): 333~335.
    张志毅,秦志华,沈广宁. 1994~2004年银杏研究文献计量分析[J].中国农学通报, 2007, 23(4): 419~425.
    张志忠,黄碧琦,吕柳新.蔬菜作物的高温伤害及耐热性研究进展[J].福建农林大学学报(自然科学版), 2002, 31( 2): 203~207.
    张志忠,吴菁华,黄碧琦,等.茄子耐热性苗期筛选指标的研究[J].中国蔬菜, 2004, (2): 4~7.
    张宗申,王建波.外源钙离子和EGTA处理对叶片热激反应的影响[J].武汉大学学报, 2000, 6(2): 253~256.
    赵文魁,童建华,张雪芹.干旱胁迫下几种柑桔植物内源激素含量的变化规律[J].农业与技术, 2007, 27( 4): 55~58.
    赵亚洲,卓丽环,张琰. 2种红枫的高温半致死温度与耐热性[J].上海农业学报, 2006, 22(2): 51~53.
    郑军.高温对银杏品种主要生理指标的影响[J].林业科技开发, 2008, 22(1): 13~ 16.
    郑小林,董任瑞.水稻热激反应的研究.Ⅰ.幼苗叶片的膜透性和游离脯氨酸合量的变化[J].湖南农业大学学报, 1997, 23 (2): 109~113.
    郑小林.董任瑞.水稻热激反应的研究.Ⅱ.高温对晚稻幼苗叶片叶绿体的Hill反应及超微结构的影响[J].湖南农业大学学报, 1998, 24(5): 351~354
    周莉娟,叶陈亮.高温胁迫对黄瓜幼苗N素及C素代谢的影响[J].福建农业大学学报, 1999, 28(3): 289~293.
    周伟华,黄贞,陈兴平.电导法鉴定小白菜耐热性初步研究[J].长江蔬菜, 1999, (7): 30~32.
    周永斌,马学文,姚鹏,等.不同生长速度杨树品种的光合生理特性研究[J].沈阳农业大学学报, 2007, 38(3): 336~339.
    周玉珍.墨西哥落羽杉优良无性系选育[D].北京:北京林业大学, 2006.
    周智彬,徐新文,杨兰英.三种固沙植物对高温胁迫的生理响应及其抗热性研究[J].干旱区地理, 2005, 28(6): 824~830.
    朱慧芬,张长芹,龚洵.植物引种驯化研究概述[J].广西植物, 2003, 23(1): 52~60.
    朱宇林,曹福亮,汪贵斌,等. Cd、Pb处理对银杏种子萌发的影响[J].种子, 2006B, 25(3 ): 35~37,43.
    朱宇林,曹福亮,汪贵斌,等. Cd、Pb胁迫对银杏光合特性的影响[J].西北林学院学报, 2006A, 21(1): 47~50.
    陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2002.
    邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2001.
    朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社, 1999.
    陈拓,王勋陵. UV-B辐射对小麦叶片H2O2代谢的影响[J].西北植物学报, 1999, 19(2):284~284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700