用户名: 密码: 验证码:
腰果酚缩水甘油醚共聚物的合成及其对木塑复合材料结构和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料相较普通木材而言有价格低廉、易成型、耐腐蚀等优点,近年来己被广泛应用于家居、板材等领域,但由于高填料填充的复合体系,在加工、成型、相容剂的选择上仍然存在较多问题。
     本文以BPO为引发剂,通过马来酸酐(MAH)与腰果酚缩水甘油醚(GPPE)反应,制备马来酸酐-腰果酚缩水甘油醚共聚物(MGPPE),将其作为高密度聚乙烯基木塑复合材料(WF/HDPE)的增容剂,并与GPPE和常见增容剂如马来酸酐化聚乙烯(MPE)、马来酸酐化C5石油树脂(MC5)和马来酸酐接枝聚乙烯丙烯共聚物(MPOE)作为对比。
     文中用1H NMRr间接测定M-GPPE中MAH的转化率,进行正交实验考察各反应因素对MAH转化率的影响,得到MAH转化率最高的优化反应工艺和各反应因素对反应影响的大小顺序。同时通过FT-IR, GPC.和1H NMR证实了GPPE与MAH发生了接枝共聚反应,并推断其反应机理,得到M-GPPE的可能结构式;通过热重分析仪证明了GPPE与MAH进行接枝共聚反应有利于提高其热稳定性。
     通过制备MGPPE改性WF/HDPE木塑复合材料,研究不同用量的MGPPE对复合材料力学性能的影响,采用红外分析、接触角和界面微观形态分析测试手段,深入研究木塑复合材料的界面特性和探讨MGPPE对木塑复合材料的改性机理。并与常用的相容剂和GPPE的改性效果进行对比研究,以评价MGPPE对HDPE基木塑材料的增容效果。结果表明:WF/HDPE木塑复合材料中加入MGPPE,其力学性能、接触角和界面相容性均得到一定程度提高和改善,改性效果与MPE相当,但优于MC5,其中WF/HDPE木塑复合材料中加入4wt%MGPPE时增容效果最佳,力学性能提高最大。
     采用平板流变仪和哈克流变仪对HDPE基木塑复合材料的粘弹性和加工性能进行研究。通过小振幅振荡实验研究不同木粉含量和不同相容剂对WPCs界面结合和流变特性的影响,借助Carreau模型得到木粉用量和相容剂对牛顿指数和松弛特性影响规律,从松弛时间反映WPCs体系的多尺度松弛特性和材料结构之间的关系。结果表明:MGPPE和HDPE具有一定相容性,加入MGPPE前后WPCs的模量随应变和频率变化的规律相似;随木粉用量提高,Carreau模型n值减小,复合材料的剪切变稀行为加强,而加入相容剂对n值影响不大。WPCs样品的松弛时间均高于纯HDPE,木粉用量越高,WPCs的松弛时间越长;加入MGPPE或MPE后,相应复合材料的松弛时间均有所缩短。加入MGPPE使复合材料的应力松弛时间延长,试样长时承载能力有所提高,同时最大扭矩和平衡扭矩均有所降低,有利于提高加工性能。
     此外通过DSC并结合XRD,进一步研究了WPCs的结晶行为,并通过Avrami方程,分析了木粉含量、相容剂及木粉网络结构对HDPE基体的结晶动力学参数及热力学参数的影响,并讨论了WPCs体系中影响HDPE结晶行为和结晶过程的主要因素。结果表明:木粉和相容剂的加入没有改变HDPE的结晶行为,但在结晶过程促进晶粒细化;WPCs样品具有比HDPE更高的Tc和Xc,更低的Tm,说明木粉粒子具有异相成核作用,并对HDPE晶体生长有一定限制作用;添加相容剂后复合材料的结晶温度和结晶度有所提高,熔点有所降低,当木粉用量和MGPPE用量分别为40wt%和6wt%时,复合材料熔点的降低程度变小,说明在高木粉填充量下,MGPPE能改善PE/木粉两相界面粘合,促进晶体完善。加入相容剂后复合材料的Avrami指数n值有所降低,t1/2变长,K值相对较小,说明相容剂通过促进木粉分散,加强了木粉异相成核程度。
     最后研究木粉用量、浸泡温度和改性剂对复合材料吸湿特性的影响。从水分输送动力学方面,考察WPCs吸水率、水分扩散速率和扩散系数的变化情况,从水分输送热力学方面考察WPCs的扩散活化能特征,通过研究复合材料的吸水膨胀变化率,提出径向吸湿膨胀系数β,模型,描绘复合材料的吸水率和尺寸稳定性的关联,并定量考察化学改性效果。结果表明:WPCs中入MGPPE后,相比同等木粉用量和等温环境的WF/HDPE,其水分扩散速率、平衡吸水率和扩散系数均有所降低,有助于降低复合材料的吸水程度,从而减少试样的吸湿膨胀,提高材料的尺寸稳定性,当MGPPE用量增加时更为明显。
Wood plastic composites (WPCs) is cheap, easily molding and anticorrosion compared to normal wood, and is widely used in field of furniture and plates. However, WPCs with high filler loading has some problems about processing, molding and selecting compatibilizer.
     Maleic anhydride/cardanol glycidyl ether copolymers (MGPPE) was synthesized from glycidyl3-pentadecenyl phenyl ether (GPPE) and maleic anhydride (MAH) initiated by BPO. And then the MGPPE was applied as a reactive comparabilizer to prepare HDPE/WF composite. Meanwhile, composites with GPPE and common comparabilizer such as MAH-g-PE (MPE) and mealted petroleum resin (C5) were also prepared for comparison purpose.
     The conversion rate of MAH in MGPPE was indirectly determined by1H NMR. An orthogonal experiment was used to investigate the impact of each factor on the MAH reaction conversion rate. And the optimum reaction processing for the highest conversion rate of MAH and the sequence of every influence factor were obtained. Meanwhile, Fourier infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and1H NMR results suggest that graft copolymerization had taken place successfully. The inferring reaction mechanism and the structure of MGPPE were proposed. Thermal gravimetric analysis (TGA) domesticated that graft copolymerization of GPPE and MAH was favor for improving thermal stability.
     The mechanical properties of WPCs with different MGPPE loading was studied by FTIR, contact angle measurement and interface morphological analysis. Furthermore, the interfacial property of WPCs and the modified mechanism of MGPPE were investigated. Composites with GPPE and common compatibilizer were also prepared for evaluating the compatibility of MGPPE. The results showed that the mechanical property and interface compatibility of composite improved with the addition of MGPPE, which modified effect is equal to MPE and higher than MCs. When the loading of MGPPE was4wt%, the compatibility was optimum for WPCs which showed the best mechanical property.
     The viscoelastic property and processing performance were studied by plate rheomter and Huck rheomter. A small amplitude oscillation experiment was applied to determine the impact of different WF loading and different compatibilizer on rheological properties of interfacial adhesion of WPCs. Furthermore, carreau model was applied to investigate the effect of WF loading and compatibilizer types on Newtonian index and relaxation properties. The results showed that the relaxation time could reflect the relationship between multi-scale structure and structure of WPCs. MGPPE was compatible with HDPE. Composite filled with MGPPE showed similar rules of modulus varying with strain and frequency, as composite without MGPPE. The presence of MGPPE prolonged the stress relaxation time, which lead to increased long carrying capacity of composite samples.
     In addition, property of isothermal crystallization for HDPE in high filled WPCs was further studied by combining DSC and XRD. And the impact of WF loading, compatibilizer types and the network structure of wood flour particles on crystallization kinetics parameters and thermodynamic parameters of HDPE matrix were analyzed. The major factors affecting crystallization behavior and crystallization process of HDPE matrix were summarized. The results suggested that WF and compatibilizer had little effect on the crystallization behavior of HDPE, but influenced the grain size of HDPE during crystallization process. Composite with compatibilizer exhibited a higher Avrami index than the one without, which meant that compatibilizer could promote the perfection of crystal growth.
     Finally, the impact of WF loading, temperature and compatibilizer types on hygroscopic property of composite was studied. In terms of water transport dynamics, variation for water absorption, moisture diffusion rate and the diffusion coefficient of WPCs was discussed. Meanwhile the characteristics of diffusion activation energy of WPCs were investigated from the thermodynamic aspects of water transport. Furthermore by means of the examination of the swelling rate of the composite, a pr model was proposed, which depicted the association of the water absorption and dimensional stability of the composite, to investigate the chemical modification effect quantitatively. The results depicted that moisture diffusion rate, balance water absorption and diffusion coefficients of the composite with MGPPE lower than the composite without MGPPE in the same WF loading and temperature condition. It is concluded that MGPPE was helpful for reducing the moisture expansion of the sample and improved the dimensional stability of the composite. And the effect was significant when the MGPPE content was higher.
引文
[1]Wechsler A, Hiziroglu S. Some of the properties of wood-plastic composites[J]. Building and Environment,2007,42(7):2637-2644.
    [2]廖建平.抓住历史机遇加速木塑复合材料产业的发展[J].建材发展导向,2004,(2):38-39.
    [3]薛平.木塑复合材料发展现状及前景[J].建材工业信息,2003,(12):6-8.
    [4]何元锦,陈福林,艾娇艳.腰果壳油在高分子材料中的应用研究进展[J].特种橡胶制品,2009,29(6):48-51.
    [5]刘瑞杰,谭卫红,周永红,等.腰果壳油酚醛树脂的应用研究进展[J].化工新型材料,2012,40(6):130-132.
    [6]刘义军,朱德明,黄茂芳.腰果加工利用的研究进展[J].农产品加工,2013(11):43-45.
    [7]杨玮,殷荣忠,杨小云,等.腰果酚/腰果壳油改性酚醛树脂的合成及其应用研究[J].热固性树脂,2010,25(5):21-26.
    [8]胡家朋,熊联明,沈震.腰果壳油的蒸馏及馏分成分研究[J].应用化工,2007,36(4):345-347.
    [9]徐丽,张亚男,刘国际,等.腰果酚缩水甘油醚的制备[J].精细石油化工,2013,30(1):1-4.
    [10]米桢.腰果酚衍生物的制备及其在环氧树脂领域的应用研究[D].北京:中国林业科学研究院,2013.
    [11]Rao B S, Palanisamy A. Synthesis of bio based low temperature curable liquid epoxy, benzoxazine monomer system from cardanol:Thermal and viscoelastic properties[J]. Eur opean Polymer Journal,2013,49(8):2365-2376.
    [12]刘国际,张勇,刘伟,等.腰果酚的应用研究进展[J].材料导报,2012,26(9):90-94.
    [13]张明伟,王宏力,赵立新,等.腰果酚缩水甘油醚的工艺技术研究[J].河南化工,2013,30(17):38-41.
    [14]白二雷,岑兰,陈福林,等.腰果壳油对丁苯橡胶胶料性能的影响[J].广东橡胶,2012(9):2-5.
    [15]邱贤亮.废旧轮胎短纤维改性及其增强橡胶复合材料的应用研究[D].广州:广东工业大学.2012.
    [16]刘瑞杰,谭卫红,周永红等.腰果酚改性甲阶酚醛树脂的合成及其泡沫性能研究[J].Biomass Chemical Engineering,2013,47(5).30-34.
    [17]胡立红,李书龙,刘欣,等.腰果酚改性酚醛树脂的合成研究J].生物质化学工程,2008,42(2):11-14.
    [18]Menon A R R. Flame-retardant characteristics of natural rubber modified with a bromo derivative of phosphorylated cashew nut shell liquid[J]. Journal of Fire Sciences,1997, 15(1):3-13.
    [19]Arcadi A, Attanasi O A, Berretta S, et al. Synthesis of new cardanol derivatives throug h combined iodination/palladium-catalysed cross-coupling reactions[J]. Synthesis,2006,2 006(15):2523-2530.
    [20]Weatherburn M W. Phenol-hypochlorite reaction for determination of ammonia[J]. Analytical chemistry,1967,39(8):971-974.
    [21]Paramashivappa R, Kumar P P, Vrthayathil P J, et al. Novel method for isolation of ma jor phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid[J]. Jo urnal of Agricultural and Food Chemistry,2001,49(5):2548-2551.
    [22]陈士元,侯衍哲,周海,等.烯烃加成法合成脂肪醇聚氧乙烯醚磺酸盐[J].精细石油化工,2012,29(4):26-30.
    [23]Won K, Kim Y H, An E S, et al. Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators[J]. Biomacromolecules,2004,5(1):1-4.
    [24]雷福厚,蓝虹云,安鑫南.多酚氧化酶催化漆酚的氧化聚合反应研究[J].林产化学与工业,2003,23(3):53-55.
    [25]Shobha S V, Ramadoss C S, Ravindranath B. Inhibition of soybean lipoxygenase-1 by a nacardic acids, cardols, and cardanols [J]. Journal of Natural Products,1994,57(12):175 5-1757.
    [26]Ikeda R, Tanaka H, Uyama H, et al. Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid[J]. Polymer,2002,43(12):3475-3481.
    [27]Kim Y H, An E S, Song B K, et al. Polymerization of cardanol using soybean peroxidase and its potential application as anti-biofilm coating material[J]. Biotechnology letters,2003,25(18): 1521-1524.
    [28]Pettit G R, Meng Y, Pettit R K, et al. Antineoplastic Agents.556. Isolation and Structure of Coprinastatin 1 from Coprinus cinereus,(1)[J]. Journal of natural products,2009,73(3): 388-392.
    [29]Kim Y H, An E S, Park S Y, et al. Enzymatic epoxidation and polymerization of cardanol obtained from a renewable resource and curing of epoxide-containing polycardanol[J]. Journal of Molecular Catalysis B:Enzymatic,2007,45(1):39-44.
    [30]张磊.酚类聚合物的酶催化聚合及应用性能研究[D].郑州:河南大学,2013.
    [3 1]毛治博.腰果酚催化加氢研究[D].郑州:郑州大学,2010.
    [32]毛治博,雒廷亮,王钰,等.腰果酚催化加氢工艺及产品的纯化和表征[J].林产化学与工业,2010,30(2):52-56.
    [33]郑咸雅.木塑复合材料[J].塑料,2001,2(30):25-27.
    [34]高黎,王正.木塑复合材料的研究,发展及展望[J].人造板通讯,2005,12(2):5-8.
    [35]赵永生,朱复华,薛平,等.木粉对PVC木塑复合材料力学性能影响[J].现代塑料加工应用,2006,17(6):12-15.
    [36]Greer E N, Stewart B A. The water absorption of wheat flour:relative effects of protein and starch[J]. Journal of the Science of Food and Agriculture,1959,10(4):248-252.
    [37]Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. The Plant Cell Online,2001,13(1): 73-88.
    [38]Duan X, Wang P, Zhou G, et al. Nondestructive evaluation of dynamic MOE of ancient wooden structure members by stress wave method[J]. JOURNAL-NORTHWEST FORES TRY UNIVERSITY,2007,22(1):112-115.
    [39]钟鑫,薛平,丁筠.改性木粉/PVC复合材料的性能研究[J].中国塑料,2004,18(3):62-66.
    [40]邵世佩,张振亮.国内外木塑制品的生产及发展[J].炼油与化工,2004,15(1):5-7.
    [41]柴希娟,孙可伟.增容处理对废PE木塑复合材料性能和结构的影响[J].林业机械与木工设备,2009,37(4):33-36.
    [42]胡圣飞,郦华兴,胡立新.木/塑复合材料研究[J].化学建材,2003,1:20-21.
    [43]姜锋,秦特夫.木塑复合材料增韧的研究[J].塑料工业,2007,35(1306):137-140.
    [44]薛平,张明珠.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):53-59.
    [45]赵淑战.HDPE中加入纳米粘土降低烃渗透率[J].国内外石油化工快报,2003,(3):19-20.
    [46]邓涛.聚乙烯/蒙脱土纳米复合材料的制备与性能研究[D].哈尔滨:哈尔滨理工大学,2005.
    [47]君轩.均匀剂[J].世界橡胶工业,2008,35(3):44-44.
    [48]陈福林,雷芳,岑兰,等.几种加工助剂在聚丙烯基木塑复合材料中的应用对比[J].工程塑料应用,2008,36(7):55-59.
    [49]宋国君,王海龙,王立,等.HDPE-g-MAH增容HDPE/木粉复合材料润滑剂的优选和热性能研究[J].塑料工业,2007,34(12):53-56.
    [50]滕国敏,张勇,万超瑛,等.木塑复合材料的界面改性方法[J].化工新型材料,2005,33(5):7-9.
    [51]张丽,冯绍华.改善热塑性塑料/植物纤维界面相容性方法的研究[J].工程塑料应用,2006,34(7):75-78.
    [52]薛盘芳.PP/木质纤维复合材料的制备及其性能研究[D].南京:南京农业大学,2008.
    [53]李凯夫,戴东花,谢雪甜,等.偶联剂对木塑复合材料界面相容性的影响[J].林产工业,2005,32(3):24-26.
    [54]吴远楠,武军.不同增容剂对HDPE基木塑复合材料力学性能的影响[J].包装工程,2007,27(6):85-86.
    [55]王磊,曹金珍.偶联剂在木塑复合材料中的应用及研究[J].林产工业,2009,35(6):9-14.
    [56]Raj R G, Kokta B V, Daneault C. Effect of chemical treatment of fibers on the mecha nical properties of polyethylene-wood fiber composites[J]. Journal of adhesion science an d technology,1989,3(1):55-64.
    [57]刘建勇,钟圣兆,夏成林,等.木塑复合材料及其研究进展[J].合成材料老化与应用,2004,33(3):48-50.
    [58]刘文鹏,李炳海.不同相容剂PP/木粉复合材料力学性能的影响[J].塑料,2006,34(5):21-24.
    [59]王锐,朱志国,张大省,等.相容剂对PA6/PE基体-微纤型共混纤维形态结构的调控[J].高分子材料科学与工程,2002,18(5):96-99.
    [60]冯绍华,尹文艳,沈海燕,等.PP-g-MAH对聚丙烯(木塑)复合材料相容性的影响[J].塑料科技,2006,34(1):1-3.
    [61]童身毅,解孝林,张良钧.马来酸酐接枝聚丙烯研究[J].合成树脂及塑料,1994,11(1):15-17.
    [62]Ding C, Jia D, He H, et al. How organo-montmorillonite truly affects the structure and properties of polypropylene[J]. Polymer Testing,2005,24(1):94-100.
    [63]赵若飞,孙斌.马来酸酐接枝取丙烯对云母填充聚丙烯的增容作用[J].高分子材料科学与工程,2002,18(4):112-116.
    [64]张良均,童身毅,樊庆春.马来酸酐接枝聚丙烯增容聚丙烯/碳酸钙复合物力学性能与增容机理[J].塑料工业,2004,32(7):36-38.
    [65]宋国君,王海龙,王立,等.HDPE-g-MAH增容HDPE/木粉复合材料的制备及加工设备的研究[J].塑料,2007,35(6):46-49.
    [66]吴唯,邓发金.聚丙烯/马来酸酐接枝聚丙烯/超细云母的界面增容及其断面形态研究[J].化学世界,2001,42(1):19-23.
    [67]陈民杰,张军.聚烯烃接枝马来酸酐作为增容剂的应用[J].弹性体,2002,12(5):50-57.
    [68]Jiang C, Filippi S, Magagnini P. Reactive compatibilizer precursors for LDPE/PA6 blends. Ⅱ: maleic anhydride grafted polyethylenes[J]. Polymer,2003,44(8):2411-2422.
    [69]Chow W S, Abu Bakar A, Mohd Ishak Z A, et al. Effect of maleic anhydride-grafted e thylene-propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites[J]. European Polymer Journal,2005,41(4):687-696.
    [70]Wood A W, Levin W, Ryan D, et al. High mutagenicity of metabolically activated chrysene 1,2 dihydrodiol:Evidence for bay region activation of chrysene[J]. Biochemical and biophysical research communications,1977,78(3):847-854.
    [71]Li Y, Xie X M, Guo B H. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene[J]. Polymer,2001,42(8):3419-3425.
    [72]王益龙,黄葆同.PE-g-MAH的合成及其对PE/NBR的增容作用[J].现代塑料加工应用,1995,7(3):33-36.
    [73]孙瑞焕,毛立江,胡元洁,等.离子型聚乙烯醇海绵的结构及性能[J].中国康复理论与实践,2000,6(2):56-58.
    [74]Guo C G, Wang Q W. Influence of m-isopropenyl-a, a-dimethylbenzyl isocyanate grafted polypropylene on the interfacial interaction of wood-flour/polypropylene composites[J]. Journal of applied polymer science,2008,109(5):3080-3086.
    [75]Li Q X, Hayashi K, Nishioka M, et al. Absolute emission current density of from Ca2CO3 Al 2O3 crystal[J]. Applied physics letters,2002,80(22):4259-4261.
    [76]Bledzki A K, Faruk O, Huque M. Physico-mechanical studies of wood fiber reinforced composites[J]. Polymer-Plastics Technology and Engineering,2002,41(3):435-451.
    [77]Geng Y, Li K, Simonsen J. Effects of a new compatibilizer system on the flexural prop erties of wood-polyethylene composites[J]. Journal of applied polymer science,2004,91 (6):3667-3672.
    [78]张环,刘敏江.填充聚合物的流变行为[J].现代塑料加工应用,2001,13(3):58-62.
    [79]朱玉明,李振中,李迎春,等.聚丙烯/碳基填料复合材料的流变行为研究[J].塑料工业,2012,(1):72-77.
    [80]王梦蛟.填料-弹性体相互作用对填充硫化胶滞后损失,湿摩擦性能和磨耗性能的影响[J].轮胎工业,2008,27(10):579-584.
    [81]谢凡.剪切流场下高聚物官能团反应体系的动力学研究[D].上海:上海交通大学,2006.
    [82]Bar-Chaput S, Carrot C. Rheology as a tool for the analysis of the dispersion of carbon filler in polymers[J]. Rheologica acta,2006,45(4):339-347.
    [83]施海华,周井隆,龚方红,等.HDPE/纳米Si02杂化材料的动态流变行为研究[J].高校化学工程学报,2011,25(1):177-181.
    [84]石恒冲.HDPE/木粉复合材料界面相容剂的制备与界面相容性[D].吉林:东北林业大学, 2007.
    [85]梁基照.无机粒子填充聚合物复合材料的储能模量及其表征[J].华南理工大学学报(自然科学版),2008,36(11):43-146.
    [86]高华.木粉/马来酸酐接枝聚烯烃共混物复合材料[D].哈尔滨:东北林业大学,2011.
    [87]Najafi S K, Sharifnia H, Tajvidi M. Effects of Water Absorption on Creep Behavior of Wood-Plastic Composites[J]. Journal of composite materials,2008,42(10):993-1002.
    [88]Pilarski J M, Matuana L M. Durability of wood flour-plastic composites exposed to acc elerated freeze-thaw cycling. Part I. Rigid PVC matrix[J]. Journal of Vinyl and Additive Technology,2005,11(1):1-8.
    [89]王伟宏,黄海兵,付朝龙.热氧老化和水浸渍对木粉/HDPE和稻壳粉/HDPE两种复合材料性能的影响[J].林产工业,2012,39(1):11-14.
    [90]许小君.新型木塑复合材料断裂及断裂机理的研究[D].南京:南京林业大学,2005.
    [91]孙占英,李大纲,吴正元,等.自然气候条件下木塑复合材料性质的变化[J].木材工业,2006,20(3):17-19.
    [92]Underhill P A, Jin L, Lin A A, et al. Detection of numerous Y chromosome biallelic p olymorphisms by denaturing high-performance liquid chromatography[J]. Genome Researc h,1997,7(10):996-1005.
    [93]Lee B G, Lee S, Via B K. Influence of Surface Morphology of the Kraft Pulp 159 Fib ers on the Growth of the Transcrystalline Layer of Polypropylene[J]. Journalof Applied Polymer Science,2010,116(4):1958-1966.
    [94]Chaharmahali M, Tajvidi M, Najafi S K. Mechanical properties of wood plastic compo site panels made from waste fiberboard and particleboard[J]. Polymer Composites,2008, 29(6):606-610.
    [95]Nourbakhsh A, Ashori A. Fundamental studies on wood-plastic composites:Effects of fi ber concentration and mixing temperature on the mechanical properties of poplar/PPcom posite[J]. Polymer Composites,2008,29(5):569-573.
    [96]Kumari R, Ito H, Takatani M, et al. Fundamental studies on wood/cellulose-plastic com posites:effects of composition and cellulose dimension on the properties of cellulose/PP composite[J]. Journal of Wood Science,2007,53(6):470-480.
    [97]Borysiak S. Determination of nucleating ability of wood for non-isothermal crystallisatio n of polypropylene[J]. Journal of Thermal Analysis and Calorimetry,2007,88(2):455-4 62.
    [98]Bouafif H, Koubaa A, Perre P, et al. Wood Particle/High-Density Polyethylene Composit es:Thermal Sensitivity and Nucleating Ability of Wood Particles[J]. Journal of Applied Polymer Science,2009,113(1):593-600.
    [99]Borysiak S, Doczekalska B. Influence of chemical modification of wood on the crystalli sation of porypropylene[J]. Holz Als Roh-Und Werkstoff,2006,64(6):451-454.
    [100]Harper D, Wolcott M. Interaction between coupling agent and lubricants in wood-poly p ropylene compos it es[J]. Composites Part A:Applied Science and Manufacturing,2004,3 5(3):385-394.
    [101]Kim J W, Harper D P, Taylor A M. Effect of Wood Species on the Mechanical and T hermal Properties of Wood-Plastic Composites[J]. Journal of Applied Polymer Science,2 009,112(3):1378-1385.
    [102]Mathew A P, Oksman K, Sain M. The effect of morphology and chemical characteristi ccs of cellulose reinforcements on the crystallinity of polylactic acid[J]. Journal of Appl ied Polymer Science,2006,101(1):300-310.
    [103]Bouza R, Marco C, Ellis G, et al. Analysis of the Isothermal Crystallization of Pory-Pr opylene/Wood Flour Compos it es[J]. Journal of Thermal Analysis and Calorimetry,2008, 94(1):119-127.
    [104]Palaniyandi v, Simonsen J. Effect of compatibilizers on the crystallization kinetics of ce llulose-filled high density poryethylene[J]. Composite Interfaces,2007,14(1):73-83.
    [105]Jam N J, Behravesh A H. Flow Behavior of HDPE-Fine wood particles composites[J]. J ournal of Thermoplastic Composite Materials,2007,20(5):439-451.
    [106]Li T Q, Wolcott M P. Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple[J]. Polymer Engineering and Science,2005,45(4):549-559.
    [107]Marcovich N E, Reboredo M M, Kenny J, et al. Rheology of particle suspensions in vi scoelastic media Wood flour-polypropylene melt[J]. Rheologica Acta,2004,43(3):293-3 03.
    [108]Sombatsompop N, Yotinwattanakumtorn C, Thongpin C. Influence of type and concentrat ion of maleic anhydride grafted polypropylene and impact modifiers on mechanical prop erties of PP/wood sawdust composites[J]. Journal of Applied Polymer Science,2005,97 (2):475-484.
    [109]Danyadi L, Renner K, Moczo J, et al. Wood flour filled polypropylene composites:Inte rfacial adhesion and micromechanical deformations [J]. Polymer Engineering and Science, 2007,47(8):1246-1255.
    [110]De Rosa I M, Santulli C, Sarasini F. Acoustic emission for monitoring the mechanical behaviour of natural fibre composites:Aliterature review[J]. Applied Science and Manuf acturing,2009,40(9):1456-1469.
    [1]Mulhaupt R. Green Polymer Chemistry and Biobased Plastics:Dreams and Reality[J]. Macromolecular Chemistry and Physics,2013.214(2):159-174.
    [2]Koopmans R J. Polyolefin-Based Plastics from Biomass Derived Monomers[J]. Bio-Based Plastics:Materials and Applications.2013:295-310.
    [3]Mohanty A K, Misra M. Drzal L T. Sustainable bio-compos it es from renewable resources: opportunities and challenges in the green materials world[J]. Journal of Polymers and the Environment,2002.10(1-2):19-26.
    [4]胡家朋,熊联明,沈震.腰果壳油的蒸馏及馏分成分研究[J].应用化工.2007,36(4):345-347.
    [5]Edoga M O, Fadipe L. Edoga R N. Extraction of polyphenols from cashew nut shell[J]. Leonardo Electronic Journal of Practices and Technologies.2006,9:107-112.
    [6]Phani Kumar P, Paramashivappa R, Vithayathil P J, et al. Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid[J]. Journal of Agricultural and Food chemistry,2002.50(16):4705-4708.
    [7]刘国际,张勇,刘伟,等.腰果酚的应用研究进展[J].材料导报,2012,26(9):90-94.
    [8]Ravichandran S. Bouldin R M, Kumar J. Arenewable waste material for the synthesis of a novel non-halogenated flame retardant polymer[J]. Journal of Cleaner Production,2011,19(5): 454-458.
    [9]Ikeda R, Tanaka H, Uyama H. Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid[J]. Polymer.2002,43(12):3475-3481.
    [10]Voirin C, Caillol S, Sadavarte N V Functionalization of cardanol:towards biobased polymers and additives[J]. Polymer Chemistry.2014,5:3142-3162.
    [11]Menon A R R, Sonia T A, Sudha J D. Studies on blends of natural rubber and ethylene propy lene diene rubber modified with phosphorylated cardanol prepolymer:Processability, physic mechanical properties, and morphology[J]. Journal of applied polymer science,2006.102(6): 5123-5130.
    [12]Vu Y T, Mark J E. Pham L H. Blends of natural rubber with cardanol-formaldehyde resins[J]. Polymer-Plastics Technology and Engineering,1999.38(2):189-200.
    [13]Chuayjuljit S, Rattanametangkool P, Potiyaraj P. Preparation of cardanol-formaldehyde resins from cashew nut shell liquid for the reinforcement of natural rubber[J]. Journal of Applied Polymer Science,2007,104(3):1997-2002.
    [14]Greco A Brunetti D, Renna G. Plasticizer for poly (vinyl chloride) from cardanol as a renewable resource material[J]. Polymer Degradation and Stability,2010,95(11):2169-2174.
    [15]Bhunia H P, Nando G B, Basak A. Synthesis and characterization of polymers from cashewnut shell liquid (CNSL). a renewable resource III. Synthesis of a polyether[J]. European polymer journal,1999,35(9):1713-1722.
    [16]Sultania M, Rai J S P, Srivastava D. Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology [J]. Journal of Hazardous Materials,2011,185(2):1198-1204.
    [17]Henne M. Breyer C, Niedermeier M. et al. A new kinetic and viscosity model for liquid composite molding simulations in an industrial environment[J]. Polymer Composites,2004, 25(3):255-269.
    [18]Wongthong P, Nakason C, Pan Q. et al. Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride[J]. European Polymer Journal,2013,49(12):4035-4046.
    [19]Suresh K I, Kishanprasad V S. Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes[J]. Industrial & Engineering Chemistry Research,2005, 44(13):4504-4512.
    [20]Sanli O, Pulat E. Solvent-assisted graft copolymerization of acrylamide on poly (ethylene terephthalate) films using benzoyl peroxide initiator[J]. Journal of Applied Polymer Science, 1993,47(1):1-6.
    [21]Somanathan N, Balasubramaniam B, Subramaniam V Grafting of polyester fibersfJ]. Journal of Macromolecular Science. Part A:Pure and Applied Chemistry,1995,32(5):1025-1036.
    [22]Patil D R, Fanta G F. Graft copolymerization of starch with methyl aery late:an examination of reaction variables[J]. Journal of Applied Polymer Science,1993,47(10):1765-1772.
    [23]Dharmarajan N, Datta S. Toughening styrene maleic anhydride copolymers with functionalized ethylene propylene rubbers[J]. Polymer,1992,33(18):3848-3857.
    [24]Stretz H A, Paul D R. Properties and morphology of nanocomposites based on styrenic polymers, Part Ⅱ:Effects of maleic anhydride units[J]. Polymer,2006,47(26):8527-8535.
    [25]Vikram T, Nando G B. Synthesis and characterization of cardanol grafted natural rubber-The solution technique[J]. Journal of Applied Polymer Science,2007,105(3):1280-1288.
    [26]Barton J M, Greenfield D C L. The Use of Dynamic Mechanical Methods to Study the Effect of Absorbed Water on Temperature Dependent Properties of an Epoxy Res in-Carbon Fibre Composite[J]. British Polymer Journal,1986,18(1):51-56.
    [27]Madhusudhan v, Murthy B G K. Polyfunctional compounds from cardanoI[J]. Progress in Organic Coatings,1992,20(1):63-71.
    [28]Contreras-Lopez D. Saldivar-Guerra E. Luna-Barcenas G. Copolymerization of isoprene with polar vinyl monomers:Reactivity ratios, characterization and thermal properties[J]. European Polymer Journal,2013,49(7):1760-1772.
    [29]Aimin Z, Chao L. Chemical initiation mechanism of maleic anhydride grafted onto styrene-butadiene-styrene block coporymer[J]. European Polymer Journal.2003.39(6): 1291-1295.
    [30]李超,成煦.何其佳,等.不同引发剂引发SBS接枝马来酸酐的机理研究[J].高分子学报,2002,1(6):791-817.
    [31]Tvivedi B C. Maleic Anhydride[M]. New York:Plenum,1982.
    [32]郭海军,张耀文,胡星琪.马来酸酐-丙烯酸共聚物的合成及性能研究[J].应用化工,2003,32(6):9-11.
    [33]Nakason C, Saiwaree S, Tatun S, et al. Rheological, thermal and morphological properties of maleated natural rubber and its reactive blending with poly (methyl methacrylate)[J]. Polymer testing,2006,25(5):656-667.
    [34]Madhusudhan V, Murthy B G K. Polyfunctional compounds from cardanol[J]. Progress in Organic Coatings.1992.20(1):63-71.
    [35]Symes W F. Dawson C R. Cashew. Nut Shell Liquid. IX. The Chromatographic Separation and Structural Investigation of the Olefinic Components of Methylcardanol[J]. Journal of the American Chemical Society,1953.75(20):4952-4957.
    [1]薛平,张明珠,何亚东,等.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):53-59.
    [2]冯绍华,尹文艳,沈海燕,等.PP-g-MAH对聚丙烯(木塑)复合材料相容性的影响[J].塑料科技,2006,34(1):1-4.
    [3]梅超群.木粉弱极性化处理及木塑复合材料性能研究[D].北京:北京林业大学,2011.
    [4]石恒冲.HDPE/木粉复合材料界面相容剂的制备与界面相容性[D].哈尔滨:东北林业大学,2007.
    [5]曹勇,合田公一,吴义强,等.洋麻纤维增强全降解复合材料的制备及其弯曲模量[J].复合材料学报,2007,24(3):282-341.
    [6]李坚.木材波谱学[M].北京:科学出版社,2003:23-27.
    [7]袁绯批,杨木细胞壁组分对杨木/HDPE共混物流变性能的影响[D].哈尔滨:东北林业大学,2013.
    [8]Mellerowicz E J, Baucher M, Sundberg B,Boerjan W. Unravelling cell wall formation in the woody dicot stem[J].Plant Molecular Biology,2001,47(1):239-274.
    [9]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991:62-67.
    [10]王鹏.高填充木塑复合材料流变行为与结晶性质研究[D].上海:上海交通大学,2011.
    [11]李坚.生物质复合材料学[M].北京:科学出版社,2008.
    [12]王清文,王宏伟.木塑复合材料与制品[M].北京:化学工业出版社,2007.
    [13]Klyosov A A. Wood-plastic composites[M]. New YorK, Wiley-Interscience,2007:83-85.
    [14]Viksne A, Berzina R, Andersone I, et al. Study of plastic compounds containing polypropylene and wood derived fillers from waste of different origin[J]. Journal of Applied Polymer Science, 2010,117(1)368-377.
    [15]岑兰,陈福林,雷芳.相容剂对稻糠/聚丙烯复合材料加工性能和尺寸稳定性的影响[J].塑料科技,2009,37(1):79-82.
    [16]王正.木塑复合材料界面特性及其影响因子的研究[D].北京:中国林业科学研究院木材工业研究所,2001.
    [17]安彦杰,纪春怡,柳春山.LDPE/HDPE/LLDPE的硅烷接枝反应[J].塑料工业,2005,(33):63-75.
    [18]Cui J, Mei C, Jia C, et al. Acrylamide-formaldehyde-urea copolymer as a novel compatibilizer for high density polyethylene/plant fiber composite[J]. Polymer Bulletin,2011,67(3):375-382.
    [19]陈慧雪.聚乙烯基木塑复合材料的应用研究[D].广州:广东工业大学,2009.
    [20]吴清鹤,李永鸿,孔萍,等.增容剂对再生聚丙烯/木粉WPC性能的影响[J].工程塑料应用,2006,35(1):26-29.
    [21]Cen L, Chen F L, Cao Y M, et al. Preparation and properties of wood flour/HDPE composites using C5-g-MAH as compatilize[J]. Advanced Materials Research,2013,779:170-173.
    [1]Li R, Yu W, Zhou C. Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems[J]. Polymer Bulletin,2006,56(4-5): 455-466.
    [2]Yu W, Wu Y,Yu R, et al. Dynamic rheology of the immiscible blends of liquid crystalline polymers and flexible chain polymers[J]. Rheologica acta,2005,45(2):105-115.
    [3]Mohanty S, Nayak S K. Dynamic and steady state viscoelastic behavior and morphology of MAPP treated PP/sisal composites[J]. Materials Science and Engineering:A,2007,443(1): 202-208.
    [4]Zhang J, Park C B, Rizvi G M, et al. Investigation on the uniformity of high-density polyethylene/wood fiber composites in a twin-screw extruder[J]. Journal of Applied Polymer Science,2009,113(4):2081-2089.
    [5]周持兴.聚合物流变实验与应用[M].上海交通大学出版社,2003.
    [6]王鹏.高填充木塑复合材料流变行为与结晶性质研究[D].上海:上海交通大学,201].
    [7]Tian J, Yu W, Zhou C. The preparation and rheology characterization of long chain branching polypropylene[J]. Polymer,2006,47(23):7962-7969.
    [8]郑强,左敏.高分子复杂体系的结构与流变行为[J].中国科学B辑:化学,2007,37(6):512-524.
    [9]Payne A R. A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates[J]. Journal of Applied Polymer Science,1960,3(7):127-127.
    [10]Poslinski A J, Ryan M E, Gupta R K, et al. Rheological Behavior of Filled Polymeric Systems I. Yield Stress and Shear-Thinning Effects[J]. Journal of Rheology,1988,32(7):703-735.
    [11]Rueb C J, Zukoski C F. Rheology of suspensions of weakly attractive particles:Approach to gelation[J]. Journal of Rheology,1998,42(6):1451-1476.
    [12]Solomon M J, Lu Q. Rheology and dynamics of particles in viscoelastic media[J]. Current Opinion in Colloid & Interface Science,2001,6(5):430-437.
    [13]Sumita M, Shizuma T, Miyasaka K, et al. Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles[J]. Journal of Macromolecular Science, Part B:Physics,1983,22(4):601-618.
    [14]Lee Y H, Kuboki T, Park C B, et al. The effects of clay dispersion on the mechanical, physical, and flame-retarding properties of wood fiber/polyethylene/clay nanocomposites[J]. Journal of Applied Polymer Science,2010,118(1):452-461.
    [15]Baghaei B, Jafari S H, Khonakdar H A, et al. Interfacially compatibilized LDPE/POE blends reinforced with nanoclay:investigation of morphology, rheology and dynamic mechanical properties [J]. Polymer Bulletin,2009,62(2):255-270.
    [16]宋永明,王清文.木塑复合材料流变行为研究进展[J].林业科学,2012,48(8):143-149.
    [17]岑兰,陈慧雪,黎耀能.改性纳米陶土对竹粉/高密度聚乙烯复合材料性能的影响[J].塑料科技,2008,36(9):28-31.
    [18]郑强,杨碧波.多组分高分子体系动态流变学研究[J].高等学校化学学报,1999,20(9):1483-1490.
    [19]娄立娟,刘建叶,俞炜,等.聚合物长支链的流变学表征方法[J].高分子通报,2009(10):15-23.
    [20]田静华.长支链聚丙烯及聚丙烯反应共混材料的制备、结构与性能的研究[D].上海:上海交通大学,2007.
    [21]Winter H H, Mours M. Rheology of polymers near liquid-solid transitions[A]. in Neutron spin echo spectroscopy viscoelasticity rheology[M]. Springer Berlin Heidelberg,1997:165-234.
    [22]雷芳.PP基木塑复合材料的应用研究[D].广州:广东工业大学,2008.
    [23]Santi C R, Hage Jr E, Vlachopoulos J, et al. Rheology and processing of HDPE/wood flour composites[J]. International Polymer Processing,2009,24(4):346-353.
    [24]Li T Q, Wolcott M P. Rheology of wood plastics melt, part 3:nonlinear nature of the flow[J]. Polymer Engineering & Science,2006,46(1):114-121.
    [25]LiR, Yu W, Zhou C. Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems[J]. Polymer Bulletin,2006,56(4-5): 455-466.
    [26]刘涛,何慧,洪浩群,等.废旧高密度聚乙烯/木粉复合材料的改姓研究[J].塑料科技,2008,36(2):36-40.
    [27]Chaouche M, Koch D L. Rheology of non-Brownian rigid fiber suspensions with adhesive contacts[J]. Journal of Rheology,2001,45(2):369-382.
    [28]Ghosh P, Chakrabarti A. Effect of incorporation of conducting carbon black as filler on melt rheology and relaxation behaviour of ethylene-propylene-diene monomer (EPDM)[J]. European Polymer Journal,2000,36(3):607-617.
    [29]马丽.植物纤维/ABS木塑复合材料的制备,结构与性能研究[D].广州:华南理工大学,2012.
    [30]Ghasemi I, Azizi H, Naeimian N. Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composite[J]. Iranian Polymer Journal,2008,17(3):191-198.
    [31]Zhang X W, Pan Y, Zheng Q, et al. Polystyrene/Sn-Pb alloy blends. Ⅱ. Effect of alloy particle surface treatment on dynamic rheological behavior[J]. Journal of Applied Polymer Science, 2002,86(12):3173-3179.
    [32]Marcovich N E, Reboredo M M, Kenny J, et al. Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt[J]. Rheologica Acta,2004,43(3):293-303.
    [33]Kumar R P, Nair K C, Thomas S, et al. Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites[J]. Composites Science and Technology,2000, 60(9):1737-1751.
    [34]Sepehr M, Ausias G, Carreau P J. Rheological properties of short fiber filled polypropylene in transient shear flow[J]. Journal of Non-Newtonian Fluid Mechanics,2004,123(1):19-32.
    [35]Yu W, Wang P, Zhou C. General stress decomposition in nonlinear oscillatory shear flow[J]. Journal of Rheology,2009,53(1):215-238.
    [36]Carotenuto C, Grosso M, Maffettone P L. Fourier transform rheology of dilute immiscible polymer blends:a novel procedure to probe blend morphology[J]. Macromolecules,2008, 41(12):4492-4500.
    [37]朱礼智.木粉/聚丙烯复合界面分子运动弛豫过程解析[D].北京:北京林业大学,2013.
    [38]Gupta R K. Polymer and composite rheology[M]. CRC Press,2000.
    [39]张安强,林雅铃,王炼石.Brabender转矩流变仪在橡胶加工性能评价中的应用[J].弹性体,2008,17(6):53-59.
    [40]吴炳田,王亚,虞晨阳,等.高聚物熔体平衡转矩-转速关系曲线测定方法的探讨[J].塑料,2010,39(3):97-99.
    [41]李晓芳.PP基木塑复合材料的研究[D].济南:山东大学,2010.
    [1]Chaharmahali M, Tajvidi M, Najafi S K. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard[J]. Polymer Composites,2008,29(6): 606-610.
    [2]Lee B G, Lee S, Via B K. Influence of Surface Morphology of the Kraft Pulp Fibers on the Growth of the Transcrystalline Layer of Polypropylene[J]. Journal of Applied Polymer Science, 2010,116(4):1958-1966.
    [3]Nourbakhsh A, Ashori A. Fundamental studies on wood-plastic composites:Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite[J]. Polymer Composites,2008,29(5):569-573.
    [4]Bouafif H, Koubaa A, Perre P, et al. Wood Particle/High-Density Polyethylene Composites: Thermal Sensitivity and Nucleating Ability of Wood Particles[J]. Journal of Applied Polymer Science,2009,113(1):593-600.
    [5]Borysiak S. Determination of nucleating ability of wood for non-isothermal crystallisation of polypropylene[J]. Journal of Thermal Analysis and Calorimetry,2007,88(2):455-462.
    [6]Klein C O, Spiess H W, Calin A, et al. Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response[J]. Macromolecules,2007,40(12):4250-4259.
    [7]Segal L, Creely J J, Mattin A E,et al. An empirical method for estimating the degree of crystallite of native cellulose using X-ray diffractometer[J]. Textile Research,1959,29(10):786-794.
    [8]李坚.木材波谱学[M].北京:科学出版社.2003:1-114.
    [9]Lei Y, Wu Q, Clemons C M, et al. Influence of nanoclay on properties of HDPE/wood composites[J]. Journal of applied polymer science,2007,106(6):3958-3966.
    [10]Yin J, Wang S, Zhang Y, et al. Isothermal crystallization kinetics of PP in PP/Mg(OH)2 composites[J]. Journal of Polymer Science Part B:Polymer Physics,2005,43(14):1914-1923.
    [11]Velasco J I, Saja J A D, Martinez A B. Crystallization behavior of polypropylene filled with surface-modified talc[J]. Journal of Applied Polymer Science,1996,61(1):125-132.
    [12]Cho K W, Li F K, Choi J. Crystallization and melting behavior of polypropylene and maleated polypropylene blends [J]. Polymer,1999,40(7):1719-1729.
    [13]Borysiak S. Determination of nucleating ability of wood for non-isothermal crystallisation of polypropylene[J]. Journal of Thermal Analysis and Calorimetry,2007,88(2):455-462.
    [14]Borysiak S, Doczekalska B. Influence of chemical modification of wood on the crystallisation of pofypropylene[J]. Holz als Roh-und Werkstoff,2006,64(6):451-454.
    [15]Bouza R, Marco C, Ellis G, et al. Analysis of the isothermal crystallization of polypropylene/wood flour composites[J]. Journal of thermal analysis and calorimetry,2008, 94(1):119-127.
    [16]Arroyo N, Lopez-Manchado M A, AvalosF. Crystallization kinetics of polypropylene.2. Effect of the addition of short glass fibres[J]. Polymer,1997,38(22):5587-5593.
    [17]Velasco J I, Saja J A D, Martinez A B. Crystallization behavior of polypropylene filled with surface-modified talc[J]. Journal of Applied Polymer Science,1996,61(1):125-132.
    [1]Kositchaiyong A, Rosarpitak V, Prapagdee B, et al. Molecular characterizations, mechanical properties and anti-algal activities for PVC and wood/PVC composites containing urea-and triazine-based algaecides[J]. Composites Part B:Engineering,2013,53:25-35.
    [2]Srubar Ⅲ W v, Frank C W, Billington S L. Modeling the kinetics of water transport and hydroexpansion in a lignocellulose-reinforced bacterial copolyester[J]. Polymer,2012,53(11): 2152-2161.
    [3]Tamrakar S, Lopez-Anido R A. Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties[J]. Construction and Building Materials,2011,25(10): 3977-3988.
    [4]Cheng Q, Wang J, Shaler S M. Mechanical performances of wood polypropylene composite due to extended moisture immersion[J]. Journal of Thermoplastic Composite Materials,2009,22(3): 321-333.
    [5]Bledzki A K, Faruk O. Creep and impact properties of wood fibre-polypropylene composites: influence of temperature and moisture content[J]. Composites Science and Technology,2004, 64(5):693-700.
    [6]Beaucage G, Rane S, Schaefer D W, et al. Morphology of polyethylene-carbon black composites[J]. Journal of polymer science Part B:polymer physics,1999,37(11):1105-1119.
    [7]Espert A, Vilaplana F, Karlsson S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties[J]. Composites Part A:Applied science and manufacturing,2004,35(11): 1267-1276.
    [8]Shi S Q. Diffusion model based on Fick's second law for the moisture absorption process in wood fiber-based composites:is it suitable or not?[J]. Wood science and technology,2007,41(8): 645-658.
    [9]Ghazanfari A, Emami S, Tabil L G, et al. Thin-layer drying of flax fiber:1. Analysis of modeling using Fick's second law of diffusion[J]. Drying technology,2006,24(12):1631-1635.
    [10]Islam M S, Pickering K L, Foreman N J. Influence of hygrothermal ageing on the physico-mechanical properties of alkali treated industrial hemp fibre reinforced poly lactic acid composites[J]. Journal of Polymers and the Environment,2010,18(4):696-704.
    [11]Srubar Ⅲ W V, Pilla S, Wright Z C, et al. Mechanisms and impact of fiber-matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites[J]. Composites Science and Technology,2012,72(6):708-715.
    [12]Wang W, Sain M, Cooper P A. Study of moisture absorption in natural fiber plastic composites [J]. Composites science and technology,2006,66(3):379-386.
    [13]Marcovich N E, Reboredo M M, Aranguren M I. Moisture diffusion in polyester-woodflour composites[J]. Polymer,1999,40(26):7313-7320.
    [14]李东方.聚乙烯木塑复合材料性能影响因子与界面特性研究[D].北京林业大学,2013.
    [15]Crank J. The mathematics of diffusion[M]. Oxford university press,1979.
    [16]Wang W, Morrell J J. Water sorption characteristics of two wood-plastic composites[J]. Forest Products Journal,2004,54(12).
    [17]Almgren K M, Gamstedt E K, Berthbld F, et al. Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials[J]. Polymer Composites,2009,30(12):1809-1816.
    [18]Semeralul H O. Advancing the technology development for better quality wood plastic composites:process ability study[D]. Onrario:University of Ontario,2009.
    [19]Franco-Marques E, Mendez J A, Pelach M A, et al. Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers[J]. Chemical Engineering Journal,2011,166(3):1170-1178.
    [20]Turku I, Karki T. Reinforcing wood-plastic composites with macro-and micro-sized cellulosic fillers:Comparative analysis[J]. Journal of Reinforced Plastics and Composites,2013,32(22): 1746-1756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700