用户名: 密码: 验证码:
太阳能热气流发电系统的热动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文基于太阳能热气流发电系统内流动与传热过程的热力学理论,对Helio-Aero-Gravity效应(简称为HAG效应)、结构参数对系统流动与传热特性的影响、带蓄热层的系统流动与传热特性以及负载条件下系统流动与传热特性进行了系统的分析与研究,取得如下一些有意义的研究成果。
     (1)对太阳能热气流发电系统不同区域的热力过程进行了分析,重新建立了系统的热力学循环,提出了能量利用度的概念,建立了系统的实际循环效率、理想循环效率以及系统不同部件的火用效率模型。太阳能热气流发电系统循环是一个Brayton循环。烟囱既具有提高系统效率的作用,同时又需要耗费大量的工质能量,这导致系统的循环效率远小于相同增压比的标准Brayton循环效率。此外,kW级小规模系统集热棚的火用效率较高而烟囱火用效率较低;而相比较而言,200MW大规模发电系统集热棚的火用效率显著减小而烟囱火用效率显著增大。
     (2)对太阳能热气流发电系统的HAG效应作了进一步分析。提出了一个更完善的模型以衡量太阳能热气流发电系统的性能,进一步考虑了太阳辐射和几何参数对系统相对压力、抽力、输出功率以及效率的影响。以西班牙模型为实例,数值模拟结果与理论分析模型预测结果具有良好的一致性。
     (3)对空载条件下太阳能热气流发电系统进行了流动与传热数值模拟,得到系统的温度场、速度场和压力场。结果表明:集热棚半径、烟囱高度、烟囱形状等几何参数均对系统内的传热与流动特性具有重要影响。之后,设计了一种螺旋集热式太阳能热气流发电系统并对其进行数值模拟,数值模拟结果表明:采用螺旋集热式太阳能热气流发电系统比常规的太阳能热气流发电系统更具有经济性和商业优势。
     (4)建立了包含蓄热层的太阳能热气流发电系统的流动与传热数学模型,并对包含蓄热层的太阳能热气流发电系统进行耦合数值模拟。计算结果表明:多孔蓄热层对太阳能热气流发电系统流动与传热特性的影响非常显著;多孔蓄热层具有热惯性,采用较高导热系数和热容量的多孔蓄热层对于提高系统发电连续性、调整系统发电峰谷差、提高系统能量利用度具有重要作用。
     (5)建立了包含透平、集热棚和烟囱的太阳能热气流发电系统的传热与流动数学模型,并对负载条件下不同规模的太阳能热气流发电系统进行传热与流动耦合数值模拟。计算表明:系统输出功率和能量转换效率随透平转速的变化存在一个极大值,系统流量和温度随透平转速的变化也比较显著。本论文提出的数值模拟方法为负载条件下太阳能热气流发电系统的进一步研究提供了有益的参考。
     (6)构建了小型太阳能热气流发电实验装置,测定了系统的温度随时间和空间的分布,测定了烟囱内的速度随时间的变化关系。实验结果表明集热棚内温度分布以及季节对系统的影响均与理论分析相一致。
On the basis of thermodynamic theory for flow and heat transfer in the solar chimney power plant system, systematic investigations to the Helio-Aero-Gravity Effect (HAG Effect), effects of geometric size on the flow and heat transfer characteristics, effects of energy storage medium and turbine on the system performance are made in this dissertation, with some useful results obtained as follows:
     (1) An analysis of the thermodynamic processes in different regions of the solar chimney is carried out, in which the thermodynamic cycle of the system is rebuilt, the concept of energy utilization degree is put forward, and the mathematical models of practical and ideal efficiencies of the cycle and exergy efficiencies of different parts of the system are established. It is a Brayton cycle in the solar chimney power plant systems. High chimney is used to increase the efficiency of the system, but a great deal of heat energy will be lost when the working fluid passes through the chimney, which results in a much lower thermal efficiency of the system compared with that of the ideal Brayton cycle of the same pressure ratio. In addition, the kW-graded solar chimneys have a comparatively higher exergy efficiency of the collector and a lower one of the chimney, while the exergy efficiency of the collector decreases and that of the chimney increases significantly for the large scale systems with the output power about 200MW.
     (2) A further investigation to the Helio-Aero-Gravity Effect of the solar chimney power plant is producted. A more comprehensive model is advanced to evaluate the performance of the solar chimney power plant system, in which the effects of various parameters on the relative static pressure, driving force, power output and efficiency have been further investigated. Using the solar chimney prototype in Manzanares, Spain, as a practical example, the numerical studies are performed to explore the geometric modifications on the system performance, which show reasonable agreement with the analytical model.
     (3) Numerical simulation of the solar chimney power plant system with no load conditions is carried out. From the simulation results of the temperature, velocity and pressure distributions, we can find that the geometry parameters such as collector radius, chimney height and shape have significant effect on the flow and heat transfer characteristic of the solar chimney power plant systems. Furthermore, a new helix-collector solar chimney power plant system is designed, and the simulation results of this new model show that helix-collector solar chimney power plant system has economical and commercial advantages over the traditional solar chimney systems.
     (4) A set of more comprehensive mathematical models for the solar chimney power plant system including energy storage layer is established, and conjugate numerical simulations of the solar chimney power plant system with energy storage layer under no load conditions are carried out. The numerical results show that energy storage medium has thermal inertia and also has remarkable effects on the heat transfer and flow characteristic of the system, and that the adoption of energy storage medium with comparatively higher heat conductivity and heat capacity will be helpful to improve the continuity of power output, to modulate the difference of output power during the day and night, and to increase the energy utilization degree of the system.
     (5) A set of mathematical models to explore the performance of the solar chimney power plant systems coupled with turbine is also founded and conjugate numerical simulation on different sizes of the systems is carried out. Numerical simulation results show that, with the increase the turbine rotation speed, both output power and efficiency of the turbine have their maximum values, and that the mass flow rate of the system and temperature of the chimney outlet vary remarkably. The numerical simulation method put forward in this dissertation could give a useful reference to a further investigation of the solar chimney power plant systems coupled with turbines.
     (6) A minitype solar chimney power plant prototype has been built up, temperature distribution of the system with the time and space and the variation of chimney velocity with time have been measured. The experimental data show that temperature distribution inside the collector and the effects of season on the performance of the system are in great agreement with the theoretical analysis.
引文
[1] Melissa AD, Janssens K, Brendebach B. Confocalμ-XRF,μ-XAFS, andμ-XRD studies of sediment from a nuclear waste disposal natural analogue site and fractured granite following a radiotracer migration experiment. AIP Conf. Proc. 2007, 882: 187 -189.
    [2] Jonathan C. Nuclear waste disposal in space: BEP's best hope? AIP Conf. Proc. 2006, 830: 600-604.
    [3] Roedder K, Formation H. Storage and disposal of nuclear wastes. Journal of Geobogical Education, 1990, (3):78-80.
    [4] Chapman NA. Mckinley IG. The geological disposal of nuclear waste. London:Wiley & Sons, 1999.
    [5] Rodney CE, William JW, Jie L. Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and "minor" actinides. J. Appl. Phys. 2004, 95: 5949-5971.
    [6] Hunsche UDO, Andreas H. Rock salt-the mechanical properties of the host rock material for a radioactive waste repository, Engineering Geology, 1999, 52: 271–291.
    [7]栾伟玲,涂善东.温差电技术的研究进展.科学通报. 2004, 49(11):1011~1019.
    [8] Nuwayhid RY, MoukalledF. Evolution of power and entropy in a temperature gap system with electric and thermoelectric influences. Energy Conversion Management. 2003, 44:647-665.
    [9] Hongxia X, Lingai L, Gilles F. Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 2007, 11(5): 923-936.
    [10] Iraídes ACV, JoséLS. Ecological efficiency in thermoelectric power plants. Applied Thermal Engineering, 2007, 27(5-6): 840-847.
    [11] Inui Y, Ito H, Ishida T. Two dimensional simulation of closed cycle disk MHD generator considering nozzle and diffuser. Energy Conversion and Management, 2004, 45(13-14): 1993-2004.
    [12] Nobuhiko H, Yoshitaka I, Motoo I, et al. Effects of installed system dumping resistors on stability of open cycle disk type MHD generator connected to power transmission line. Energy Conversion and Management, 2001, 42(10): 1191-1203.
    [13] Nobuhiko H, Yoshitaka I, Motoo I, et al. Stability of open-cycle MHD generation system connected to power transmission line. Energy Conversion and Management, 1998, 39(11): 1181-1192.
    [14] Matsuo T, Ishikawa M, Umoto J. Stability of open-cycle supersonic disk MHD generator. Energy Conversion and Management, 1997, 38(3), 287-300.
    [15] Carlo AA, Wilson G, Caesar S. Crosstalk between two-photon and two-color (two-photon) excitation in optical beam induced current generation with two confocal excitation beams. Optics Communications, 2007, 270(2): 139-144.
    [16] Rapoport YG., Gotynyan OE, Ivchenko VN, Hayakawa M, et al. Modeling electrostatic-photochemistry seismoionospheric coupling in the presence of external currents. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(4-9): 437-446.
    [17] Kelly BD, Laquil DP. Solar central receiver technology advancement for electric utility operation. Summary Report, Bechtel National Inc., December 1989.
    [18] Fisch MN. Solar thermal energy in Ulmann’s encyclopedia of industrial chemistry. 5th edition. VCH Verlaggsgesellschaft mb, Weinheim. 1993.
    [19] Tyner C, Kolb GJ, Meinecke W, Trieb F. Concentrating solar power in 1999. Paris: IEA, 1998.
    [20]王长贵,崔容强,周篁.新能源发电技术.北京:中国电机出版社,2003.
    [21]王亦楠.对我国发展太阳能热发电的一点看法.中国能源,2006,28(8):5-10.
    [22] Cohen G, Kearney DW, Cable RG. Recent improvement and performance experience at the Kramer Junction SEGS plants presented at Solar 1996. San Antonio, TX, 1996:479-485.
    [23] BMU,Bundesministerium FM, Nutruschutz und Reaktorsicherheit. Erneuerbare Energien under Nachhaltig Entwichlung. Referatǒfferntlichkeitsarbeit. Postfach 120629, 53408 Bonn, July 1999.
    [24] Holl RJ. Status of solar thermal electric technology. Electricity Power Research Institute. Report EPRI GS-6573, December 1989.
    [25] Blezinger H. Continuous operation of a Dish/Stirling field on the plataforma solar dealmeria. UN-ECEWorkshop on Renewable Sources of Energy, May 1994.
    [26] Kaneff S. Solar Thermal Power-a Historical, Technical and Economic Overview. Solar '96, Conference of the Australian and New Zealand Solar Energy Society, 1996.
    [27] Kaneff S. A 400m2 Aperture Power Dish. Solar '97, Conference of the Australian and New Zealand Solar Energy Society, 1997.
    [28] Cicak MJ. 100MW production PV plant. Renewable Energy. 1998, 15:66-71.
    [29] Jing LQ, Sun XJ, Shang J, et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Solar Energy Materials and Solar Cells. 2003, 79(2): 133-151.
    [30] JinKook L, Katsuhiko F, Tetsuo T, MiRa K. Synthesis and photovoltaic properties of soluble fulleropyrrolidine derivatives for organic solar cells. Solar Energy Materials and Solar Cells. 2007, 91(10): 892-896
    [31] Shingo N, Masanori T, Takashi M, Hideyuki T, Yoshihiro H. Evaluation of the impact of solar spectrum and temperature variations on output power of silicon-based photovoltaic modules. 2006,90(20):3568-3575
    [32] Taylor WP. Solar powerplant and still. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference - IECEC '90, 1990, 5:152-155.
    [33] Bassey MW. Influence of chimney configuration on temperatures in a solar crop dryer. ENERGEX '82, A Forum on Energy Self-Reliance: Conservation, Production and Consumption, Conference Proceedings (8th Annual Conference of Solar EnergySociety of Canada). 1982: 862-867.
    [34] Barbera S, Cammarata G, Margani L, et al. Performance analysis of typical mediterranean buildings retrofitted with solar chimney. Passive and Low Energy Ecotechniques, Proceedings of the Third International PLEA Conference. 1985: 879-888.
    [35] Barrozzi GS, Imbabi MSE, Nobile E, et al. Physical and numerical modeling of a solar chimney-based ventilation system for buildings, Building Environ. 1992, 27(4):433-445.
    [36] Schlaich J, Mayr G, Haaf W. Aufwindkraftwerke-Die demonstrationsanlage in MANZANARES/SPANIEN. (Upwind Power Plants-The Demostration Plant in Manzanares, Spain). Proceedings of the National Conference on Power Transmission. 1980, 97-112.
    [37] Robert R. Spanish solar chimney nears completion. MPS Review. 1981, 6: 21-23.
    [38] Robert R. Solar prototype development in Spain show great promise. MPS Review. 1982, 2: 21-23.
    [39] Robert R. Hot air starts to rise through Spain’s solar chimney. Electrical Review. 1982, 210(15): 26-27.
    [40] Schlaich J. Solar chimneys. Periodica 1983, 3: 45.
    [41] Schlaich J. The Solar Chimney. Edition Axel Menges. Stuttgart, 1995.
    [42] Haaf H, Friedrich K, Mayer G, Schlaich J. Solar chimneys, Part a: Principle and construction of the pilot plant in Manzanares. Int. J. of Solar Energy, 1983, 2:3-20.
    [43] Schlaich J, Mayr G, Friedrich K. Solar chimneys - the concept, the prototype in spain prospects for the future. 2nd ASME Wind Energy Symposium. Presented at 6th Annual Energy-Sources Technology Conference and Exhibition. 1983: 59-66.
    [44] Haaf H. Solar chimneys, Part b: Preliminary test results from the Manzanares pilot plant. Int. J. of Solar Energy 1984, 2:141.
    [45] Castillo MA. A new solar chimney design to harness energy from the atmosphere.Spirit of Enterprise: the 1984 Rolex Awards, Aurum, London. 1984: 58-59.
    [46] Lautenschlager H, Haff H, Schlaich J. New results from the solar-chimney prototype and conclusions for larger plants. European Wind Energy Conference Hamburg. 1984: 231-235.
    [47] Krisst RJK. Energy Transfer System. Alternative Sources of Energy. 1983, 63: 8-11.
    [48] Kulunk H. A prototype solar convection chimney operated under Izmit conditions. Veziroglu TN, editors. Prod. 7th MICAES (Proceedings of the 7th Miami International Conference on Alternative Energy Sources), 1985:162.
    [49] Sherif SA, Pasumarthi N, Harker, RA, et al. Performance of a demonstration solar chimney model for power generation. Final Technical Report No. UFME/SEECL-9507, Solar Energy and Energy conversation Laboratory, Department of Mechanical Engineering, University of Floarida, Gainesville, Florida. 1995.
    [50] Pasumarthi N, Sherif SA. Performance of a demonstration solar chimney model for power generation. Proceedings of the 35th Heat Transfer and Fluid, Sacrmento, CA, USA. 1997: 203-240.
    [51] Pasumarthi N, Sherif SA. Experimental and Theoretical Performance of a Demonstration Solar Chimney Model-PartⅡ: Experimental and Theoretical Results and Economic Analysis. International Journal of Energy Research. 1998, 22: 443-461.
    [52] Gannon AJ, Backstrom TWV. Solar chimney cycle analysis with system loss and solar collector performance. Journal of Solar Energy Engineering. 2000, 122: 133-137.
    [53] Backstrom TWV. The solar chimney air standard cycle. S. A. I. MechE R&D J. 2000, 16(1): 16-24.
    [54] Louis T. Optimizing collector efficiency of a solar chimney power plant. Proceedings of Melecon '85: Mediterranean Electrochemical Conference. Solar Energy. 1985, 4: 219-222.
    [55] Mullett LB. The solar chimney-overall efficiency, design and performance. Int. J. Ambient Energy. 1987, 8(1): 35-40.
    [56] Michaud LM. Thermodynamic cycle of the atmospheric upward heat convection process. Meteorol. Atmos. Phys. 2000, 72: 29-46.
    [57] Ninic N. Available energy of the air in solar chimneys and the possibility of its ground-level concentration. Solar Energy. 2006, 80(7): 804-811.
    [58] Lodhi MAK, Mulaiman YM. Helio-aero-gravity electric power production at low cost, Renewable Energy. 1992, 2(2): 183-189.
    [59] Sathyajith M, Geetha SP, Ganesh B, Jeeja CK. Helio-aero-gravity effect. Applied Energy. 1995, 51: 87-91.
    [60] Lodhi MAK. Application of helio-aero-gravity concept in producing energy and suppressing pollution. Energy Conversion & Management. 1999, 40: 407-421.
    [61] Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems-utilization of solar induced convective flows for power generation. Journal of Solar Energy Engineering. 2005, 127: 117-124.
    [62] Pretorius JP, Kroger DG. Solar chimney power plant performance. Journal of Solar Energy Engineering, Transactions of the ASME. 2006, 8:302-311.
    [63] Backstrom TWV, Fluri TP. Maximum fluid power condition in solar chimney power plants-an analytical approach. Solar Energy. 2006, 80(11): 1417-1423.
    [64] Kroger DG, Blaine D. Analysis of the driving potential of a solar chimney power plant. S. A. I. MechE R&D Journal. 1999, 15: 85-94.
    [65] Jacobs EW, Lasier DD. A theoretical analysis of solar-driven natural convection energy conversion system. Report DE84004431, Solar Energy Research Institute, Golden, CO.1984.
    [66] Lodhi MAK, Thermal collection and storage of solar energies. Proc. Int. Symp. Workshop on SiliconTechnology Development, eds Mufti A, Veziroglu TN. 1987, J1.
    [67] Bouchair A, Fitzgerald D. The optimum azimuth for a solar chimney in hot climates. Energy and Buildings. 1988, 12(2): 135-140.
    [68] Padki MM, Sherif SA. Fluid dynamics of solar chimneys. Forum on industrialApplications of Fluid Mechanics. 1988.
    [69] Padki MM, Sherif SA. Fluid dynamics of solar chimneys. Proc. ASME Winter Annual Meeting, Chicago, IL, FED-Vol.70. 1988, 43-46.
    [70] Padki MM, Sherif SA. An analytical model for Solar chimneys. Private Communications. 1989.
    [71] Padki MM, Sherif SA, Chan AB. Solar chimneys for power generation in rural areas. Seminar on Energy Conservation and Generation Through Renewable Resources, Ranchi, India. 1989, 91-96.
    [72] Yan MQ, Sherif SA, Kridli GT. Thermofluid analysis of solar chimneys. Industrial Applications of Fluid Mechanics. ASME FED 132. 1991, 125-130.
    [73] Padki MM, Sherif SA. A mathematical model for solar chimneys. Proc. 1992 Int. Renewable Energy Conf., Vol 1, MS Audi(Ed.), University of Jordan, Faculty of Engineering and Technology, Amman, Jordan. 1992, 289-294.
    [74] Padki MM, Sherif SA, Solar chimneys. McGraw-Hill Yearbook of Science and Technology, S.P. Parker(Ed.), McGraw-Hill, New York. 1993, 356-358.
    [75] Padki BF, Lindley MR, Colliver DG, Murphy WE. Thermal performance of three solar air heaters, Solar Energy. 1993, 51(6):467-479.
    [76] Pasumarthi N, Sherif SA. Experimental and theoretical performance of a demonstration solar chimney model-partⅠ: mathematical model development. International Journal of Energy Research. 1998, 22: 277-288.
    [77] Padki MM, Sherif SA, Solar chimneys for medium-to-large scale power generation. Proc. Manila Int. Symp. On the Development and Management of Energy Resource, vol 1. Manila, Philippines. 1989, 432-437.
    [78] Padki MM, Sherif SA. On a simple analytical model for solar chimneys. International journal of energy research. 1999, 23: 345-349.
    [79] Bernardes MADS. Thermal analysis of a solar chimney. MSC Dissertation, University federal de Minas Gerais, Belo Horizonte. 1997.
    [80] Bernardes MAS, Valle RM, Cortez MFB. Numerical anslysis of natural laminar convection in a radial solar heater. Int. J. Therm. Sci. 1999, 38: 42-50.
    [81] Bernardes MAS, Vob A, Weinrebe G. Thermal and technical analyzes of solar chimneys. Solar Energy. 2003, 75: 511-524.
    [82] Bernardes MAS. Technical economical and ecological analysis of the solar chimney power plant systems. Universitat Sttgart. 2004.
    [83] Serag-Eldin MA. Analysis of effect of geometric parameters on performance of solar chimney plants. Proceedings of the ASME Summer Heat Transfer Conference, v 3, Proceedings of the ASME Summer Heat Transfer Conference, HT 2005. 2005, 587-595.
    [84] Pastohr H, Kornadt O, Gurlebeck K. Numerical and aalytical calculations of the temperature and flow field in the upwind pwer plant. International Journal of Energy Research. 2004, 28: 495-510.
    [85] Ahmed B. Mathematical model of solar chimney and numerical solution. private communications.
    [86] Pretorius JP, Kroger DG. Critical evaluation of solar chimney power plant performance. Solar Energy. 2006, 80(5): 535-44.
    [87] Bilgen E, Rheault J. Solar chimney power plants for high latitudes. Solar Energy. 2005, 79(5): 449-58.
    [88] Herman C. Design of a solar chimney to generate electricity employing a convergent nozzle. Botswana technology centre, Private bag 0082, Gaborone, Botswana. 2000.
    [89] Backstrom TWV, Gannon AJ. Compressible flow through solar power plant chimneys. ASME J. Sol. Energy Eng. 2000, 122(3): 138-145.
    [90] Backstrom TWV, Gannon AJ. Calculation of pressure and density in solar power plant chimneys, ASME J. Sol. Energy Eng. 2002, 125(1): 127-129.
    [91] Backstrom TWV, Gannon AJ. Pressure drop in solar power plant chimneys. ASME J. Sol. Energy Eng. 2003, 125: 165-169.
    [92] Backstrom TWV. Calculation of pressure and density in solar power plant chimneys. ASME J. Sol. Energy Eng. 2003, 125: 127-129.
    [93] Kustrin I, Tuma M. Soncni dimnik. Strojniski Vestnik. 1985, 31(11):309-314.
    [94] Gannon AJ. Solar chimney turbine performance. Ph.D dissertation. University of Stellenbosch.South Afirca. 2002.
    [95] BackstromTWV, Gannon AJ. Solar chimney turbine performance. ASME J. Sol. Energy Eng. 2003, 125: 101-106.
    [96] Backstrom TWV, Gannon AJ. Solar chimney turbine characteristics. Solar energy. 2004, 76: 235-241.
    [97] Kirstein CF. Backstrom TWV. Flow through a solar chimney power plant collector-to-chimney transition section. Journal of Solar Energy Engineering, Transactions of the ASME. 2006, 128(3): 312-317.
    [98] Serag-Eldin MA. Analysis of effect of turbine characteristics on performance of solar chimney plants. Proceedings of the ASME Summer Heat Transfer Conference, v 3, Proceedings of the ASME Summer Heat Transfer Conference, HT 2005. 2005, 673-681.
    [99] Bilgen E, Denantes F. Counter-rotating turbines for solar chimney power plants. Renewable Energy. 2006, 31(12): 1873-1891.
    [100] Kirstein CF, Backstrom TWV, Kroger DG. Flow through a solar chimney power plant collector-to-chimney transition section. International Solar Energy Conference, Solar Engineering 2005 - Proceedings of the 2005 International Solar Energy Conference. 2006, 713-719.
    [101] Mullet LB. The solar chimney. The Energy Group, Dept. of Engineering, Univ. of Reading Preprint, 1983:1-14.
    [102] Lodhi MAK, Solar Desert Chimney, Proc. Int. Sym. Workshop on renewable energy sources, ed. Bhatti MK et al., 1983, 219-220.
    [103] Lodhi MAK. Solar-desert chimney: a concept and device for large scale solar powerproduction at low cost. Pakistan Council of Scientific & Industrial Research, 1983, 199-216.
    [104] Schiel W, Schlaich J. Solarthermisches Aufwindkraftwerk (Solar-thermal upwind power plant). Brennstoff-Waerme-Kraft. 1988, 40(11): 444-449.
    [105] Schlaich J. World energy demand, population explosion, and pollution: could solar energy utilization become a solution? The Structural Engineering. 1991, 69: 189-192.
    [106] Schlaich J, Schiel W, Friedrich K. Solar chimneys. Encyclopedia of physical Science and Technology. 1992, 335-343.
    [107] Stinnes WW. Extension of the feasibility study for the greenhouse operation: the 200MW solar power station in the Northern Cape Province, Energy Management News, 1998, 4-12.
    [108] Schlaich J. Tension structures for solar electricity generation, Engineering structures, 1999, 21: 658-668.
    [109] Dai YJ, Huang HB, Wang RZ. Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28, 1295-1304, 2003.
    [110] Onyango F, Ochieng N, Reccab M. The potential of solar chimney for application in rural areas of developing countries. Fuel. 2006, 85(17-18): 2561-2566.
    [111] Beerbaum S, Weinrebe G. Solar thermal power generation in India-a techno-economic analysis. Renewable Energy. 2000, 21:153-174.
    [112] Michaud LM. Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere. Applied energy. 1999, 62: 241-251.
    [113] Papageorgiou CD. Solar turbine power stations with floating solar chimneys, IASTED Proceedings of power and energy systems, EuroPES, 2004, conference, Rhodes Greece July. 2004, 151-158.
    [114] Papageorgiou CD. External wind effect on floating solar chimneys, IASTED Proceedings of power and energy systems, EuroPES, 2004, conference, Rhodes Greece July 2004, 159-163
    [115] Papageorgiou CD. Optimum design for solar power stations with floating solar chimneys, Proceedings of ISES Asia Pacific solar energy conference, Kwangju Korea, October 2004. 2004, 763-772.
    [116] Papageorgiou CD. Efficiency of solar air turbine power stations with floating solar chimneys, IASTED Proceedings of power and energy systems, Tampa, Florida, November. 2004, 127-134.
    [117]Papageorgiou CD. Floating solar chimney power stations with thermal storage, Proceedings of the Sixth IASTED International Conference on European Power and Energy Systems, EuroPES 2006, 325-331.
    [118]Papageorgiou, CD. Technical and economic feasibility of floating solar chimney technology, WSEAS Transactions on Environment and Development, April 2006, 231-238.
    [119] Papageorgiou CD. Turbines and generators for floating solar chimney power stations, IASTED Proceedings of power and energy systems, EuroPES, 2005, conference, Benalmadena Spain June 2005.
    [120] Papageorgiou CD. Hydrogen production by solar aero electric power plants with floating solar chimneys, International Hydrogen energy congress conference 2005, Istanbul Turkey, July, 2005.
    [121] Papageorgiou CD. Floating solar chimneys: the link towards a solar future, ISES 2005 Solar World Congress Conference, Orlando, Florida, USA, August,2005.
    [122] Papageorgiou CD. Turbines and generators for floating solar chimney power stations. Proceedings of the Fifth IASTED International Conference on Power and Energy Systems. 2005, 73-80.
    [123] Sagredo ED, Sprakker J. Micro solar chimney using concentric vacuum tubes. 3rd LACCEI International Latin American and Caribbean Conference for Engineering and Technology. 2005, 1-12.
    [124] Serag-Eldin MA. American University in Cairo Analysis of a New Solar ChimneyPlant Design for Mountaineous Regions. ISEC2005-76246 Technical Paper. 2005.
    [125]周新平,杨家宽,肖波.依山建造斜体太阳能烟囱的构想.可再生能源. 2006, 128(4):9-11.
    [126]黄国华,施玉川.斜坡太阳能热气流发电的可行性分析.太阳能. 2005, 4: 46-47.
    [127]侯小刚,张显球.隧道式烟囱太阳热风发电系统.太阳能. 2005, 1: 40-41.
    [128]王一平,王俊红,等.太阳能烟囱发电和海水淡化综合系统的初步研究.太阳能学报. 2006, 27(7):731-736.
    [129]王一平,方振雷等.太阳能烟囱综合利用海水系统的初步研究.太阳能学报. 2006, 27(4):382-387.
    [130]朱丽,王俊红.结合水力发电利用太阳能烟囱技术强化海水淡化初探.天津大学学报. 2006, 39(5):575-580.
    [131]徐立.廉价清洁的太阳能烟囱发电站.科学新闻周刊. 2000, 41:19.
    [132] http://www.solarmissiontechnologies.com/
    [133]孙喆,刘征.太阳能-风能综合发电装置中温室型空气集热器的性能分析.太阳能学报. 1985, 1:25-29
    [134]严铭卿, Sherif SA, et al.太阳能热气流筒的热力-流体分析.煤气与热力. 1992, 4:47-53.
    [135]潘垣,辜承林等.太阳能热气流发电及其对我国能源与环境的深远影响.世界科技研究与发展. 2003, 25(4):7-12.
    [136]陈尚发.太阳能风力发电塔整体方案的设想.上海大中型电机. 2003, 3, 2-5.
    [137]明廷臻,刘伟等.太阳能热气流电站系统研究.工程热物理学报. 2006, 27(3): 505-507.
    [138]明廷臻,刘伟等,太阳能热气流电站系统的热力学分析,华中科技大学学报,2005, 33(8): 1-4.
    [139]杨家宽,李进军,张建锋,肖波.太阳能烟囱发电装置温度场和流场的数值模拟研究. 21世纪太阳能新技术. 2003, 471-478.
    [140]杨家宽,李劲,肖波,李进军,张建锋.太阳能烟囱发电新技术.太阳能学报.2003, 24,(4): 565-570.
    [141]张建锋,杨家宽,肖波,王秀萍.太阳能烟囱发电技术现状及展望.可再生能源. 2003, 1:5-7.
    [142]杨家宽,肖波,袁旭东,李劲.利用太阳能烟囱抽取地下水的技术.可再生能源. 2005, 3: 39-41.
    [143]周新平,杨家宽,肖波,张杜杜,马承荣.太阳能烟囱发电装置的CFD模拟.可再生能源. 2005, 4: 8-11.
    [144]周新平,杨家宽,肖波.太阳能烟囱发电试验装置内流场的CFD模拟研究.热力发电. 2006, 3: 23-26.
    [145] Zhou Xinping, Yang Jiakuan, Xiao Bo, Hou Guoxiang. Simulation of a pilot solar chimney thermal power generating equipment. Renewable Energy. 2007, 32:1637-1644.
    [146] Zhou Xinping, Yang Jiakuan, Xiao Bo, Hou Guoxian. Experimental study of temperature field in a solar chimney thermal power setup. Applied Thermal Engineering. 2007.
    [147]龙新峰.太阳能烟囱式热力发电技术进展.广东电力. 2004, 17(1): 1-6.
    [148]毛宏举,李戬洪.太阳能烟囱发电系统研究进展.能源工程. 2005, 1: 24-28.
    [149]毛宏举,李戬洪.烟囱性状对太阳能烟囱发电系统效率的影响.可再生能源. 2006, 129(5): 12-15.
    [150]毛宏举,李戬洪.集热棚对太阳能烟囱发电系统效率的影响.可再生能源. 2006, 130(6):6-9.
    [151]代彦军,黄海滨,王如竹.太阳能热风发电技术应用于宁夏地区的研究. 2003, 24(3): 408-412.
    [152]明廷臻,刘伟等.太阳能热气流电站系统透平位置布置研究.可再生能源. 2006,24(5): 6-8.
    [153] Haiyan ding, Qin’an Xing, Jiping Liu. Numerical simulation on the performance of a solar chimney power plant. 5th international symposium on multiphase flow, heatmass transfer and energy conversion, Xi’an, China. 2005, 3-6.
    [154]张楚华,席光.太阳能热气流发电技术的热力学分析与计算.中国工程热物理学会热机气动热力学会议. 2004, 494-501.
    [155]卫军,张晓霞,潘垣,周礼兵.超高太阳能烟囱的结构可靠度分析.全国结构计算理论与工程应用学术会议论文集. 2003,449-452.
    [156]卫军,刘展科,潘垣,周礼兵.超高太阳能烟囱的结构建造的可行性分析.全国结构计算理论与工程应用学术会议论文集. 2003,198-201.
    [157]葛新石,叶宏.太阳烟囱发电系统及其固有的热力学不完善性分析.太阳能学报, 2004, 25(2): 263-268.
    [158]卢峰,张华,姚秀平,黄惠兰.太阳能热风发电关键技术综述.华东电力. 2006, 34(3):1-3.
    [159]沈洪嘉.高效太阳能热气流发电系统的可行性分析. 2006, 1:72-74.
    [160]胡立业.太阳能规模化综合利用技术.上海电力. 2006, 5:504-508.
    [161]吴本英,周锡武,超高耸太阳能导流烟囱结构的边缘效应研究.山西建筑. 2007, 33(2):71-72.
    [163]黄素逸.太阳能热气流电站系统的研究进展.东莞理工学院学报. 2006, 13(4):10-14.
    [164]曾丹苓,敖越,张新铭,刘朝.工程热力学.北京:高等教育出版社. 2002.
    [165] David J, CasasVazquez J, CriadoSancho M. Thermodynamics of fluids under flow. Berlin, New York: Springer, 2001.
    [166] Yunus AC, Michael AB. Thermodynamics: an engineering approach. McGraw-Hill (Fourth Edition). 2002.
    [167]布罗章斯基BM(俄),王加旋译.火用方法及其应用.北京:中国电力出版社,1996.
    [168] Kotas TJ. The exergy method of thermal plant analysis. Malabar, FL. : Krieger Pub., 1995.
    [169]过增元.热流体学.北京:清华大学出版社. 1992.
    [170] Brindley J. Thermal convection in Horizontal Fluid Layers. J. Inst. Maths. Applics. 1967, 3: 313-393.
    [171] Wallace JM, Hobbs PV.王飞鹏等译.大气科学概观,上海:上海科学技术出版社. 1981.
    [172] Ming Tingzhen, Liu Wei, Xu Guoliang. Analytical and numerical investigation of the solar chimney power plant systems, International Journal of Energy Research. 2006, 30:861-873.
    [173] Schlaich Bergermann und Partner. The solar chimney. http://www.math.purdue. edu/ ~lucier/ The_Solar_Chimney.pdf. Last updated. 2002.
    [174] Sung JK. Convective heat transfer in porous and overlying fluid layers heated from below. International Journal of Heat and Mass Transfer. 1996, 39(2): 319-329.
    [175]陶文铨.数值传热学(第二版).西安:西安交通大学出版社. 2001.
    [176] Guo ZY, Li DY, Wang BX. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998, 41(2): 2221-2225.
    [177]苏绍禹.风力发电机设计与运行维护.北京:中国电力出版社. 2003.
    [178] Yungas A, John M. Fluid mechanics: fundamentals and applications. McGraw-Hill series in mechanical engineering. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700