用户名: 密码: 验证码:
密度锁机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密度锁是一种非能动设备,它的作用相当于阀门,但是工作原理却不同于阀门。密度锁内没有任何活动部件,从关闭状态到打开的过程中不需要任何操纵人员的干预也不需要外部动力源,仅仅依靠系统内工作介质本身特性的改变来实现流体通路的截止或连通。因此,掌握密度锁技术及其设计方法,对进一步提高我国核电站的安全性有着非常重要的意义。
     本文通过实验研究与理论分析相结合的方法,对密度锁技术及其设计方法进行了研究。首先根据密度锁的工作环境,遵循由简单到复杂的原则,把密度锁的工作条件分为4种:不存在外界扰动的静态条件;密度锁上方存在水平剪切流动的水平扰动条件;密度锁内分层界面存在竖直振荡运动的竖直振荡条件;以及综合考虑水平扰动和竖直振荡的综合条件。然后,依次对各条件下密度锁进行实验研究,分析各参数对密度锁的影响。最后,总结研究结果,提出密度锁设计方法,并进行样机结构设计。主要工作和结果如下:
     (1)根据密度锁的功能提出密度锁的工作要求,确定研究步骤;建立密度锁研究实验台,并对静态条件下密度锁特性进行研究。研究结果表明:静态条件下密度锁内可以形成非常明显的分层,并且分层稳定性好,温度梯度大;通过对密度锁内传热传质进行分析,证明了静态条件下的分层能满足隔离密度锁两侧流体的要求,并得到在设计密度锁结构时需满足的一个条件。
     (2)在静态条件实验台基础上进行改造,建立模拟密度锁上方存在水平剪切流动的水平扰动条件实验台;通过改变流速、温差和结构等因素,研究各因素对密度锁的影响。研究结果表明:密度锁可以分为混合区,分层区和恒温区,其中分层区又分为强分层与弱分层,分层界面位于混合区与分层区之间;在分区模型的基础上,把密度锁内温度场分为A、B、C、D和E等5类,其中B类温度场最佳,是密度锁正常工作时的最佳选择;当水平流速较小时,分层形成后的温度梯度大,温度场接近静态条件下的温度场;当水平流速较大时,分层形成的较晚且温度梯度较小;当水平流速超过某一临界值时,密度锁内无法形成分层或分层很快消失,密度锁失效;温差的增大,导致分层温度梯度增大,密度锁稳定性增强;栅格结构能增强密度锁的抗扰动能力,使分层形成位置靠上;建立水平扰动条件下密度锁内传热模型,并与实验数据对比进行验证。
     (3)在水平扰动条件实验台基础上进行改造,建立模拟密度锁内分层界面存在上下振荡的竖直振荡条件实验台,通过实验研究竖直振荡过程中振幅、频率、温差和结构等因素对密度锁的影响。研究结果表明:竖直振荡过程使密度锁内换热方式发生了转变,从导热变为对流换热,强化了密度锁向外界散热,从而导致在振荡速度较大,时间较长时,振荡之后密度锁内的温度场向高温热源方向发生偏移;通过理论分析,给出温度场偏移的计算公式。
     (4)在综合考虑水平扰动和竖直振荡的条件下,通过实验研究各因素对密度锁的影响。对综合条件中密度锁失效情况进行分析,提出3种解决方法并通过实验进行验证。对密度锁的结构参数进行分析,给出各参数的选取原则,进而提出密度锁设计流程,并设计密度锁样机结构。
Density lock is a passive device, functioning as a valve. It has no moving parts and does not need outside power and any operator during the process from closure to open. It only depends on the change of the characteristics of working medium in the reactor to achieve cut-off or connected of fluid channels. Therefore, a detailed knowledge related to the technology and design of density lock is of important significance to further improve the security of nuclear power plants.
     With the methods of experimental study and theoretical analysis, the research on the density lock technology and design method was carried out. According to the work environment of density lock, the work condition of density lock can be divided into 4 categories:the static condition without external disturbance; horizontal disturbance condition with horizontal flow above the density lock; vertical oscillation condition with the vertical oscillations of stratification; comprehensive condition with both horizontal disturbance and vertical oscillation. The experiment study was carried out in sequence and the effect of different parameters on the density lock was analyzed as well. The method of density lock design was proposed based on the research results and a prototype was also designed. The main work and results are given as follows:
     First, according to the function of density lock, working requirements of density lock were given. Based on these requirements, the research steps can be determined. Then, we built the experimental loop of density lock and took the research on the characteristics of density lock at the static condition. The results show that:a very clear stratification can be formed in the static condition and it also has a well stability and large temperature gradient; through the analysis of heat and mass transfer in density lock, it is proved that density lock can separated the fluid around it by stratification in static condition, and a condition which is required at the design of density lock was obtained as well.
     Second, reconstructed the experimental loop for horizontal disturbance condition and studied the effect of the flow rate, temperature difference and structure on the density lock. The results show that:fluid in density lock can be divided into three zones:mixing zone, stratification zone and constant temperature zone; the stratification zone can be divided into strong stratification and weak stratification and the interface is located between the mixing zone and the stratification zone; based on zone model, the temperature field of density lock is divided into five categories in which the second class is the best for normal work; when the horizontal flow rate is small, the temperature gradient of stratification in horizontal disturbance condition is large and closes to the static condition; with the horizontal flow rate becoming larger, the stratification will form later and with a low temperature gradient; when the horizontal flow rate exceeds a critical value, the stratification can not form or will disappear soon and density lock is out of work; with the increase of temperature difference, the temperature gradient increases and the stability of density lock is enhanced; the anti-disturbance ability of density lock can be enhanced by the structure of grid and the stratification also can form at a upper place; the heat transfer model of density lock in horizontal disturbance condition is established and validated by the experimental data.
     Third, the vertical oscillation experimental loop was rebuilt and the effect of amplitude, frequency, temperature difference and structure on the density lock was researched through the experiment. The results show that:because of the vertical oscillations, the mode of heat transfer in density lock has been changed from heat conduction to convection, enhancing the heat transfer from the density lock to outside, so it leads to that the temperature field of density lock moving to high temperature heat source when oscillation speed is large; temperature offset distance formula is given through theoretical analysis.
     Fourth, the effect of different factors on the density lock was carried out through experiment at comprehensive consideration; the conditions of density lock failure were discussed and three solutions were proposed which were verified by experiment. Through the analysis of the structural parameters of density lock, the design process of density lock was proposed; based on design process, the density lock prototype structure was given at last.
引文
[1]藏希年,申世飞.核电厂系统及设备.北京:清华大学出版社,2003:1-6
    [2]阎昌琪,曹欣荣.核反应堆工程.哈尔滨:哈尔滨工程大学出版社,2004:1-2
    [3]孙中宁.核动力设备.哈尔滨:哈尔滨工程大学出版社,2004:3-8
    [4]刘庆成,贾宝山,万骏.核科学概论.哈尔滨:哈尔滨工程大学出版社,2004:186-193
    [5]邹树梁,刘兵,陈甲华,刘文君.中国核电发展的现状与展望.南华大学学报(社会科学版).2004,5(4):.36-40
    [6]凌备备.核反应堆工程原理.北京:原子能出版社,1982:1-10,396-397
    [7]朱继洲.核反应堆安全分析.西安:西安交通大学出版社,2000:1-9,192
    [8]Juhn RE, Kupitz J, Cleveland J., Cho B, Lyon R.B. IAEA activities on passive safety systems and overview of international development Nuclear Engineering and Design,2000,201:48-54
    [9]崔广余等译.当代压水堆核电站发展新趋势.北京:机械工业出版社,1997:259-268
    [10]Charies W. Forsberg, William J. Reich. Worldwide advanced nuclear power reactors with passive and inherent safety:what, why, how, and who. ORNL/TM-11907. September,1991
    [11]和卫东.先进压水堆AP-600述评.核动力工程.1989,10(5):63-70
    [12]Thomas Hayes, Jeneifer Kisakl. AP1000电站描述.国外核动力.2005,4:1-6
    [13]陈泓,刘志铭.俄罗斯的先进VVER反应堆设计.核科学.2003,1:19-25
    [14]廉海波,高正等.基于固有安全性的CANDU系列反应堆慢化剂系统 改进设计.全国第一届核技术与公共安全学术研讨会论文集.2007:138-142
    [15]Kare Hannerz. Applying PIUS to power generation:the Secure-P LWR. Nuclear Engineering International.1983, Dec:41-46
    [16]Dusan Babala, Kare Hannerz. Pressurized water reactor inherent core protection by primary system thermo-hydraulics. Nuclear Science and Engineering.1985,90:400-410
    [17]Kare Hannerz, Nuclear reactor plant. United State:4526742,1985-07-02
    [18]Christen Pind. The secure heating reactor. Nuclear Technology.1987,79: 175-185
    [19]Vecsey, et al. Method and device for passive transfer of heat from nuclear reactors to a public utility network, with automatic regulation of reactor power and automatic emergency shutdown and switchover to emergency cooling. United State:4783306,1988-11-08
    [20]Kare Hannerz, Making progress on PIUS design and verification. Nuclear Engineering International.1988, Nov,29-31
    [21]Kare Hannerz, Lars Nilsson, Tor Pedersen et al. The PIUS pressurized water reactor:aspects of plant operation and availability. Nuclear Technology,1990,91(1):81-88
    [22]Dusan Babala, Ulf bredolt et al. A study of the dynamics of SECURE reactors:Comparison of experiments and computations. Nuclear Engineering and Design.1990,122:387-399
    [23]S. C. harmony, et al. One-dimensional TRAC calculations of main steam line break events for the updated PIUS 600 advanced reactor design. ANS topical meeting, Pittsburgh, PA, April,1994
    [24]B. E. Boyack, et al. Loss of offsite power transients in the updated PIUS 600 advanced reactor design. ASME Winter Annual Meeting, Chicago, November,1994
    [25]尹耀铮.PIUS反应堆发展概况.核动力工程.1989,10(5):83-88
    [26]Tor Pedersen. PIUS—status and perspective. Nuclear Engineering and Design.1992,136:167-177
    [27]谷海峰.密度锁在非能动余热排出系统应用的研究.哈尔滨工程大学博士学位论文,2009:35-97
    [28]B.Richard Gebart, Ingemar A. A. Lindblad, P. Henrik Alfrredsson, Arne V. Johansson. How to suppress transport across a density interface. Proceedings of the Third International Symposium on Stratified Flows, Pasadena,1987:1037-1046
    [29]Ekander, Hans, Gebart, Rikard. Device for limitation of a flow through a density lock for a nuclear reactor. United State:4939754,1990-07-03
    [30]C. Pind, J. Fredell. Summary of theoretical analyses and experimental verification of the PIUS density lock development program. IAEA Technical Committee Meeting(TCM) on Progress in Development and Design Aspects of Advanced Water-cooled Reactors, Rome, IAEA ref.13-tc-633.14 September 1991:213-219
    [31]Masahiro Osakabe, Toshisuke Kubo. Entrainment Behavior on Density Interface of Stratified Fluids. JSME International Journal, SeriesⅡ.1992, 35(1):61-66
    [32]Mario De Salve, Giovanni Del Tin, Bruno Panella. Temperature field and transport phenomena across a density interface. International Conference On Nuclear Engineering, Volumel, Part A, ASME 1996:195-205P
    [33]K. Tasaka, M. Tamaki, K. Haga. Startup experiment of a PIUS-type reactor from isothermal fluid condition by feedback control of primary pump. The 4th international topical meeting on nuclear thermal hydraulics, operations and safety Taipei, Taiwan (China) 5-8 Apr.1994
    [34]K. Haga, K. Tasaka, and Y. Kukita. The simulation test to start up the PIUS-type reactor from isothermal fluid condition. Journal of Nuclear Science and Technology.1995,32(9):846-854
    [35]T. Ito, K. Oyamatsu, Y. Tsuji et al. Alternative startup procedures for a PIUS-type reactor. The 8th International Topical Meeting on Nuclear Reactor Thermal-hydraulics, Kyoto (Japan) 30 Sep.-4 Oct.1997
    [36]T. Ito, K. Oyamatsu, Y. Tsuji et al. Development of an advanced startup procedure for a PIUS-type reactor. Journal of Nuclear Science and Technology.1998,35(8):554-563
    [37]T. Ito, Y. Tsuji, M. Tamaki, Y. Kukita. Recoupling and decoupling of parallel loops in simulated PIUS-type reactor shutdown and restart transients. J. Nucl. Sci. Technol.1997,34(11):1067-1078
    [38]M. Fujii, Y. Anoda, H. Murata et al. Feedback control of primary circulation pump of PIUS-type reactor during startup and steady state operation. American Society of Mechanical Engineers (ASME) winter annual meeting. Dallas, Texas,25-30 Nov.1990., in:Thermal Hydraulics of Advanced Nuclear Reactors, HTD-Vol.150(1990):85-89
    [39]K. Tasaka, M.Tamaki, S. Imai et al. Small-scale thermal-hydraulic experiment of a PIUS-type reactor. Proc. of 1st JSME/ASME Joint International Conference on Nuclear Engineering and Exhibition, Tokyo, 1991, Vol1:341-346
    [40]M. Fujii, Y. Anoda, H. Murata et al. Feedback control of primary circulation pump of PIUS-Type reactor. Japan Atomic Energy Research Inst, Tokyo (Japan). May 1991,40
    [41]Kanji Tasaka, Masayoshi Tamaki, Satoshi Imai et al. Atmospheric-pressure small-scale thermal-hydraulic experiment of a PIUS-type reactor. Journal of Nuclear Science and Technology.1992, 29(12):1152-1161
    [42]K.Tasaka, S. Imai, H. Masaoka etal. Thermal-hydraulic experiment for safe and stable operation of a PIUS-type reactor. International conference on design and safety of advanced nuclear power plants. Tokyo (Japan). 25-29 Oct.1992
    [43]K. Tasaka, K. Haga, M. Tamaki. Feedback control of primary pump using mid-plane temperature of lower density lock for a PIUS-type reactor. JSME/ASME joint international conference on nuclear engineering. San Francisco, CA (United States).21-24 Mar.1993
    [44]K. Tasaka, S. Imai, H. Masaoka, M. Tamaki and Y. Kukita. Feedback control of a primary pump for safe and stable operation of a PIUS-type reactor. Nuclear Engineering and Design.1993,144:345-352
    [45]Tsuji, Y. et al. Evaluation of Feedback control system in a PIUS-type reactor. The third JSME/ASME Joint International Conference on Nuclear Engineering,1995, Vol2:1107-1112
    [46]Tamaki, M., et al. Simulation test of PIUS-type reactor with large scale experimental apparatus. The third JSME/ASME Joint International Conference on Nuclear Engineering,1995, Vol2:1113-1118
    [47]K. Tasaka, M.Tamaki, S.Imai, et al. Small scale thermal-hydraulic experiment for stable operation of a pius-type reactor. Emerging nuclear energy systems. Singapore (Singapore). World Scientific Publishing Co. Pte. Ltd.1994,576:287-292
    [48]T. Ito, T. Kamihama, F. Nobuhara et al. Thermal-Hydraulic Experiments of an Advanced PIUS-Type Reactor. International Conference on Nuclear Engineering,1996, Vol2:163-170
    [49]Yasuteru sibamoto, Taisuke yonomoto. Dynamic response of hot/cold liquid interfaces to pump speed perturbations in a thermal-hydraulic loop simulating a PIUS-type reactor. Journal of Nuclear Science and Technology.1996,33(9):703-711
    [50]Yasuteru Sibamoto, Taisuke Yonomoto, Yutaka Kukita. Dynamic Response of Hot/Cold Liquid Interfaces to Pump Speed Perturbations in a Thermal-Hydraulic Loop Simulating a PIUS-type Reactor. Journal of NUCLEAR SCIENCE and TECHNOLOGY.1996,133(9):903-711
    [51]H. Wakabayashi, ISER:an international inherently safe reactor concept. Nuclear Engineering Int. June(1988):45-46
    [52]H. Wakabayashi. T. Yoshida and Y. Asahi. Intrinsically safe and economical reactor (ISER). Nucl. Eng. Des.1991,126:89-103
    [53]Hiroaki Wakabayashi. Response of the ISER for a beyond-design-basis hypothetical accident. Nuclear Engineering and design.1995,158: 135-147
    [54]Takayuki Mizuno, Tatsuya Ito, Kiyohisa Ohta. The inherently-safe fluidized-bed boiling water reactor concept. Annals of Nuclear Energy. 1990,17(9):487-492
    [55]L.Cinotti, F.L. Rizzo. The Inherently Safe Immersed System (ISIS) reactor. Nuclear Engineering and Design.1993,143:295-300
    [56]L. Cinotti. ISIS, safety and economic aspects in view of co-generation of heat and electricity. Advisory group meetings on introduction of small and medium reactors in developing countries. Rabat (Morocco); Tunis (Tunisia).23-27 Oct,1995
    [57]S. Amato, A. Santinelli. Overall aspects of control of ISIS-type nuclear reactor. Proceedings of the International conference:Nuclear option in countries with small and medium electricity grid. Zagreb (Croatia). 1996,595:88-96
    [58]Stefan Mehedinteanu. An application of the new way to prevent core melting in pressure tube reactor(CANDU type). Annals of Nuclear Energy.2001,28:79-88
    [59]Griboriev, O.G.; Leonchyk, M.P.,et al. IRIS:Minimizing internal energy accumulated in the primary circuit of an integral PIUS type PWR with natural circulation. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting. Obninsk, Russian,1995, Oct:119-122
    [60]M. D. Carelli, IRIS:A global approach to nuclear power renaissance. Nuclear News.2003,46(10):32-42
    [61]Mario D.Carelli, et al. The design and safety features of the IRIS reactor. Nuclear Engineering and Design.2004,230:151-167
    [62]Yuko Mizuno, Hisashi Ninokata, et al. Risk-informed design of IRIS using a level-1 probabilistic risk assessment from its conceprual design phase. Reliability Engineering and System Safety.2005,87:201-209
    [63]M. D. Carelli, B. Petrovie. Here's looking at IRIS. Nuclear Engineering International.2006, Vol51:12-18
    [64]Emilian Popov, Graydon Yoder. IRIS pressurizer fluid dynamics and heat transfer analyses. Nuclear Engineering and Design.2008,238(1):81-89
    [65]过增元.热流体学.北京:清华大学出版社,1992:193-195
    [66]富永政英.海洋波动——基础理论和观测成果.北京:科学出版社,1976:423-424
    [67]Kuniaki Okuda. Observation of the Disturbances Occurring in a Discontinuity Layer of Lake 1973,29:221-226
    [68]G.L.皮卡德,W.J.埃默里.描述性物理海洋学.北京:海洋出版社,1989:45-46
    [69]J.A.瑙斯.物理海洋学导论.北京:科学出版社,1983:4-5
    [70]徐肇廷.海洋内波动力学.北京:科学出版社,1999:1-3
    [71]贾复,吴乃华.分层流体中异重流的流态研究.水动力学研究与进展.1986,1(2):63-69
    [72]邱晨霞.异重流二维两层模型数值计算.泥沙研究.1995,3:33-39
    [73]高军.建筑空间热分层理论及应用研究.哈尔滨工业大学博士学位论文,2007:1-2
    [74]程向华,历彦忠,陈二峰.火箭液氧贮箱热分层现象数值模拟.低温工程.2008,162(2):10-13
    [75]程栋,顾安忠.液化天然气的贮存分层现象.深冷技术.1997,1:13-15
    [76]胡国霞,于航.自然分层型水蓄冷槽布水器的模拟.能源技术.2007,28(3):237-239
    [77]Necdet Altuntop, Mevlut Arsian, et al. Effect of obstacles on thermal stratification in hot water storage tanks. Applied Thermal Engineering. 2005,25:2285-2298
    [78]郭德朋,陆道纲,冯预恒.核电厂管线中的热分层现象.原子能科学技术.2007,Vol.41,No.5:570-573
    [79]E. Jud, A. Crua, U. R. Blumer. Experimental investigation of the stratified flow in the horizontal pipe work of nuclear reactors. Nuclear Engineering and Design,1995,153:173-181
    [80]Yasuteru Sibamoto, et al. Experimental investigation on similarity between velocity and density profiles in density-stratified countercurrent flow in reactor horizontal leg. Nuclear Engineering and Design,2000, 204:83-98
    [81]周美五.流体热分层引起的核电厂稳压器波动管应力分析.上海交通大学硕士学位论文,2002:1-3
    [82]YIh C.S. Stratified flows. Academic Press, New York,1980
    [83]易家训.分层流.北京:科学出版社,1983:1-2
    [84]Ellison, T.H, Turner, J.S. Turbulent entrainment in stratified flows. J. Fluid Mech.1959,6:423-448
    [85]J.s.Turner. Salt Fingers across a Density Interface. Deep Sea Res.1967,14: 599-611
    [86]L. Cooper. Stratification in the deep ocean. Sci. Prog.1967,55:73-90
    [87]H.Stommel, K.N. Federov. Small scale structure in temperature and salinity near Timor and Minando. Tellus,1967,19:306-325
    [88]J.S. Turner. The coupled turbulent transports of salt and heat across a sharp density interface. Int. J. Heat Mass Transfer,1965,8:759-767
    [89]J.S. Turner, E.B. Kraus. A one-dimensional model of the seasonal thermocline. I. A laboratory experiment and its interpretation. Tellus,1967,19:88-97
    [90]Turner, J.S. The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech.1968,33:639-656
    [91]Linden, P.F. The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J. Fluid Mech.1973,60:467-480
    [92]P. F. Linden. The structure of turbulent density interfaces. J. Fluid Mech. 1974,65:45-63
    [93]P. F. Linden. The deepening of a mixed layer in a stratified fluid. J. Fluid Mech.1975,71:385-405
    [94]S. M. Thompson. Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech.1975,67:349-368
    [95]E. J. Hopfinger, J. A. Toly. Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech.1976,78:155-175
    [96]O. M. Phillips. Turbulence in a strongly stratified fluid-is it unstable? Deep-Sea Research,1972,19:79-81
    [97]Eric S. Posmentier. The generation of salinity finestructure by vertical diffusion. Journal of Physical Oceanography,1977,7:298-300
    [98]Long, R. A theory of mixing in a stably stratified fluid. J. Fluid Mech. 1978,84:113-124
    [99]R. A. Wirtz. Experiments on convective layer formation and merging in a differentially heated slot. J. Fluid Mech.1979,91:451-464
    [100]J.W. Deardorff, GE.Willis, and B.H.Stockton. Laboratory studies of the entrainment zone of a convectively mixed layer, J.Fluid Mech.1980,100: 41-64
    [101]McEwan A.D. Internal mixing in Stratified Fluid. J.Fluid Mech.1983, 128:59-80
    [102]Xuequan E, Hopfinger, E.J. On mixing across an interface in stably stratified fluid. J. Fluid Mech.1986,166:227-244
    [103]贾复,吴乃华.分层流体中异重流的流态研究.水动力学研究与进展.1986,1(2):63-69
    [104]金海生.温度分层剪切流的实验和数学模型研究.河海大学学报.1991,19(4):59-67
    [105]金海生,张书农.同时存在温度和盐度梯度的分层流的数值模拟.水动力学研究与进展.1991,6(4):72-78
    [106]陈惊雷等.关于盐度分层流的数值计算.上海交通大学学报.1993,27(3): 8-16
    [107]邱晨霞.异重流二维两层模型数值计算.泥沙研究.1995,3:33-39
    [108]王亚玲,沈永明等.两相湍浮力分层流模型.大连理工大学学报.1999,39(3):455-459
    [109]王日新,沈国光等.分层流体中波动特性的理论分析和试验研 究.2000,15(4):455-462
    [110]沈永明,胡振红等.温度和盐度分层流的数值模拟.水科学进展.2001,12(4): 439-444
    [111]江春波,马强,付清潭.二维温度分层流的数值模拟.水力发电.2003,29(2): 24-26
    [112]陈丽星,姚朝晖.模拟热分层流场的湍流模型的比较及优化.原子能科学技术.2003,37(5):389-394
    [113]陈丽星,姚朝晖.Reynolds应力模型在热分层流场中的应用及优化.清华大学学报(自然科学版).2003,43(8):1079-1082
    [114]渊秀隆.物理海洋学第1卷.北京:科学出版社,1985:192-195
    [115]J.J.冯史威德.海洋流体动力学基础.北京:海洋出版社出版,1985:317-321
    [116]B.M.卡曼柯维奇.海洋动力学基础.北京:海洋出版社出版,1983:33-35
    [117]易家训.流体力学.北京:高等教育出版社,1982:169-175
    [118]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998:29-33,382
    [119]平浚.射流理论基础及应用.北京:宇航出版社,1995:74-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700