用户名: 密码: 验证码:
太阳能辅助燃煤发电系统耦合机理与热力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能降耗是我国的长期基本国策。作为全国煤炭消耗大户,火力发电厂的节能任务意义重大。太阳能辅助燃煤一体化发电系统是在常规燃煤机组设计框架的基础上,合理集成太阳能热利用系统的发电技术,为火电机组的技术节能和太阳能大规模利用提供了方向。本学位论文依托国家自然科学基金项目“太阳能与化石燃料一体化发电系统耦合机理与热力特性研究”等科研任务,原创性地提出太阳能辅助燃煤发电系统,并以此为核心,开展了以下研究:
     进行了利用抛物面槽式集热器收集太阳能热量,与燃煤机组集成为太阳能辅助燃煤发电系统的研究。探讨了影响DSG集热器热效率的因素并进行了分析。考虑沿着流体流动方向温度的变化,建立了集热器稳态传热模型;对集热器内流体流动压降的计算和影响因素进行了研究。
     探讨了太阳能热发生系统与燃煤发电系统之间能量流、物质流的不同耦合方式及典型组态。
     基于燃煤机组的变工况理论,建立了一体化发电系统拓扑结构与参数的综合集成优化模型,并利用热力学第一定律、第二定律(火用方法)和火用经济学方法对一体化发电系统进行热力性能分析与计算,探讨了不同集成方式、太阳能集热器场不同热力参数、燃煤机组容量大小及其是否进行结构变动等因素对一体化发电系统经济性能的影响,总结了一体化发电系统的集成规律;研究了外部键系数的计算方法,进行了不同容量燃煤机组不同流的外部键系数计算,基于火用的不等价性,探讨了太阳能辅助燃煤一体化发电系统的耦合机理。
     建立了一体化发电系统的热力性能分析模型。分析了一体化发电系统的热力性能并计算了在我国拉萨、呼和浩特地区一体化发电系统的热发电成本。结果表明:在与国产300MW燃煤机组集成为一体化发电系统时,拉萨地区的太阳能热发电成本为:0.57元/kW·h;如与国产600MW燃煤机组集成,呼和浩特地区的太阳能热发电成本为:0.750元/kW·h。在我国存在与其他可再生能源发电技术发电成本基本相当的区域。太阳能辅助燃煤一体化发电技术为我国燃煤机组的技术节能和太阳能资源的规模利用开辟了一条新的途径,具有良好的发展前景。
Energy conservation & consumption reduction is one of the long-time basic national policies in China.As the annual coal consumption in coal-fired plants accounts for much of the whole coal consumption in the country,energy conservation & consumption reduction in them plays a significant role.Solar supported coal-fired electric generation(SSCEG) system,which is based on the design framework of a conventional coal-fired generation unit,integrates a solar thermal utilization system into the coal-fired generation system.It opens a way for energy conservation technically in coal-fired power plants and for large-scale utilization of solar energy. Supported by some scientific tasks including the National Natural Science Foundation of China named as "Research on Coupling Mechanisms & Thermal Characters of the Integrated Thermal Electric Generation System Combined by Solar Energy and Fossil Fuel" and others,the SSCEG system has been put forward originally in this dissertation.And the work carried out in this dissertation all takes this SSCEG system as the core.The main work is as follows:
     Firstly,parabolic trough solar collectors are used to collect solar energy in a SSCEG system.The factors affecting the thermal efficiency of a DSG collector was discussed and analyzed.And the stable thermal conduction model was established as fluid temperature changes along fluid flowing.The calculation and the affecting factors of fluid flowing pressure drops through the collector absorber pipe were studied.
     Integration schemes of energy fluxes and mass flows between solar utilization subsystem and coal-fired generation subsystem were put forward.And some typical SSCEG systems were given.
     Based on the varying operation theories of the coal-fired plant,the integration model of optimizing topological structure and parameters of a SSCEG system was set up.And the thermal performance of the optimum SSCEG system was analyzed and calculated by applying the theory of the first law,the second law and thermo-economic analysis method on it individually.Then the effects on economic performance of integration scheme,thermal parameters of the solar field,capacity of the coal-fired power unit and whether the structure of the coal-fired unit changing or not were discussed.Finally,integration rules were summarized.Calculation method of coefficient of extemal bonds(CEB) was discussed,and the CEBs of different flows in different coal-fired units were obtained.Then the coupling mechanism of the SSCEG was researched based on the non-equivalence performance of exergy.
     Thermodynamic analysis model of a SSCEG system was set up.Then the thermal performance of the SSCEG system was analyzed and its unit electricity generation cost was calculated by applying the model in Lhasa and Hohhot in China.And the results show that,in Lhasa,the solar thermal electricity generation cost of the SSCPG system integrated with the national 300MW coal-fired generation is 0.57¥/kW·h.And it is 0.75¥/kW·h when integrated with the national 600MW units in Hohhot.There exist regions where the electricity generation cost of using solar thermal is equivalent to that of using other renewable energy in China.So the SSCEG technology is a promising way for energy conservation technically of cola-fired power plants and the large-scale utilization of solar energy in China.
引文
[1]D.Mills.Advances in solar thermal electricity technology.Solar energy,2004,76(1-3):19-31
    [2]Volker Quaschning.Technical and economical system comparison of photovoltaie and concentrating solar thermal power systems depending on annual global irradiation.Solar Energy,2004,77(2),171-178
    [3]F.Trieb,O.Langniβ,H.Klaiβ.Solar electricity generation-a comparative view of technologies,costs and environmental impact.Solar energy,1997,59(1-3):89-99
    [4]T.Tsoutsos,V.Gekas,K.Marketaki.Technical and economical evaluation of solar thermal power generation.Renewable Energy,2003,28(6):873-886
    [5]Helmut KlaiB,Ralner Kohne,Joachim Nitsch & Sprengel.Solar thermal power plants for solar counties-technology,economies and market potential.Applied Energy,1995,52(2-3):165-183
    [6]F.Trieb.Competitive solar thermal power stations until 2010- the challenge of market introduction.Renewable Energy,2000,(19):163-171
    [7]F.Trieb,J.Nitseh.Recommendations for the market introduction of solar thermal power stations.Renewable Energy,1998,14(1-4):17-22
    [8]N.Singh,S.C.Kaushik,R.D.Misra.Exergetic analysis of a solar thermal power system.Renewable Energy,2000,19(1-2):135-143
    [9]S A.Kalogirou.Solar thermal collectors and applications.Progress in Energy and Combustion Science,2004,30(3):231-295
    [10]Jennifer A.Maitin.A total fuel cycle approach to reducing greenhouse gas emissions:solar generation technologies as greenhouse gas offsets in U.S.utility systems.Solar Energy,1997,59(4-6):195-203
    [11]J(?)rg Schlaich,Rudolf Bergernamm & Wolfgang Schiel et al.Design of commercial solar updraft tower systems- utilization of solar induced.convective flows for power generation.Journal of Solar Energy Engineering,2005,117(2)" 127-124
    [12]Omar H,Al-sakaf.Application possibilities of solar thermal power plants in Arab countries.Renewable energy,1998,14~(1-4):1-9
    [13]Solar thermal power 2020-exploiting the heat from the sun to combat climate change.Greenpeace
    [14]European Research on Concentrated Solar Thermal Energy,2004
    [15]Sargent & Lundy LLC Consulting Group.Assessment of parabolic trough and power tower solar technology cost and performance forecasts,2003.
    [16]Hank Price,Vahab hassani.Modular trough power plant cycle and systems analysis,2002.2
    [17]Hank Price,David Kearney.Parabolic-trough technology roadmap:A pathway for sustained commercial development and deployment of parabolic trough technology,1999
    [18]崔映红,陈娟.太阳能热混合发电系统综述.现代电力,2007,24(5):24-28
    [19]S.Beerbaum,G.Weinrebe.Solar thermal power generation in India-a techno-economic analysis.Renewable Energy,2000,21(2):153-174
    [20]U.Fisher,C.Sugarmen,A.Pdng,et al.Gas turbine "solarization"-Modifications for solar/fuel hybrid operation.Journal of Solar Energy Engineering,2004,126(3):872-878
    [21]洪慧.燃料化学能与物理能综合梯级利用的热力循环:[博士学位论文].北京:中国科学院工程热物理研究所,2004
    [22]R.Tamme,R.Buck,M.Epstein,et al.Solar upgrading of fuels for generation of electricity.Journal of Solar Energy Engineering,2001,123(2):160-163
    [23]A.Kribus,R.Zaibel,D.Carey,et al.A solar-driven combined cycle power plant.Solar Energy,1998,62(2):121-129
    [24]P.Schwarzb(o|¨)zl,R.Buck,C.Sugarmen,et al.Solar gas turbine systems:design,cost and perspectives.Solar Energy,2006,80(10):1231-1240
    [25]W.Yagoub,P.Doherty,S.B.Riffat.Solar energy-gas driven micro-CHP system for an office building.Applied Thermal engineering,2006,26(14-15):1604-1610
    [26]D.S.Bockamp,T.Griestop,M.Fruth,et al.Solar thermal power generation.
    [27]Alvaro Lentz,Rafael Almanza.Solar-geothermal hybrid system.Applied Thermal Engineering,2006,26(14-15):1537-1544
    [28]G J.Kolb.Economic evaluation of solar-only and hybrid power towers using molten-salt technology.Solar Energy,1998,62(1):51-61
    [29]Tom A.Williams,Mark S.Bohn,Henry W.Price.Solar thermal electric hybridization issues.International Solar Energy Conference,Maui,HI,1995
    [30]T.A.Williams.Characterization of alternative hybrid solar thermal electric systems.The 9~(th) solar paces symposium.Odeillo in France,1998,6
    [31]Jurgen Dersch,Michael Geyer,Ulf Herrmann,et al.Trough integration into power plants-a study on the performance and economy of integrated solar combined cycle systems.Energy,2004,29(5-6):947-959
    [32]Meehthild Horn,Heiner Fuhring,Jurgen Rheinlander.Economic analysis of integrated solar combined cycle power plants A sample ease:The economic feasibility of an ISCCS power plant in Egypt.Energy,2004,29(5-6):935-945
    [33]Mohamed A.H.EI-Sayed.Solar supported steam production for power generation in Egypt.Energy policy,2005,33(10):1251-1259
    [34]R.Hosseini,M.Soltani,G.Valizadeh.Technical and economic assessment of the integrated solar combined cycle power plants in Iran.Renewable Energy,2005,30(10):1541-1555
    [35]Manuel Romero,Reiner Buck,et.al.An.update on solar central receiver systems,projects,and technologies.Journal of Solar Energy Engineering,2002,124(2):98-108
    [36]Uri Fisher,Chemi Sugarmen,Arik Ring,et.al.Gas turbine “Solarizatio”-Modifications for solar/fuel hybrid operation.Journal of SOlar Energy Engineering,2004,126(3):872-878
    [37]Peter Sehwarzbozl,Reiner Buck,Chemi Sugarmen,et.al.Solar gas turbine systems:design,cost and perspectives.Solar Energy,2006,80(10):1231-1240
    [38]Heller,P.Pf(a|¨)nder,M.Denk,T.T(?)llez,F.Ring A,et al.Test and evaluation of a solar powered gas turbine system.Solar Energy,2006,80(10):1225-1230
    [39]C.Sugarmen,A.Rotstein,U.Fisher,J.Sinai.Modification of gas turbines and operation with solar produced syngas.Journal of Solar Energy Engineering,2004,126(3):867-871
    [40]Rainer Tamme,Reiner Buck,Michael.Epstein,et.al.Solar upgrading of fuels for generation of Electricity.Journal of Solar Energy Engineering,2001,123(2):160-163
    [41]Pamela L.Spath,Wade A.Amos.Using a concentrating solar reactor to produce hydrogen and carbon black via thermal decomposition of natural gas:feasibility and economics.Journal of Solar Energy Engineering,2003,125(5):159-I64
    [42]Fraenkel D,Levitan R,Levy M.A solar thermochemical pipe based on the CO_2-CH_4system.Int J Hydrogen Energy,1986,11(4):267-277
    [43]Bohmer M,Langnickel U,Sanchez M.Solar steam reforming of methane.Solar Energy Material,1991,24(1-4):441-448
    [44]Muir Jr J,Hogan R,Skocypec R,et al.Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish.I test and analysis.Solar Energy,1994,52(6):467-477
    [45]Scocypec Jr R,Hogan R,Muir J.Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish.Ⅱ modeling and analysis.Solar Energy,1994,52(6):479-490
    [46]Rachamim Rubin,Jacob Karni,Jacob yeheskel.Chemical kinetics simulation of.high temperature hydrocarbons reforming in a solar reactor Journal of Solar Energy Engineering,2004,126(8):858-866
    [47]Hui Hong,Hongguang jin,Balqian Liu.A novel solar-hybrid gas turbine combined cycle with inherent CO2 seperation using chemical-looping combustion by solar heat source.~Journal of Solar Energy Engineering,2006,128(3):275-276
    [48]Hong H,Jin H,Wang Z,et al.Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy.Solar Energy,2005,78(1):49-58
    [49]Jin H,.Sui J,Hong H,et al.Prototype of middle temperature solar receiver/reactor with parabolic trough concentrator.ASME Trans,Journal of Solar Energy Engineering,2007,129(4):378-381
    [50]何鹏,洪慧,金红光,等.低温太阳能与甲醇化学链整合能量释放机理实验初探.工程热物理学报,2007,28(2):181-184
    [51]洪慧,金红光,杨思.低温太阳能与化学链燃烧相结合控制CO_2分离动力系统:工程热物理学报,2006,27(5):729-732
    [52]Chenhua Gou,Ruixian Cai,Hui Hong.A novel hybrid oxy-fuel power cycle utilizing solar thermal energy.Energy,2007,32(9):1707-1714.
    [53]P.v.Zedtwitz,A.Steinfeld.The solar thermal gasification of coal-energy conversion efficiency and CO_2 mitigation potential.Energy,2003,28(5):441-456
    [54]Kodama T.High-temperature solar chemistry for converting solar heat to chemical fuels.Progress in Energy and Combustion Science,2003,29(6):567-597
    [55]Pamela L.Spath,Wade A.Amos.Using a.concentrating solar reactor to produce hydrogen and carbon black via thermal decomposition of natural gas:feasibility,and economics.Journal of Solar Energy Engineering,2003,125(2):159-164
    [56]Pyonf sik pak,Takeshi hatikawa,Yutaka Suzuki.A hybrid power generation system utilizing solar thermal energy with CO_2 recovery based on oxygen combustion method.Energy Convers,1995,36(6-9):823-826
    [57]Tsuji M,Wada Y,Tamaura Y.Coal gasification by the coal/CH_4-ZnO-H_2O solar energy conversion system.Energy Conversion and Management,1996,37(6-8):1315-1320
    [58]Stephan MOiler,Dario Kaucic,Chrisitian Sattler.Hydrogen production by solar reforming of natural gas:a comparison study of two possible process configurations.Journal of Solar Energy Engineering,2006,128(1):16-23
    [59]Pyong Sik Pak,Vutak Suzuki,Takanobu kosugi.A CO_2-capturing hybrid power-generation system with highly efficiency use of solar thermal energy.Energy,1997,22(2-3):295-299
    [60]Odeh S D,Behnia M,et al.Performance evaluation of solar thermal.electric generation systems.Energy Conversion and Management,2003,44(15):2425-2443
    [61]Ying You,Eric J.Hu.A medium-temperature solar thermal power system and.its efficiency optimization.Applied Thermal Engineering,2002,22(4):357-364
    [62]Y.You,E.J.Hu.Thermodynamic advantages of using solar energy in the regenerative Rankine power plant.Applied Thermal Energy,1999,19(11):1173-1180
    [63]W.Yagoub,EDoherty,S.B.Riffat.Solar energy-gas driven micr0-CHP system for an office building.Applied Thermal Engineering,2006,26(14-15):1604-1610
    [64]Gregory J.Kolb.Evaluation of power production from the solar electric generating systems at Kramer Junction:1988 to 1993
    [65]R.Almanza,A.Lentz.Electricity production at low powers by.direct steam generation with parabolic troughs.Solar Energy,1998,64(1-3):115-120
    [66]Hank Price,Eckhard L(u|¨)pfert.Advances in.parabolic trough solar power technology.Journal of Solar Energy Engineering,2002,124(5):109-125.
    [67]George C.Bakos.Design and construction of a two-axis Sun tracking system for parabolic trough collector(PTC) efficiency improvement.Renewable Energy,2006, 31(15):2411-2421
    [68]G.C.Bakos,I.Ioannidis,N.F.Tsagas,et al.Design,optimization and conversion-efficiency determination of a line-focus parabolic-trough solar Collector(PTC).Applied Energy,2001,68(1):43-50
    [69]Allan Lewandowski,David Simms.An assessment of linear Fresnel lens concentrators for thermal applications.Energy,1987,12(3-4):333-338
    [70]David R.Mills,Graham ~Morrisom,John Pye,et al.Multi-tower line focus Fresnel array project.Journal of Solar Energy Engineering,2006,128(2):118-120
    [71]A.B.Larbi.A new design of a(3D) Fresnel collector with fixed mirrors and tracking absorber.Journal of Solar Energy Engineering,2000,122(5):63-68
    [72]David R.Mills,Grah-am L.Morrison.Compac.t linear Fresnel reflector solar thermal power plants.Solar Energy,2000,68(3):263-283
    [73]Soteris A.Kalogirou.Solar thermal collectors and applications.Progress in Energy and Combustion Science,2004,30(3):231-295
    [74]M.Eck,W.-D.Steinmann.Direct steam generation in parabolic troughs:first results of the DISS project.Journal of Solar Energy Engineering,2002,124(2):134-139
    [75]Eduardo Zarza,Loreto Valenzuela,Javier Le6n,et al.Direct steam generation in parabolic troughs:Final results and conclusions of the DISS project.Energy,2004,29(5~6):635-644
    [76]Eduardo Zarza,M Esther Rojas,Lourdes Gonz(?)lez,et al.INDITEP:the first pre-commercial DSG solar power plant.Solar Energy,2006,80(10):1270-1276
    [77]Nikolaus Benz,Markus Eck,Thomas Kuckelkorn,et al.Development of receivers for the DSG process.SolarPACES 2006 A2-S6
    [78]Vernon E.Dudley,Gregory J.Kolb,Michael Sloan,et al.Test results SEGS LS-2 solar collector,1994
    [79]ODeh S D,Morrison.G L,Behinia M.Modeling of parabolic trough direct steam generation solar collectors.Solar Energy,1998,62(6):394-406
    [80]Odeh S D,Behnia M,Morrison G L.Hydrodynamic analysis of direct steam generation solar collectors.Journal of Solar Energy Engineering,2000,122(2):14-22
    [81]李明,夏朝凤.槽式聚光集热系统加热真空管的特性及应用研究.太阳能学报,2006,27(1):90-95
    [82]Rafael Almanza,Gustavo Jim(?)nez,Alvaro Lentz.DSG under two-phase and stratified flow in a steel receiver of a parabolic.trough collector.Journal of Solar Energy Engineering,2002,124(2):140-144
    [83]Iv(?)n Mart(?)nez,Rafael Almanza.Experimental and theoretical analysis of analysis two-phase flow regimen in direct steam generation for a low-power system.Solar Energy,2007,81(2):216-226
    [84]Sivan Natan,Davora Barnea,Yehuda Taitel.Direct steam generation in parallel pipes.International Journal of Multiphase Flow,2003,29(11):1669-1683
    [85]Goebel O.Modelling of two-phase stratified an annular flow inheated horizontal tubes.Proc.of Int.Engineering Foundation 3~(rd) Conf.,Irsee,Germany,1997
    [86]Markus Eck,Wolf-Dieter Steinmarm,J(u|¨)rgen Rheinl(a|¨)nder.Maximum temperature difference in horizontal and tilted absorber pipes with direct steam,generation.Energy,2004,29(5-6):665-676
    [87]M.Eck,E.Zarza,M.Eickhoff.et al.Applied research concerning the direct.steam generation in parabolic troughs.Solar Energy,2003,74(4):341-351
    [88]Uri Minzer,Dvora Barnea,Yehuda Taitel.Flow rate distribution in evaporating parallel pipes-modeling and experimental.Chemical Engineering Science,2006,61(22):7249-7259
    [89]Oguz Salim Sogut,Ahmet Durmayaz.Performance optimization of a.driven heat engine with finite-rate heat transfer.Renewable Energy,2005,30(9):1329-1344
    [90]L.Valenzuela,E.Zarza,M.Berenguel.Control scheme for direct steam generation in parabolic troughs under recirculation operation mode.Solar Energy,2006,80(1):1-17
    [91]Markus Eck,Tobias Hirsch.Dynamics and control of parabolic trough collectors loops with direct steam generation,Solar Energy,2007,81(2):268-279
    [92]Loreto Valenzuela,Eduardo Zarza,Manuel Berenguel.Control concepts for direct steam generation in parabolic troughs.Solar Energy,2005,78(2):301-311
    [93]M.Eck,W.-D.Steinmann.Modelling and design of direct solar steam generating collector fields.Journal of Solar Energy Engineering,2005,127(3):371-380
    [94]Volker Quaschning,Rainer Kistner,Winfried Ortmanns.Influence of direct normal irradiance variation on the optimal parabolic trough field size:a problem solved with technical and economical simulations.Journal of Solar Energy Engineering,2002,124(2):160-164
    [95]M.Eck,E.Zarza.Saturated steam process with direct steam generating parabolic.troughs.Solar Energy,2006,80(11):1424-1433
    [96]Stoddard,M.,Fass S.,Chiang C.,Dirks J.Solargy -a computer code for calculating the annual energy from central receiver power plants,SAND86-8060,Sandia National Laboratories,Livermore,CA,Mat 1987
    [97]Lippke,F.Simulation of the part-load behavior of a 30 MWe SEGS plant.SAND95-1293,Sandia National Laboratories,Albuquerque,NM,1995
    [98]王柄忠.中国太阳能资源利用区划.太阳能学报,1983,4(3):221-228
    [99]王志峰,童春辉.中国太阳能热利用战略研究报告,2004,3
    [100]崔映红,杨勇平.蒸汽直接冷却槽式太阳能集热器的传热流动性能研究.太阳能学报,2009,30(3):304-310
    [101]林宗虎.气液两相流和沸腾传热.西安:西安交通大学出版社,1987.176-181
    [102]傅秦生编著.能量系统的热力学分析方法.西安:西安交通大学出版社,2005.100-135
    [103]王加璇,张恒良编.动力工程热经济学.北京:水利电力出版社,1995.54-57
    [104]李振全,尹艳山,张国妮等.我国电站锅炉热力计算方法应用的现状.锅炉技术,2006,37(3):41-44
    [105]沈士—等主编.汽轮机原理.北京:中国电力出版社,1998,130-198
    [106]ZHANG Chunfa,CUI Yinghong,et al.Proof for part of the Sttla flow experimental conclusion and the improvement of Fl(u|¨)gel formula.Science in China(series E),2002,45(1):35-46
    [107]崔映红,张春发,周兰欣.在线监测中机组运行基准工况的确定.动力工程,2004,24(2):298-302
    [108]崔映红,张春发,丁千玲.汽轮机排汽焓的在线计算及末级的变工况特性.汽轮机技术,2002,44(3):171-173
    [109]崔映红,张燕敏,陈付军.火电厂热力系统级的划分方法研究.汽轮机技术,2006,48(6):407-409
    [110]纪连恩,韩中合,张燕敏,崔映红.热电厂热经济指标的简化算法.汽轮机技术,2009,51(2):91-93,150
    [111]田钧,车雪让.捷制500MW机组高加停运对汽轮机的影响.山西电力技术,1993,13(2):29-34
    [112]张燕.给水泵汽轮机的运行特性及热经济性分析:[硕士学位论文].保定:华北电力大学,2006
    [113]张春发,张素香,崔映红等.现行电力系统热经济性状态方程.工程热物理学报,2001,22(6):665-667
    [114]阎顺林,张春发,李永华等.火电机组热力系统汽水分布通用矩阵方程.中国电机工程学报,2000,20(8):69-73
    [115]中国动力工程学会.火力发电设备技术手册-汽轮机.北京:机械工业出版社,1999
    [116]YANG YongPing,-CUI YingHong,HOU HongJuan.Research on solar aided coal-fired power generation system and performance analysis.Science in China Series E:Technological Sciences,2008,51(8):1211-1221.
    [117]崔映红,陈娟.太阳能与燃煤机组集成方案的经济性研究.华北电力大学学报;2009,36(1):69-75
    [118]崔映红,杨勇平,张明智.太阳能-煤炭互补的发电系统与互补方式.中国电机工程学报,2008,28(5):102-107
    [119]哈尔滨汽轮机厂.N300-16.7/537/537型汽轮机热力特性.1992年
    [120]张恒良.热经济学结构系数法及其应用.华北电力学院学报,1992,3:58-63
    [121]程伟良,王清照,王加璇.300MW 凝汽机组的热经济学成本诊断.中国电机 工程学报,2005,25(8):126-129
    [122]张晓东,高波,王加璇.热经济学结构理论与LIFO法则应用研究.中国电机工程学报,2003,23(6):185-189
    [123]张春发,崔映红.基于流图理论的热力系统火用经济性分析.系统工程学报,2002,17(3).137-142
    [124]张超,刘黎明,陈胜等.基于热经济学结构理论的热力系统性能评价.中国电机工程学报,2005,25(24):108-113
    [125]朱明善.能量系统的火用分析.北京:清华大学出版社,1988.180-188
    [126]崔映红,杨勇平,杨志平,侯宏娟,郭喜燕.太阳能辅助燃煤—体化热发电系统耦合机理.中国电机工程学报,2008,28(29):99-104
    [127]舒海静,李永安,许开颜.济南地区太阳能发电资源潜力分析.制冷与空调,2005,19(1):68-70
    [128]东方汽轮机厂.N200-12.7/535/535型汽轮机热力特性书.1998
    [129]哈尔滨汽轮机厂.N600-16.7/537/537型汽轮机热力特性书.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700