用户名: 密码: 验证码:
低品位热能驱动的双效双重热化学吸附制冷实验及系统模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体吸附制冷技术是一种利用低品位热能为驱动力的节能环保型绿色制冷技术,近年来在低品位余热回收和可再生能源利用方面得到了国内外研究者的广泛关注,制冷效率较低是目前吸附制冷技术面临的亟待解决的瓶颈问题。本文以基于吸附-再吸附原理的双重热化学吸附制冷循环理论和基于内部回热技术的双效热化学吸附制冷循环理论为基础,建立了基于吸附-再吸附原理的内部回热型双效双重热化学吸附制冷热力循环实验系统。本文分别从双效双重吸附制冷循环的吸附工质对、热力学分析(包括火用分析和性能分析)等方面,对新型双效双重吸附式制冷循环实验的运行条件、实验过程及结果特点进行了深入的研究,并归纳出新型双效双重吸附式制冷循环的特点和关键环节。并介绍了双效双重吸附式制冷机研制过程中涉及的相关计算(包括总体计算、传热计算、流程阻力计算和应力校核计算),以及双重吸附式制冷装置和双效双重吸附式制冷装置的布局、组成及原理。膨胀石墨为基质的固化混合吸附剂应用于双重吸附式制冷系统和双效双重吸附式制冷系统来强化机组的传热能力。对于双重吸附式制冷循环利用一次热量输入,可获得吸附式制冷过程和再吸附式制冷过程两次冷量输出,实验证明这种制冷方式是有效的。对于双效双重吸附式制冷系统则是利用一次热量输入可获得两次吸附式制冷和两次再吸附式制冷输出,从而实现提高吸附制冷工作性能的目的。本文还就双效双重吸附式制冷循环的优化提出了三个方法:一是采用新型回热方式;二是采用复合吸附制冷过程代替通常的吸附制冷过程;三是实现高温盐床与中温盐床的回质过程。
     在热化学吸附反应动力学和再吸附反应动力学研究的基础上,本文对低品位热能驱动的双效双重热化学吸附制冷系统建立了数值仿真模型,并对采用翅片管结构的吸附床建立了动态模拟模型,深入分析了制冷系数COP与吸附床翅片管结构参数及反应盐物性参数等方面的关系。系统模拟研究表明:双效双重热化学吸附制冷理想COP可以高达2.0,在各类参数匹配良好的情况下,理论COP可以达到1.3~1.5;实验结果表明:在外界热源驱动温度为260oC、冷凝温度为30oC、蒸发温度为10~15oC的工况下,实验COP值可达到1.1~1.2,与模拟值相差在20%以内。通过分析比较模拟值和实验值,本文进一步提出了提高系统COP值的方法和方向。具体有以下结论:
     (1)双重吸附式制冷循环当采用氯化钡与氯化锰为吸附制冷工质对时,在热驱动温度为160oC,热沉温度为30oC,制冷温度为15oC的工况下,实现COP等于0.703,SCP为225W·kg-1。而且在设计上,对于双重吸附式制冷循环而言,低温盐与中温盐之间存在较好的匹配。在平均化学反应转化率达到最大时,COP也达到极值,同时,吸附制冷过程和再吸附制冷过程的摩尔数差值比例也小于5%,表明系统可以在指定工况下高效连续地运行。
     (2)双效双重热化学吸附式制冷循环的实验结果和模拟结果表明:在相同的加热解吸温度、热沉温度及其制冷温度下,仿真系统COP与实验系统COP的误差在20%以内;随着制冷温度的增加,无论是仿真COP曲线还是实验COP曲线,COP的增加幅度都增加;在同一加热解吸温度下,随着制冷温度的增加,仿真COP与实验COP的差值也随着增加。由于模拟过程的化学反应转化率大于实验过程的化学反应转化率,因此在制冷温度为10oC和15oC,仿真的吸附制冷过程和再吸附制冷过程的最佳循环时间大于对应的实验的吸附制冷过程和再吸附制冷过程的最佳循环时间;但在制冷温度为0oC和5oC时,由于反应床之间的压差相对较小,实验的反应时间比仿真的过程要长。实验和数值模拟结果都表明,中温盐和低温盐之间存在较好的匹配,其制冷能力基本已达极值。而高温盐与低温盐之间的匹配并不良好,仍存在较大的提升空间。实践表明,采用质量系数修正反应盐的设计质量是双效双重热化学吸附式制冷循环系统设计的方法之一。
     (3)在双效双重热化学吸附式制冷循环中,实施新型回热的优化方式可以利用较低压力下中温盐与低温盐反应的驱动温度较低从而加大高温盐与中温盐的回热温差,同时又充分利用低温盐第一次反应后的剩余有效空间以提高低温盐的化学转化率。实验表明:对于新型回热循环,低温盐的化学转化率可以达到0.8,相较于通常情况下一般过程的化学反应转化率(0.5左右),提高了将近60%。
     (4)在双效双重热化学吸附式制冷循环中,复合吸附制冷的优化方式可以提高COP最大可达5%,且制冷温度越高,COP提高幅度越大。复合吸附制冷过程真正的意义还在于保证了吸附制冷过程制冷量的正常输出,从而实现双效双重吸附制冷循环的高COP及连续运行。
     (5)在双效双重热化学吸附式制冷循环中,高温盐与中温盐之间的回质过程一方面使高温盐床死空间内的氨解吸到中温盐床,使低温盐与高温盐之间的制冷量增大,同时又增大中温盐的化学反应转化率,对于提高双效双重吸附式制冷循环的COP是都是有益的。理论和实验都表明,采用高温盐与中温盐的回质过程能提高系统COP10%左右。
     总之,本文在基于吸附-再吸附原理的双重热化学吸附式制冷循环和基于内部回热技术的双效热化学吸附式制冷循环基础上,对利用低品位能的高效双效双重吸附式制冷机在实验和系统模拟研究方面进行了深入的研究,获得了较好的阶段性研究成果,为高效吸附制冷技术的发展奠定了相关基础。
Solid-gas sorption refrigeration technology is kind of green energy-saving andenvironment-friendly refrigeration technique powered by low grade thermal energy, which ispaid more attention by many researchers in the area of low grade heat recovery and sustainableenergy utilization. However, the low efficiency is still a bottleneck that shall be solvedurgently.In this paper, the double-effect and double-way thermochemical adsorptionrefrigeration system with adsorption and resorption technology and internal heatrecovery was set up, based on the double-way thermochemical adsorption refrigerationcycle with adsorption and resorption technology, and the double-effect thermochemicaladsorption refrigeration cycle with heat recovery. The working conditions, experimentalprocedures and result characteristics were studied deeply from the point views ofadsorption working pairs, thermodynamic and performance analysis for double-effectand double-way thermochemical adsorption refrigeration cycle, and the features andkey points of this novel cycle were concluded. Moreover, the overall calculation, theheat transfer calculation, the pressure drop calculation along path and stress checkingcalculation involved in the design of double-effect and double-way thermochemicaladsorption refrigerator, and the layout, composition and theory of devices ofdouble-way thermochemical adsorption refrigeration and double-effect and double-waythermochemical adsorption refrigeration, were introduced. The composite adsorbentusing expanded graphite was applied in the systems of double-way thermochemicaladsorption refrigerator and double-effect and double-way thermochemical adsorptionrefrigerator to enhance the ablity of heat transfer. For the double-way thermochemicaladsorption refrigeration cycle, two cold outputs as the adsorption refrigeration andresorption refrigeration were available at the expense of only one heat input, which wastestified by experimental result. For the double-effect and double-way thermochemicaladsorption refrigeration cycle, four cold outputs were achieved at the expense of onlyone heat input, whose higher system COP was available either. As for the optimum ofdouble-effect and double-way thermochemical adsorption refrigeration cycle, there aretotally three methods: one is the new heat recovery process; another one is theintegrated adsorption process in place of normal adsorption process; the last one is themass recovery process between the high temperature salt and middle temperature salt.Besides, the numerical simulation model for the double-effect and double-waythermochemical adsorption refrigeration cycle powered by low grade heat source wasalso set up, which was based on the kinetic governing equations for adsorptionprocesses and resorption processes, combined with the energy conservation equationand momentum conservation equation. The differential algebraic equations with indexof2was formulated and solved. In addition, the dynamic simulation models for theadsorber/desorber using fin tube heat exchanger were set up also, whose calculationresults comply with the real working conditions very well through the solutions of partial differential equations. The relationship between the system COP with thestructure of adsorber/desorber and kinds of salts was analysed in detail. The simulationresults reveal that the theoretical COP can reach2.0and the calculation COP can be1.3~1.5on the condition of fine matchings between parameters. The experimental resultwas that the experimental COP can be1.1~1.2at the desorption temperature of260oC,heat sink temperature of30oC, refrigeration temperature of10~15oC, which is withinthe error of20%compared with the simulated data. The direction and methods toimprove COP further were provided through the comparsion of simulated data with theexperimental data. The main conclusions were as the follows:
     (1) For the double-way thermochemical sorption refrigeration cycle using theworking pairs of barium chloride and manganese chloride, the system COP canbe0.703, SCP can be225W·kg-1, at the desorption temperature of160oC, heatsink temperature of30oC, refrigeration temperature of15oC. Moreover, for thiscycle, there exists good matching between middle temperature salt and lowtemperature salt. when the average global conversion reaches the peak, COP isalso maximal. In the same time, the error of molar numbers of adsorptionprocess and resorption process is within5%, which means the cycle can runhigh efficiently and stably.
     (2) The comparsion of simulated data with the experimental data of double-effectand double-way thermochemical adsorption refrigeration cycle reveals that theerror of difference of simulated COP with experimental COP is within20%under the same desorption temperature and heat sink temperature and differentrefrigeration temperature. Following the increasing of refrigeration temperature,the increase range is increasing for both the simulated COP and experimentalCOP. Under the same desorption temperature, following the increasing ofrefrigeration temperature, the temperature difference between the simulatedCOP and experimental COP increases under the same refrigeration temperature.Due to the global conversion during simulated process is less than that duringexperimental process, at the refrigeration of10oC and15oC, the optimum cycletime of simulated adsorption and resorption refrigeration process is greater thanthat of experimental adsorption and resorption refrigeration process. But at therefrigeration temperature of0oC and5oC, because the pressure differencebetween the reactors is relatively smaller, the experimental reaction time islonger than the simulated data.
     (3) For double-effect and double-way thermochemical adsorption refrigerationcycle, the effective reaction time is reduced a lot by the new heat recoveryprocess. Because the pressure difference becomes bigger, the desorption processbetween middle temperature salt and low temperature salt is quicker than thatbetween middle temperature salt and condenser. Moreover, the new heatrecovery process can improve the global conversion effectively. The new heatrecovery process lower down the desorption temperature and speed up thereaction process, and the mass recovery process becomes better either, whicharebeneficial to the improvement of global conversion. As for the new heatrecovery process, the global conversion can reach0.8, which is improved60%.
     (4) For the double-effect and double-way thermochemical adsorption refrigerationcycle, the COP can be improved5%by the integrated adsorption process.Moreover, following the increasing of refrigeration temperature, the COPincrease. And the real meaning of integrated adsorption process lies in theguarantee of the normal output of the adsorption process, which could make thesystem operate normally and continously.
     (5) For the double-effect and double-way thermochemical adsorption refrigerationcycle, the mass recovery between the high temperature salt and middletemperature salt makes ammonia in the dead volume of high temperatue salt beddesorb to the MTS, which makes the cooling capacity between the lowtemperature salt and high temperature salt bigger; at the same time, the globalconversion in middle temperature salt is improved, which are good to theincreasing of system COP. Both the theorical analysis and experimental resultshows that the mass recovery process between the high temperature salt andmiddle temperature salt can improve COP10%.
     In a word, based on the double-way thermochemical adsorption refrigeration cyclewith adsorption and resorption technology, and the double-effect thermochemicaladsorption refrigeration cycle with heat recovery, the numerical and experimentalresearch on the double-effect and double-way thermochemical adsorption refrigerationcycle powered by low grade heat source was carried on and kinds of conclusions andachievements were available, which provided the key foundation for the furtherresearch and development of the topic.
引文
[1] R. Z. Wang, R. G. Oliveira. Adsorption refrigeration–an efficient way to makegood use of waste heat and solar energy. Progress in Energy&CombustionScience,2006,32:424-458.
    [2] Pons M, Meunier F, Cacciola G, et al. Thermodynamic based comparison ofsorption systems for cooling and heat pumping. International Journal ofRefrigeration,1999,22:5-17.
    [3]李定宇,刘信杰,李橹,等.海洋渔船柴油机尾气制冰机,中国专利,2000,20000216.
    [4] Meunier F. Solid sorption–an alternative to CFCs. Heat Recovery Systems&CHP,1993,13:289-295.
    [5]王如竹,王丽伟,低品位热能驱动的绿色制冷技术:吸附式制冷.科学通报,2005,50(2):101-111.
    [6] L. W. Wang, R. Z. Wang, J.Y. Wu, et al. Design, simulation and performance of awaste heat driven adsorption ice maker for fishing boat. Energy,2006,31:244-259.
    [7] L.W. Wang, R.Z. Wang, Z. S. Lu, et al. Studies on Split Heat Pipe Type AdsorptionIce-making Test Unit for Fishing Boats: Choice of Heat Pipe Medium andExperiments under Unsteady Heating Sources. Energy Conversion andManagement,2006,47(15-16):2081-2091.
    [8] L. W. Wang, R. Z. Wang, J. Y. Wu, et al. Compound adsorbent for adsorptin icemaker on fishing boats, International Journal of Refrigeration,2004,27(4):401-408.
    [9]王如竹,王丽伟,吴静怡.吸附式制冷理论与应用.北京:科学出版社,2007.
    [10] T. X.Li, R. Z.Wang, R. G.Oliveira, et al. Performance analysis of an innovativemulti-mode, multi-salt and double-effect chemisorption refrigeration system.AIChE Journal,2007,53,3222–3230.
    [11] Cacciola G, Restuccia G, Mercadante L. Composites of activated carbon forrefrigeration adsorption machines, Carbon,1995,33(9),1205-1210
    [12] Hu Eric J. A study of thermal decomposition of methanol in solar poweredadsorption refrigeration systems, Solar Energy,1998,62(5),:325-329
    [13] Tamainot-Telto Z., Critoph RE. Adsorption refrigerator using monolithiccarbon-ammonia pair, International Journal of Refrigeration,1997,20(2),146-155
    [14] Tamainot-Telto Z., Critoph RE. Advanced solid sorption air conditioning modulesusing monolithic carbon-ammonia pair, Applied Thermal Engineering,2003,23(6),659-674
    [15] Critoph RE. Ammonia carbon solar refrigerator for vaccine cooling, RenewableEnergy,1994,5(1),502-508
    [16] Critoph RE. Forced convection adsorption cycles, Applied Thermal Engineering,1998,18(9-10),799-807
    [17] Critoph RE. Forced convection adsorption cycle with packed bed heat regeneration,International Journal of Refrigeration,1999,22(1),38-46
    [18] Critoph RE. Rapid cycling solar/biomass powered adsorption refrigeration system,Renewable Energy,16,1999,1-4(2),673-678
    [19] Critoph RE. Tamainot-Telto Z, Davies GNL, Prototype of a fast cycle adsorptionrefrigerator utilizing a novel carbon-aluminium laminate, Proceedings of theInstitution of Mechanical Engineers, Part A: Journal of Power and Energy,2000,214(5),439-448
    [20] Jones JA, V Christophilos. High-efficiency regenerative adsorption heat pump,ASHRAE Transactions,1993,99(1),54-60
    [21] Jones JA. Sorption refrigeration research at JPL/NASA, Heat Recovery Systems&CHP,1993,13(4),363-371
    [22] Jones JA. Carbon/ammonia regenerative adsorption heat pump, Proceedings of theInternational Absorption Heat Pump Conference,1994:449-455
    [23] Vasiliev LL, Mishkinis DA, Antukh AA, et al. New solid sorption refrigerator,Proceedings of the International Conference on Energy and Environment, ICEE,1998,169-176
    [24] Vasiliev LL, Mishkinis DA, Antukh AA, et al. Solid-gas solid sorption heat pump,Applied Thermal Engineering,2001,21(5),573-583
    [25] Critoph RE, R Vogel. Possible adsorption pairs for use in solar cooling, AmbientEnergy,1986,7(4),183-190
    [26] Meunier F. Theoretical Performance of solid adsorbent cascading cycles using thezeolite-water and active carbon-methanol pairs: four cases studies, Heat RecoverySystem,1988,6(6),491-498
    [27] Meunier F, Douss N. Performance of adsorption heat pumps, Activecarbon-methanol and zeolite-water pairs, ASHRAE Transactions,1990,2,267-274
    [28] R. Z.Wang, J. P.Jia, Y.Teng et al. Study on a new solid adsorption refrigeration pair,active carbon fiber-methanol, ASME Journal of Solar Energy Engineering,1997,119,214-218
    [29] Vasiliev LL, Mishkinis DA, Vasiliev LL Jr. Multi-effect complexcompound/ammonia sorption machines, Pro. Ab-Sorption’96, Int.Absorption HeatPump Conference, Montreal, Sep.1996,6-10
    [30]谭盈科,冯毅,崔乃英等.吸附式太阳能冰箱的研究,太阳能学报,1992,13(3),255-257
    [31]冯毅,谭盈科.实验用吸附式制冰机的研制与分析,制冷,1999,1,1-4
    [32]李保官,李建敏.固体吸附式制冷的原理及工质的研究,工程热物理学报,1994,15(1),1-5
    [33] Knocke KF, Gerlich A, Strauss R. Conceptual studies on modular adsorptionsystems for various applications, ASME, Advanced Energy SystemsDivision(AES),v26, Heat Pump Design, Analysis, and Applications,1991,49-56
    [34] Restuccia G, Cacciola G. Performances of adsorption systems for ambient heatingand air conditioning, International Journal of Refrigeration,1999,22(1),18-26
    [35] Guilleminot Jean-Jacques, Poyelle Florence, Meunier Francis. Experimental resultsand modeling tests of an adsorptive air-conditioning unit, ASHRAE Transactions,1998,104(Pt1B SF-98-21-1),1543-1551
    [36] Poyelle Florence, Guilleminot Jean-Jacques, Meunier Francis. Experimental testsand predictive model of an adsorptive air conditioning unit, Industrial&Engineering Chemistry Research,1999,38(1),298-309
    [37] L. Z.Zhang. Design and testing of an automobile waste heat adsorption coolingsystem, Applied Thermal Engineering,2000,20(1),103-114
    [38] Tather Melkon, Erdem-Senatalar Ayse. When do thin zeolite layers and a large voidvolume in the adsorber limit the performance of adsorption heat pumps?Microporous and Mesoporous Materials,2002,54(1-2),89-96
    [39] Cacciola G, Restuccia G. Reverible adsorption heat pump: a thermodynamic model,International Journal of Refrigeration,18(2),1995:100-106
    [40] Cacciola G, Hajji A, Maggio G, et al. Dynamic simulation of a recuperativeadsorption heat pump, Energy(Oxford),1993,18(11),1125-1137
    [41]常士楠,林贵平,文东升.吸附式制冷系统传热传质过程的数值模拟,太阳能学报,1999,20(3),335-339
    [42]卢允庄,王如竹,许煜雄等.真空集热型太阳能固体吸附式制冷的理论研究,太阳能学报,2001,22(4),480-485
    [43] R Q Zhu,B Q Han,M Z Lin,Y Z Yu,Experimental investigation on an adsorptionsystem for producing chilled water, International Journal ofRefrigeration,1992,15(1)31-34
    [44]姜周曙,王如竹,卢允庄等.吸附-吸收复叠式三效制冷循环,化工学报,2002,53(6),566-571
    [45] Saha BB, Boelman Elisa C, Kashiwagi Takao. Computer simulation of a silicagel-water adsorption refrigeration cycle–the influence of operating conditions oncooling output and COP, ASHRAE Transactions,1995,101(Pt2),348-357
    [46] Boelman Elisa C, Saha BB, Kashiwagi Takao. Experimental investigation of asilica gel-water adsorption refrigeration cycle-the influence of operatingconditions on cooling output and COP, ASHRAE Transactions,1995,101(Pt2),358-366
    [47] Chua T, Ng KC, Chakraborty A, Oo NM, Othman MA. adsorption characteristicsof silica gel-water systems, Journal of Chemical Engineering Data,2002,47,1177-1181
    [48]小松富士夫,耿惠彬.“阿德莱富”型吸附式制冷机,制冷技术,1997,48-52
    [49] Cho Soon-Haeng, Kim Jong-Nam. Modeling of a silica gel-wateradsorption-cooling system, Energy(Oxford),1992,17(9),829-839
    [50] Boelman Elisa C,Saha BB, Kashiwagi Takao. Parameter study of a silica gel-wateradsorption refrigeration cycle-the influence of thermal capacitance and heatexchanger UA-values on cooling capacity, power density, and COP, ASHRAETransactions,1997,103(1),139-148
    [51] Saha BB, Kashiwagi Takao. Experimental investigation of an advanced adsorptionrefrigeration cycle, ASHRAE Transactions,1997,103(pt2),50-58
    [52] Alam KCA, Saha BB, Kang YT, et al. Heat exchanger design effect on the systemperformance of silica gel adsorption refrigeration systems, International Journal ofHeat and Mass Transfer,2000,43(24),4419-4431
    [53] Chua HT, Ng KC, Malek A, et al. Entropy generation analysis of two-bed, silicagel-water, non-regenerative adsorption chillers, Journal of Physics D: AppliedPhysics,1998,31(12),1471-1477
    [54] Chua HT, Ng KC, Malek A, et al. Modeling the performance of two-bed silicagel-water adsorption chillers, International Journal of Refrigeration,1999,22(3),194-204
    [55] Chua HT, Ng KC, Malek A, et al. Multi-bed regenerative adsorptionchiller-improving the utilization of waste heat and reducing the chilled water outlettemperature fluctuation, International Journal of Refrigeration,2001,24(2),124-136
    [56] Tangkengsirisin V, Kanzawa A, Watanabe T. Solar-powered adsorption coolingsystem using a silica gel-water mixture, Energy(Oxford),1998,23(5),347-353
    [57]林贵平,袁修平,梅志光等.太阳能固体吸收式制冰机,太阳能学报,1993,14(2),101-113
    [58]林贵平,袁修平.化学热泵系统在太阳能热利用中的作用,太阳能学报,1996,17(1),93-97
    [59]梅宁,李华军,王振.氯化钙-氨吸附/脱附过程传热特性研究,青岛海洋大学学报,1995,Sp.Issue,23-29
    [60]徐震,梅宁,谢迎春.柴油机余热吸附式制冷系统的热力学实验研究,热科学与技术,2003,2(1),10-14
    [61] OC Iloeje, AN Ndili, SO Enibe. Computer simulation of a CaCl2solid-adsorptionsolar refrigerator, Energy(Oxford),1995,20(11),1141-1151
    [62] Enibe SO, Iloeje OC. Design optimization of the flat plate collector for a solidadsorption solar refrigerator, Solar Energy,1997,60(2),77-87
    [63] Enibe SO. Solid absorbent dispersion in an inert fluid for solar refrigerationapplications, Solar&Wind Technology,1990,7(5),591-595
    [64] Yanoma A, Yoneta M, Nitta T, Okuda A. The performance of a large scale metalhydride heat pump. JSME International Journal,1988,31:741-747.
    [65] Willers E, Groll M. The two-stage metal hydride heat transformer. InternationalJournal of Hydrogen Energy,1999,24:269-276.
    [66] Gopal M R, Murthy S S. Influence of heat and mass transfer effectiveness on metalhydride heat pump performance. International Journal of Hydrogen Energy,1993,18:31-37.
    [67] Sanchez A R, Klein H P, Groll M. Expanded graphite as heat transfer matrix inmetal hydride beds. International Journal of Hydrogen Energy,2003,28:515-527.
    [68] Kato Y, Yamashita N, Kobayashi K, Yoshizawa Y. Kinetic study of the hydrationof magnesium oxide for a chemical heat pump. Applied Thermal Engineering,1996,16(11):853-862.
    [69] Kato Y, Takahashi F U, Akihiko W, et al. Thermal analysis of a magnesiumoxide/water chemical heat pump for cogeneration. Applied ThermalEngineering,2001,21:1067-1081.
    [70] Kato Y, Saku D, Harada N, et al. Utilization of high temperature heat from nuclearreactor using inorganic chemical heat pump. Progress in Nuclear Energy,1998,32:563-570.
    [71] Critoph RE, R Vogel. Possible adsorption pairs for use in solar cooling, AmbientEnergy,1986,7(4),183-190
    [72] K.Sumathy, Z F Li. Experiments with solar-powered adsorption ice maker.Renewable Energy,1999,16:740-707
    [73] Y. Z. Lu, R. Z. Wang, M. Zhang,et al. Adsorption cold storage system withzeolite–water working pair used for locomotive air conditioning. EnergyConversion&Management,2003,44:1733-1743.
    [74] Saha B B, Kashiwagi T. Experimental investigation of an advanced adsorptionrefrigeration cycle. ASHRAE Transactions,1997,103:50-58.
    [75] K. Daou, R. Z. Wang, Z. Z. Xia, et al. Experimental comparison of the sorption andrefrigerating performances of a CaCl2impregnated composite adsorbent and thoseof the host silica gel. International Journal of Refrigeration,2007,30:68-75.
    [76] A Yanoma, M Yoneta, T Nitta, et al. The performance of a large scale metal hydrideheat pump. JSME International Journal,1988,31(4):741-747
    [77] Yukitaka Kato, Fu-uta Takahashi, Akihiko Watanabe, et al. Thermal analysis of amagnesium oxide/water chemical heat pump for cogeneration. Applied ThermalEngineering,2001,21:1067-1081
    [78] Goetz V, Spinner B, Lepinasse E. A solid-gas thermochemical cooling system usingBaCl2and NiCl2. Energy,1997(1):49-58
    [79] Lepinasse E, Marion M, Goetz V. Cooling storage with a resorption process.Application to a box temperature control. Appllied Thermal Engineering,2001,21:1251-1263
    [80] Goetz V, Llobet J. Testing and modeling of a temperature front solid-gas reactorapplied to thermochemical transformer. Appllied Thermal Engineering,2000,20:155-177
    [81] Iloeje O C. Quantitative comparison of treated CaCl2absorbent for solarrefrigeration. Solar Energy,1986,37:253-360
    [82] Aristov Yu I, Restuccia G, Caccioba G, et al. A family of new working materials forsolid sorption air conditioning systems. Appllied Thermal Engineering,2002,22:191-204
    [83] Mikhail Tokarev, Larissa Gordeeva, Vyacheslav Romannikov, et al. New compositesorbent CaCl2in mesopores for sorption cooling/heating. International Journal ofThermal Science.2002,41:470-474
    [84] levitskij E A, Aristov Yu I, Tokarev M M, et al.“Chemical heat accumulators”: Anew approach to accumulating low potential heat. Solar Energy and Solar Cells,1996,44:219-235
    [85] Dellero T, Sarmeo D, Touzain Ph. A chemical heat pump using carbon fibers asadditive. Part I: enhancement of thermal conduction.Appl.Ther.Engi.,1999,19:991-1000
    [86] Dellero T, Touzain Ph. A chemical heat pump using carbon fibers as additive. PartII: study of constraint parameters.Appl.Ther.Engi.,1999,19:1001-1011
    [87] Groll M. Reaction beds for dry sorption machines. Proceedings of Symposium ofSolid Sorption Refrigeration. Paris,France,1992:208-214
    [88] Mauran S, Prades P, Haridon F L. Heat and mass transfer in consolidated reactionbeds for thermochemical systems. Heat Recovery Systems and CHP.1993,13:315-319
    [89] Mauran S, Coudevylle O, H. B. Lu. Optimization of porous reactive media forsolid sorption heat pumps. International Ab-sorption Heat Pump Conference,Montreal, Canada,1996:3-8
    [90] Mauran S, Lebrun M, Prades P, et al. Active composite and its use as reactionmedium. US Patent1994,5.283.219
    [91] Cacciola G, Restuccia G, Mercadante L. Composites of activated carbon forrefrigeration adsorption machines. Carbon,1995,33:1205-1210.
    [92] Guilleminot J J, Choisier A, Chalfen J B, et al. Heat transfer intensification in fixedbed adsorbers. Heat Recovery Systems&CHP,1993,13:297-300.
    [93] Thorsten Miltkau, Belal Dawond. Dynamic modeling of the combined heat andmass transfer during the adsorption/desorption of the water vapor into/from azeolite layer of an adsorption heat pump. International Journal of Thermal Science,2002,41,753-762
    [94] Eun Tai-Hee, Song Hyun-Kon, Han Jong Hun, et al. Enhancement of heat and masstransfer in silica-expanded graphite composite blocks for adsorption heat pumps:Part I:Characteraization of the composite blocks, International Journal ofRefrigeration,2000,23(1),64-73
    [95] Eun Tai-Hee, Song Hyun-Kon, Han Jong Hun, et al. Enhancement of heat and masstransfer in silica-expanded graphite composite blocks for adsorption heat pumps:Part II:Cooling system using the composite blocks, International Journal ofRefrigeration,2000,23(1),74-81
    [96] Meunier F. Solid sorption heat powered cycles for cooling and heat pumpingapplications. Applied Thermal Engineering,1998,18:715-729.
    [97] R. Z. Wang, J.Y. Wu, Y. X. Xu. A continuous heat regenerative adsorptionrefrigerator using spiral plate heat exchanger as adsorbers. ASME Journal of SolarEnergy Engineering,1999,120:14-19.
    [98] Coste C, Mauran S, Crozat G. Procede de mise en oeuvre de reaction gaz-solide.US Patent,4595774,1983
    [99] Dunne S. Carousel heat exchanger for sorption cooling process. US Patent,5503222,1996
    [100] Bou P, Guilleminot J J, Pons M. Composite actif a structure feuilletee comprenantun agent actif sous forme de granules. French pending patent,9612762,1996
    [101] Vasiliev L L. Sorption refrigerators with heat pipe thermal control. In: Proceedingsof ICCR’2003, Zhejiang: Hangzhou,405-415
    [102] Tchernev D I, Emerson D T. High-efficiency regenerative zeolite heat pump.ASHRAE Transactions1988,14:2024-2032
    [103]吴静怡.连续回热型吸附式空调/热泵机组的循环特性及其实验研究.[博士学位论文]上海:上海交通大学,2000
    [104]王如竹,许煜雄,吴静怡等.连续回热型吸附制冷机的改进及运行实验,工程热物理学报,1998,19(3):275-278
    [105]吴静怡,王如竹,许煜雄.连续回热型吸附式空调实际运行与吸附床性能分析,中国工程热物理学会工程热力学与能源利用学术会议,1999:45-49
    [106] Poyelle F, Guilleminot J J, Meunier F. Analytical study of a gas-fired adsorptiveair-conditioning system, ASHRAE Transactions,1996,102:1128-1136
    [107] Van Benthem G H W, Cacciola G. Regenerative adsorption heat pumps:optimization of the design. Heat Recovery Systems and CHP,1995,15(6):531-544
    [108] Douss F, Meunier F, L. M. Sun. Predictive model and experimental results for atwo-adsorber solid adsorption heat pump, Industry&Engineering ChemistryResearch,1988,27:310-316
    [109] Douss N. Experiment study of cascading adsorption cycles. Chemical EngineeringScience,1989,44(2):225-235
    [110] Rockenfeller U, Kirol L, Sarkisian P, et al. In: Proceedings of “Solid SorptionRefrigeration” Symposium. France:Paris,1992:171-177
    [111] Spinner B. Les transformateurs themochimiques a ammoniac. In: Proceedings of“Solid Sorption Refrigeration” Symposium. France:Paris,1992:163-170
    [112] Saha B B. T Kashiwagi. Performance evaluation of advanced adsorption cycledriven by near-environment temperature waste heat. In: Proceedings of theInternational Absorption Heat Pump Conference, Quebec: Montreal,1996:277-284
    [113] Shelton S V. Solid adsorbent heat pump system, United States Patent,No.4,610,1986,148
    [114] Willers E, Groll M, Isselhorst A, et al. Advanced concept of a metal hydride solidsorption device for combined heating and air-conditioning. In: Proceedings of theInternational Absorption Heat Pump Conference, Quebec: Montreal,1996,169-175
    [115] Critoph RE. Gas-fired air conditioning using a carbon-ammonia convective thermalwave cycle. In: Proceedings of the International Absorption Heat Pump Conference,Quebec: Montreal,1996:353-360
    [116] Douglas K. Linking indoor air quality(IAQ), ventilation, moisture control, anddesiccants to future air conditioning practices. In: Proceedings of the InternationalAbsorption Heat Pump Conference, Quebec: Montreal,1996:128-137
    [117] R.Z. Wang. Performance improvement of adsorption cooling by heat and massrecovery operation. International Journal of Refrigeration2001,24:602-611
    [118] Goetz V, Spinner B, Lepinasse E. A solid-gas thermochemical cooling systemusing BaCl2and NiCl2. Energy,1997,22:49-58.
    [119] Castaing J, Neveu P. Equivalent Carnot cycle concept applied to a thermochemicalsolid/gas resorption system. Applied Thermal Engineering,1998,18:745-754.
    [120] Vasiliev L L, Mishkinis D A, Antukh A A, et al. Resorption heat pump. AppliedThermal Engineering,2004,24:1893-1903.
    [121] Spinner B. Ammonia-based thermochemical transformers. Heat Recovery systemand CHP,1993,13:301-307.
    [122] T. X.Li, R. Z.Wang, R G Oliveira, et al. A combined double-way chemisorptionrefrigeration cycle based on adsorption and resorption processes.2009,InternationalJournal of Refrigeration,32:47-57.
    [123]李廷贤.新型多效双重热化学吸附制冷循环研究[博士学位论文]上海:上海交通大学,2008
    [124] Rogerio G. Oliveira, R. Z. Wang, T. X. Li. Transient Analysis of a ChemisorptionAir Conditioning System Operating under Different Kinds of Cycle, IndustrialEngineering Chemical. Resource.2008,47,1102-1110
    [125] Douglas B. Riffel,et al. Transient modeling of an adsorber using finned-tube heatexchanger, International Journal of Heat and Mass Transfer53(2010)1473–1482
    [126] L. Yong, K. Sumathy. Review of mathematical investigation on the closedadsorption heat pump and cooling systems, Renewable Sustainable Energy Rev.6(2002)305–337
    [127] S MYang, W Q Tao.Heat transfer, Higher education press,1998.
    [128] Lepinasse, E, Spinner B. Production de froid par couplage de reacteurs solide-gaz.II: Performance d’un pilote de1a`2kW.1994,International Journal ofRefrigeration17,323-328.
    [129] Han, J H, Lee K H. Effective thermal conductivity of graphitemetallic salt complexfor chemical heat pumps.1999, Journal of Thermophys and Heat,Transfer13,481-488
    [130] H B Lu. Mazet N, Spinner B. Modelling of gas-solid reaction coupling of heat andmass transfer with chemical reaction. Chem. Eng. Sci.1996,51,3829-3845.
    [131] Goetz V, Marty A. A model for reversible solid-gas reactions submitted totemperature and pressure constraints: simulation of the rate of reaction in solid-gasreactor used as chemical heat pump. Chem. Eng. Sci.1992,47,4445-4454.
    [132] Naoya MAKIMOTO, et. al. Numerical analysis on adsorption characteristics ofactivated carbon/ethanol pair in finned tube type adsorber, the5th Asian Conferenceon Refrigeration and Air-conditioning, June7-9,2010, Tokyo, JAPAN
    [133]王丽伟.新型复合吸附剂的吸附特性与机理及其在高效热管型余热制冷中的应用.[博士学位论文]上海:上海交通大学,2005
    [134] Brenan KE, Campbell SL, Petzold LR. Numerical solution of initial-valueproblems in differential-algebraic equations. North-Holland New York.Amsterdam,1968.
    [135] S.L. Li, Z.Z.Xia, J.Y. Wu, et al. Experimental study of a novel CaCl2/expandedgraphite-NH3adsorption refrigerator.2010, International Journal of Refrigeration33,61-69.
    [136] Z.S. Lu, R.Z. Wang, T.X.Li, et al.Experimental investigation of a novelmultifunction heat pipe solid sorption icemaker for fishing boats usingCaCl2/activated carbon compound–ammonia.2007,International Journal ofRefrigeration,30,76-85.
    [137] L. XU, R.Z. WANG, T.X.Li, et al. Experimental investigation on a combineddouble-way thermochemical and adsorption refrigeration system. The5thAsianConference On Refrigeration and Air-Conditioning, Tokyo, Japan,2010.
    [138] T.X. Li, R.Z. Wang, RG Oliveira, et al. A combined double-way chemisorptionrefrigeration cycle based on adsorption and resorption processes.2009,International Journal of Refrigeration32,47–57.
    [139]王如竹,王丽伟.低品位热能驱动的绿色制冷技术:吸附式制冷.科学通报,2005,50(2):101-111.
    [140]杨世铭编,传热学,北京,高等教育出版社,1996
    [141] L. Xu, R.Z. Wang, T.X. Li, L.W. Wang. Experimental study on the performance ofdouble-effect and double-way thermochemical sorption refrigeration cycle. AppliedThermal Engineering, Volume31, Issues17-18, December2011, Pages3658-3663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700